imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

LET9070CB

RF power transistor from the LdmoST family of N-channel enhancement-mode lateral MOSFETs Datasheet - production data

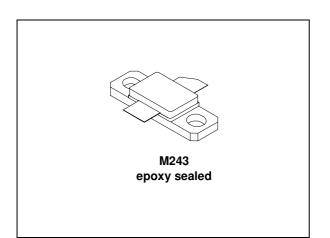
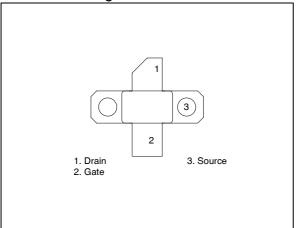



Figure 1. Pin out

Features

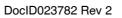
- Excellent thermal stability
- Common source configuration
- P_{OUT} (@ 28 V)= 70 W with 17 dB gain @ 945 MHz
- BeO free package
- In compliance with the 2002/95/EC European directive
- Bidirectional ESD

Description

The LET9070CB is a common source N-channel enhancement mode lateral field-effect RF power transistor designed for broadband commercial and industrial applications at frequencies up to 1.0 GHz. The LET9070CB is designed for high gain and broadband performance operating in common source mode at 28 V. It is ideal for base station applications requiring high linearity.

Table 1. Device summary

Order code	Package	Branding	
LET9070CB	M243	LET9070CB	


DocID023782 Rev 2

1/14

This is information on a product in full production.

Contents

1	Maximum ratings 3
2	Electrical characteristics 4
3	Impedance data
4	Typical performance
5	Test circuit
6	Package mechanical data 11
7	Revision history

1 Maximum ratings

	Table 2. Absolute maximum ratings (TCASE - 2		
Symbol	Parameter	Value	Unit
V _{(BR)DSS}	Drain-source voltage	80	V
V _{GS}	Gate-source voltage	-10 to +15	V
۱ _D	Drain current	12	А
P _{DISS}	Power dissipation (@ T _C = 70 °C)	130	W
TJ	Max. operating junction temperature	200	°C
T _{STG}	Storage temperature	-65 to +150	°C

Table 2.	Absolute	maximum	ratings	(Tease =	: 25 °C)
	Absolute	maximam	ruungs	V'CASE -	. 20 0)

Table 3. Thermal data

Symbol	Parameter	Value	Unit
R _{th(JC)}	Junction-case thermal resistance	1.0	°C/W

2 Electrical characteristics

(T_C = 25 °C)

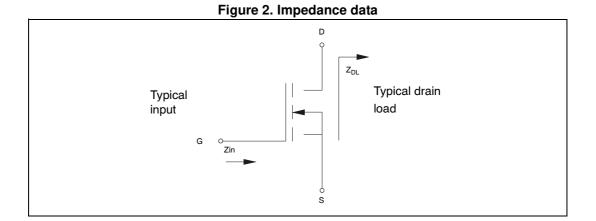

	Symbol Test conditions Min. Typ. Max. Unit $V_{(BR)DSS}$ $V_{GS} = 0; I_{DS} = 10 \text{ mA}$ 80 V I_{DSS} $V_{GS} = 0; V_{DS} = 28 \text{ V}$ 1 μ A				
Symbol	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	V _{GS} = 0; I _{DS} = 10 mA	80			V
I _{DSS}	V _{GS} = 0; V _{DS} = 28 V			1	μA
I _{GSS}	V_{GS} = 5; V_{DS} = 0			1	μA
V _{GS(Q)}	V _{DS} = 28; I _D = 100 mA	2.0		5.0	V
V _{DS(ON)}	V _{GS} = 10 V; I _D = 3 A		0.8	1.2	V
G _{FS}	$V_{DS} = 10 \text{ V}; \text{ I}_{D} = 3 \text{ A}$	2.5			mho
C _{ISS}	V _{GS} = 0; V _{DS} = 28 V; f = 1 MHz		78		pF
C _{OSS}	V _{GS} = 0; V _{DS} = 28 V; f = 1 MHz		42		pF
C _{RSS}	V _{GS} = 0; V _{DS} = 28 V; f = 1 MHz		2.7		pF

Table 4. Static

Table 5. Dynamic

Symbol	Test conditions	Min.	Тур.	Max.	Unit
P _{OUT}	V_{DD} = 28 V; I_{DQ} = 400 mA; P_{IN} = 2.5 W; f = 945 MHz	70	80		W
G _{PS}	V_{DD} = 28 V; I_{DQ} = 400 mA; P_{OUT} = 70 W; f = 945 MHz		17		dB
h _D	V_{DD} = 28 V; I_{DQ} = 400 mA; P_{IN} = 2.5 W; f = 945 MHz	60	65		%
Load mismatch	V_{DD} = 35 V; I_{DQ} = 400 mA; P_{OUT} = 100 W; f = 945 MHz All phase angles		20:1		VSWR

3 Impedance data

Frequency	Ζ_{ΙΝ} (Ω)	Ζ_{LOAD} (Ω)
100	0.456 -j19.309	3.851 +j0.242
150	0.458 -j12.682	3.791 +j0.353
200	0.464 -j9.320	3.711 +j0.452
250	0.474 -j7.259	3.613 +j0.537
300	0.484 -j5.859	3500 +j0.605
350	0.492 -j4.832	3.376 +j0.655
400	0.500 -j4.038	3.243 +j0.687
450	0.507 -j3.401	3.106 +j0.700
500	0.515 -j2.873	2.966 +j0.697
550	0.525 -j2.423	2.826 +j0.676
600	0.534 -j2.035	2.688 +j0.640
650	0.542 -j1.692	2.553 +j0.591
700	0.549 -j1.394	2.422 +j0.529
750	0.556 -j1.117	2.297 +j0.456
800	0.563 -j0.864	2.178 +j0.373
850	0.570 -j0.629	2.065 +j0.282
900	0.577 -j0.410	1.958 +j0.184
950	0.585 -j0.204	1.857 +j0.079
1000	0.592 -j0.009	1.762 -j0.03
1050	0.613 +j0.172	1.673 -j0.145
1100	0.621 +j0.347	1.590 -j0.264
1150	0.628 +j0.516	1.513 -j0.386

Table 6. Impedance data

Frequency	Ζ_{IN} (Ω)	Ζ_{LOAD} (Ω)				
1200	0.633 +j0.680	1.440 -j0.510				
1250	0.639 +j0.839	1.373 -j0.637				
1300	0.644 +j0.995	1.309 -j0.766				
1350	0.648 +j1.148	1.250 -j0.897				
1400	0.653 +j1.299	1.195 -j1.030				
1450	0.657 +j1.448	1.144 -j1.164				
1500	0.660 +j1.597	1.096 -j1.299				
1550	0.664 +j1.744	1.051 -j1.436				
1600	0.667 +j1.891	1.010 -j1.574				
1650	0.670 +j2.038	0.971 -j1.712				
1700	0.673 +j2.184	0.934 -j1.852				
1750	0.677 +j2.331	0.900 -j1.993				
1800	0.680 +j2.478	0.868 -j2.136				
1850	0.684 +j2.625	0.838 -j2.279				
1900	0.688 +j2.773	0.810 -j2.423				
1950	0.692 +j2.921	0.784 -j2.569				
2000	0.696 +j3.070	0.759 -j2.716				

Table 6. Impedance data (continued)

Gain

(dB)

22

20

18

16

14

12

10 0

4 **Typical performance**

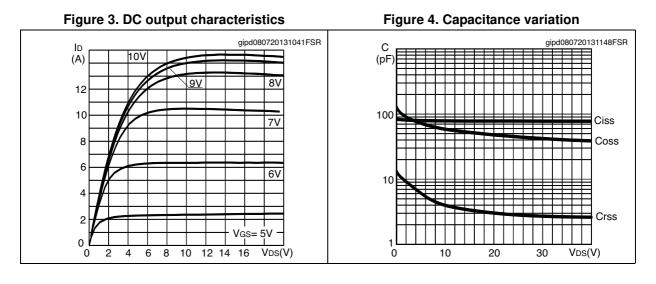
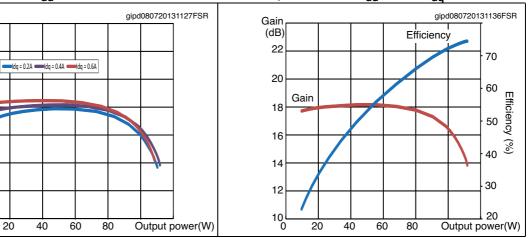



Figure 5. Gain vs output power, freq = 945 MHz, V_{dd} = 28 V

Figure 6. Gain and efficiency vs output power, freq = 945 MHz, V_{dd} = 28 V, I_{dq} = 0.4 A

A7

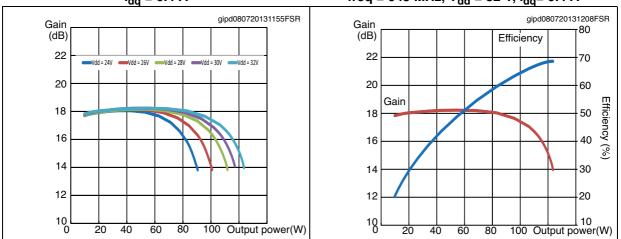
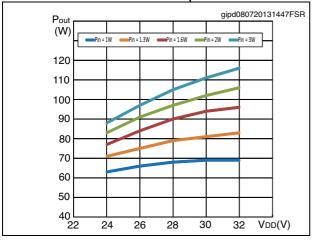



Figure 7. Gain vs output power, freq = 945 MHz, Figure 8. Gain and efficiency vs output power, $I_{dq} = 0.4 \text{ A}$ freq = 945 MHz, $V_{dd} = 32 \text{ V}$, $I_{dq} = 0.4 \text{ A}$

Figure 9. Output power vs supply voltage, freq = 945 MHz, I_{dq} = 0.4 A

5 Test circuit

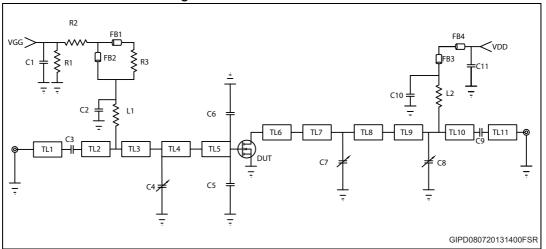
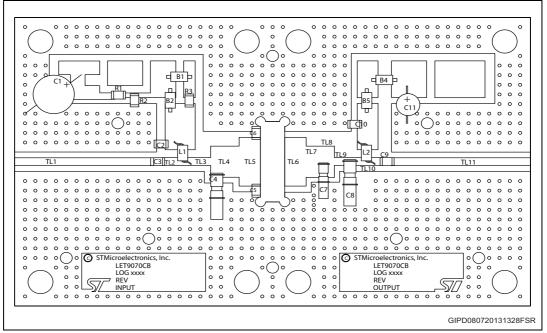


Figure 10. Test circuit schematic

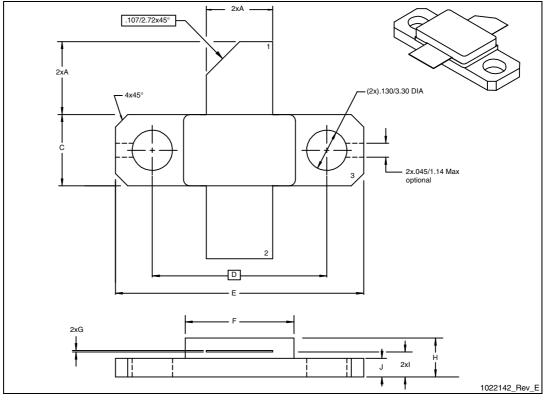
ltem	Qty	Part number	Vendor	Description				
R1, R2	2	CR1206-8W-112JB	VENKEL	1.5 K OHM, 1/8W surface mount chip resistor				
R3	1	CR1206-8W-100JB	VENKEL	0 OHM, 1/8W surface mount chip resistor				
Coil (L1&L2)	2	1812SMS-33NJ	Coilcraft	33 nH coil				
B1,B2,B3,B4	5	2743021447	FAIR-RITE CORP	Surface Mount EMI Sheild Bead				
C1	1			100uF, 63V Electrolytic Capacitor				
C2, C3, C9, C10	4	ATC100B470	ATC	47 pF Chip Capacitor				
C4, C8	2		JOHANSON	0.8-8pF Giga Trim Variable Capacitor				
C5	1	ATC100B3R6	ATC	3.6pF Chip Capacitor				
C6	1	ATC100B100	ATC	10pF Chip Capacitor				
C7	1		JOHANSON	0.6-4.5pF Giga Trim Variable Capacitor				
C11	1			330µF, 50V Electrolytic Capacitor				
TL1				L= 1.350in W=0.082in				
TL2				L= 0.234in W=0.082in				
TL3				L= 0.234in W=0.082in				
TL4				L= 0.277in W=0.323in				


Table 7. Test circuit component part list

Item	Qty	Part number	Vendor	Description			
TL5				L=0.207 in W=0.506in			
TL6				L= 0.208in W=0.506in			
TL7				L= 0.137in W=0.324in			
TL8				L= 0.137in W=0.324in			
TL9				L= 0.150in W=0.082in			
TL10				L= 0.320in W=0.082in			
TL11				L= 1.350in W=0.082in			
Board 3X5	1		Rogers Corp	Er=2.55 t=2 Oz H=0.030in			

 Table 7. Test circuit component part list (continued)

6 Package mechanical data


In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark.

Dim					Inch		
Dim.		mm.		Inch			
	Min.	Тур.	Max.	Min.	Тур.	Max.	
А	5.21		5.72	0.205		0.225	
В	5.46		6.48	0.215		0.255	
С	5.59		6.10	0.220		0.240	
D		14.27			0.562		
Е	20.07		20.57	0.790		0.810	
F	8.89		9.40	0.350		0.370	
G	0.10		0.15	0.004		0.006	
Н	3.18		4.45	0.125		0.175	
Ι	1.83		2.24	0.072		0.088	
J	1.27		1.78	0.050		0.070	

Table 8. M243 (.230 x .360 2L N/HERM W/FLG) mechanical data

a. Controlled dimensions are in inches.

DocID023782 Rev 2

7 Revision history

Date	Revision	Changes
12-Oct-2012	1	Initial release.
08-Jul-2013	2	Updated features in cover page and <i>Table 5: Dynamic</i> . Added <i>Section 4: Typical performance</i> and <i>Section 5: Test circuit</i> .

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT AUTHORIZED FOR USE IN WEAPONS. NOR ARE ST PRODUCTS DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

> ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied.

information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2013 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

DocID023782 Rev 2

