: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Wide bandwidth dual JFET operational amplifiers

Features

- Low power consumption
- Wide common-mode (up to $\mathrm{V}_{\mathrm{CC}}{ }^{+}$) and differential voltage range
- Low input bias and offset current
- Output short-circuit protection
- High input impedance JFET input stage
- Internal frequency compensation
- Latch up free operation
- High slew rate $16 \mathrm{~V} / \mu \mathrm{s}$ (typical)

Description

These circuits are high speed JFET input dual operational amplifiers incorporating well matched, high voltage JFET and bipolar transistors in a monolithic integrated circuit.
The devices feature high slew rates, low input bias and offset currents, and low offset voltage temperature coefficient.

1 Schematics

Figure 1. Schematic diagram (each amplifier)

2 Absolute maximum ratings and operating conditions

Table 1. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V_{CC}	Supply voltage ${ }^{(1)}$	± 18	V
V_{i}	Input voltage ${ }^{(2)}$	± 15	V
$V_{\text {id }}$	Differential input voltage ${ }^{(3)}$	± 30	V
$\mathrm{R}_{\text {thja }}$	Thermal resistance junction to ambient ${ }^{(4)}$ $\begin{aligned} & \text { SO-8 } \\ & \text { DIP8 } \end{aligned}$	$\begin{gathered} 125 \\ 85 \end{gathered}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {thic }}$	Thermal resistance junction to case ${ }^{(4)}$ $\begin{aligned} & \text { SO-8 } \\ & \text { DIP8 } \end{aligned}$	$\begin{aligned} & 40 \\ & 41 \end{aligned}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$
	Output short-circuit duration ${ }^{(5)}$	Infinite	
$\mathrm{T}_{\text {stg }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$
ESD	HBM: human body model(${ }^{(6)}$	1	kV
	MM: machine model ${ }^{(7)}$	200	V
	CDM: charged device model ${ }^{(8)}$	1.5	kV

1. All voltage values, except differential voltage, are with respect to the zero reference level (ground) of the supply voltages where the zero reference level is the midpoint between $\mathrm{V}_{\mathrm{CC}}{ }^{+}$and $\mathrm{V}_{\mathrm{CC}}{ }^{-}$.
2. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 volts, whichever is less.
3. Differential voltages are the non-inverting input terminal with respect to the inverting input terminal.
4. Short-circuits can cause excessive heating and destructive dissipation. Values are typical.
5. The output may be shorted to ground or to either supply. Temperature and/or supply voltages must be limited to ensure that the dissipation rating is not exceeded
6. Human body model: a 100 pF capacitor is charged to the specified voltage, then discharged through a $1.5 \mathrm{k} \Omega$ resistor between two pins of the device. This is done for all couples of connected pin combinations while the other pins are floating.
7. Machine model: a 200 pF capacitor is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5Ω). This is done for all couples of connected pin combinations while the other pins are floating.
8. Charged device model: all pins and the package are charged together to the specified voltage and then discharged directly to the ground through only one pin. This is done for all pins.

Table 2. Operating conditions

Symbol	Parameter	LF253	LF353	Unit
V_{CC}	Supply voltage	6 to 36		V
$\mathrm{~T}_{\text {oper }}$	Operating free-air temperature range	-40 to +105	0 to +70	${ }^{\circ} \mathrm{C}$

3 Electrical characteristics

Table 3. Electrical characteristics at $\mathrm{V}_{\mathrm{CC}}= \pm \mathbf{1 5} \mathrm{V}, \mathrm{T}_{\mathrm{amb}}=+\mathbf{2 5}{ }^{\circ} \mathrm{C}$ (unless otherwise specified)

Symbol	Parameter	Min.	Typ.	Max.	Unit
$\mathrm{V}_{\text {io }}$	$\begin{aligned} & \text { Input offset voltage }\left(R_{\mathrm{s}}=10 \mathrm{k} \Omega\right) \\ & \mathrm{T}_{\min } \leq \mathrm{T}_{\mathrm{amb}} \leq \mathrm{T}_{\max } \end{aligned}$		3	$\begin{aligned} & \hline 10 \\ & 13 \end{aligned}$	mV
DV ${ }_{\text {io }}$	Input offset voltage drift		10		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
$\mathrm{I}_{\text {io }}$	Input offset current ${ }^{(1)}$ $\mathrm{T}_{\min } \leq \mathrm{T}_{\mathrm{amb}} \leq \mathrm{T}_{\max }$		5	$\begin{gathered} 100 \\ 4 \end{gathered}$	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{nA} \end{aligned}$
$\mathrm{l}_{\text {ib }}$	$\begin{aligned} & \text { Input bias current }{ }^{(1)} \\ & T_{\min } \leq T_{\text {amb }} \leq T_{\max } \end{aligned}$		20	$\begin{gathered} 200 \\ 20 \end{gathered}$	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{nA} \end{aligned}$
A_{vd}	Large signal voltage gain ($\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}$) $\mathrm{T}_{\min } \leq \mathrm{T}_{\mathrm{amb}} \leq \mathrm{T}_{\max }$	$\begin{aligned} & 50 \\ & 25 \end{aligned}$	200		V/mV
SVR	Supply voltage rejection ratio $\left(R_{S}=10 \mathrm{k} \Omega\right)$ $T_{\min } \leq T_{\mathrm{amb}} \leq \mathrm{T}_{\max }$	$\begin{aligned} & 80 \\ & 80 \end{aligned}$	86		dB
I_{CC}	Supply current, no load $T_{\min } \leq T_{\text {amb }} \leq T_{\max }$		1.4	$\begin{aligned} & \hline 3.2 \\ & 3.2 \end{aligned}$	mA
$\mathrm{V}_{\mathrm{icm}}$	Input common mode voltage range	± 11	$\begin{aligned} & +15 \\ & -12 \end{aligned}$		V
CMR	$\begin{aligned} & \text { Common mode rejection ratio }\left(R_{S}=10 \mathrm{k} \Omega\right) \\ & T_{\min } \leq T_{\text {amb }} \leq T_{\max } \end{aligned}$	$\begin{aligned} & 70 \\ & 70 \end{aligned}$	86		dB
los	Output short-circuit current $\mathrm{T}_{\min } \leq \mathrm{T}_{\mathrm{amb}} \leq \mathrm{T}_{\max }$	$\begin{aligned} & \hline 10 \\ & 10 \end{aligned}$	40	$\begin{aligned} & 60 \\ & 60 \end{aligned}$	mA
$\pm \mathrm{V}_{\text {opp }}$	Output voltage swing $\begin{aligned} & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & \mathrm{~T}_{\min } \leq \mathrm{T}_{\text {amb }} \leq \mathrm{T}_{\max } \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$	$\begin{aligned} & 10 \\ & 12 \\ & \\ & 10 \\ & 12 \end{aligned}$	$\begin{array}{\|c} 12 \\ 13.5 \end{array}$		V
SR	Slew rate, $\mathrm{V}_{\mathrm{i}}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$, unity gain	12	16		V/us
t_{r}	Rise time, $\mathrm{V}_{\mathrm{i}}=20 \mathrm{mV}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$, unity gain		0.1		$\mu \mathrm{s}$
K_{ov}	Overshoot, $\mathrm{V}_{\mathrm{i}}=20 \mathrm{mV}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$, unity gain		10		\%
GBP	Gain bandwidth product, $f=100 \mathrm{kHz}, \mathrm{V}_{\text {in }}=10 \mathrm{mV}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$	2.5	4		MHz
R_{i}	Input resistance		10^{12}		Ω
THD	Total harmonic distortion, $\mathrm{f}=1 \mathrm{kHz}, \mathrm{A}_{\mathrm{v}}=20 \mathrm{~dB}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$, $\mathrm{V}_{\mathrm{o}}=2 \mathrm{~V}_{\mathrm{pp}}$		0.01		\%
e_{n}	Equivalent input noise voltage $R_{S}=100 \Omega f=1 \mathrm{KHz}$		15		$\frac{n \mathrm{~V}}{\sqrt{\mathrm{~Hz}}}$
$\varnothing \mathrm{m}$	Phase margin		45		Degrees
$\mathrm{V}_{01} / \mathrm{V}_{\mathrm{o} 2}$	Channel separation ($\mathrm{A}_{\mathrm{v}}=100$)		120		dB

1. The input bias currents are junction leakage currents which approximately double for every $10^{\circ} \mathrm{C}$ increase in the junction
temperature.

Figure 2. Maximum peak-to-peak output voltage vs. frequency, $R_{L}=2 \mathrm{k} \Omega$

Figure 3. Maximum peak-to-peak output voltage vs. frequency, $R_{L}=10 \mathrm{k} \Omega$

Figure 4. Maximum peak-to-peak output voltage versus frequency

Figure 5. Maximum peak-to-peak output voltage versus free air temperature

Figure 6. Maximum peak-to-peak output voltage versus load resistance

Figure 8. Input bias current versus free air temperature

Figure 9. Large signal differential voltage amplification versus free air temp.

Figure 10. Large signal differential voltage amplification and phase shift versus frequency

Figure 12. Supply current per amplifier versus Figure 13. Supply current per amplifier versus free air temperature

Figure 14. Common mode rejection ratio versus free air temperature

Figure 15. Voltage follower large signal pulse response

Figure 16. Output voltage versus elapsed time Figure 17. Equivalent input noise voltage versus frequency

Figure 18. Total harmonic distortion versus frequency

4 Parameter measurement information

Figure 19. Voltage follower
Figure 20. Gain of 10 inverting amplifier

5 Typical application

Figure 21. Quadruple oscillator

6 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK ${ }^{\circledR}$ packages, depending on their level of environmental compliance. ECOPACK ${ }^{\circledR}$ specifications, grade definitions and product status are available at: www.st.com. ECOPACK ${ }^{\circledR}$ is an ST trademark.

6.1 DIP8 package information

Figure 22. DIP8 package mechanical drawing

Table 4. DIP8 package mechanical data

Ref.	Dimensions					
	Millimeters			Inches		
	Min.	Typ.	Max.	Min.	Typ.	Max.
A			5.33			0.210
A1	0.38			0.015		
A2	2.92	3.30	4.95	0.115	0.130	0.195
b	0.36	0.46	0.56	0.014	0.018	0.022
b2	1.14	1.52	1.78	0.045	0.060	0.070
c	0.20	0.25	0.36	0.008	0.010	0.014
D	9.02	9.27	10.16	0.355	0.365	0.400
E	7.62	7.87	8.26	0.300	0.310	0.325
E1	6.10	6.35	7.11	0.240	0.250	0.280
e		2.54			0.100	
eA		7.62			0.300	
eB			10.92			0.430
L	2.92	3.30	3.81	0.115	0.130	0.150

6.2 SO-8 package information

Figure 23. SO-8 package mechanical drawing

Table 5. SO-8 package mechanical data

Ref.	Dimensions						
	Millimeters				Inches		
	Min.	Typ.	Max.	Min.	Typ.	Max.	
A			1.75			0.069	
A1	0.10		0.25	0.004		0.010	
A2	1.25			0.049			
b	0.28		0.48	0.011		0.019	
c	0.17		0.23	0.007		0.010	
D	4.80	4.90	5.00	0.189	0.193	0.197	
E	5.80	6.00	6.20	0.228	0.236	0.244	
E1	3.80	3.90	4.00	0.150	0.154	0.157	
e		1.27			0.050		
h	0.25		0.50	0.010		0.020	
L	0.40		1.27	0.016		0.050	
L1		1.04			0.040		
k	1°		80°	1°		8°	
ccc			0.10			0.004	

7 Ordering information

Table 6. Order codes

Order code	Temperature range	Package	Packing	Marking
LF253N	$-40^{\circ} \mathrm{C},+105^{\circ} \mathrm{C}$	DIP8	Tube	LF253N
LF253D LF253DT		Tube or Tape \& reel	253	
LF353N	$0^{\circ} \mathrm{C},+70^{\circ} \mathrm{C}$	DIP8	Tube	LF353N
LF353D LF353DT		Tube or Tape \& reel	353	

8 Revision history

Table 7. Document revision history

Date	Revision	Changes
01-Mar-2001	1	Initial release.
08-Sep-2008	2	Updated document format. Removed information concerning military temperature range (LF153). Added L1 parameter dimensions in Table 5: SO-8 package mechanical data.
25-Mar-2010	3	Corrected error in Table 6: Order codes: LF253N, LF253D, LF353N and LF353D proposed in tube packing.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2010 STMicroelectronics - All rights reserved

STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

