# imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



### Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



PRELIMINARY PRODUCT SPECIFICATION



**Integrated Circuits Group** 

# LH28F008SCHT-TE Flash Memory 8M (1Mb x 8)

(Model Number: LHF08CTE) Lead-free (Pb-free)

Spec. Issue Date: October 6, 2004 Spec No: EL16X024

|                     | SPEC. No. E L 1 6 X 0 2 4                                                                                                        |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------|
|                     | ISSUE: Oct. 6, 2004                                                                                                              |
| 0;                  |                                                                                                                                  |
|                     |                                                                                                                                  |
| S P                 | ECIFICATIONS                                                                                                                     |
|                     |                                                                                                                                  |
| Product Type        | 8Mbit Flash Memory                                                                                                               |
| LH                  | I 2 8 F 0 0 8 S C H T – T E                                                                                                      |
| Model No.           | (LHF08CTE)                                                                                                                       |
|                     | ons contains <u>52</u> pages including the cover and appendix.<br>objections, please contact us before issuing purchasing order. |
|                     |                                                                                                                                  |
| CUSTOMERS ACCEPTANC | E                                                                                                                                |
| DATE:               |                                                                                                                                  |
| BY:                 | PRESENTED                                                                                                                        |
|                     | BY: A. Hotta                                                                                                                     |
|                     | Dept. General Manager                                                                                                            |
|                     | REVIEWED BY: PREPARED BY:                                                                                                        |
|                     | K. Nattori K. Moeda                                                                                                              |
|                     | Product Development Dept. I                                                                                                      |
|                     | System-Flash Division<br>Integrated Circuits Group                                                                               |
|                     | SHARP CORPORATION                                                                                                                |

#### LHF08CTE



- •Handle this document carefully for it contains material protected by international copyright law. Any reproduction, full or in part, of this material is prohibited without the express written permission of the company.
- •When using the products covered herein, please observe the conditions written herein and the precautions outlined in the following paragraphs. In no event shall the company be liable for any damages resulting from failure to strictly adhere to these conditions and precautions.
- (1) The products covered herein are designed and manufactured for the following application areas. When using the products covered herein for the equipment listed in Paragraph (2), even for the following application areas, be sure to observe the precautions given in Paragraph (2). Never use the products for the equipment listed in Paragraph (3).
  - •Office electronics
  - •Instrumentation and measuring equipment
  - •Machine tools
  - Audiovisual equipment
  - •Home appliance
  - •Communication equipment other than for trunk lines
- (2) Those contemplating using the products covered herein for the following equipment <u>which demands high reliability</u>, should first contact a sales representative of the company and then accept responsibility for incorporating into the design fail-safe operation, redundancy, and other appropriate measures for ensuring reliability and safety of the equipment and the overall system.
  - •Control and safety devices for airplanes, trains, automobiles, and other transportation equipment
  - •Mainframe computers
  - Traffic control systems
  - •Gas leak detectors and automatic cutoff devices
  - •Rescue and security equipment
  - •Other safety devices and safety equipment,etc.
- (3) Do not use the products covered herein for the following equipment <u>which demands</u> <u>extremely high performance</u> in terms of functionality, reliability, or accuracy.
  - Aerospace equipment
  - •Communications equipment for trunk lines
  - •Control equipment for the nuclear power industry
  - •Medical equipment related to life support, etc.
- (4) Please direct all queries and comments regarding the interpretation of the above three Paragraphs to a sales representative of the company.

 Please direct all queries regarding the products covered herein to a sales representative of the company.

### CONTENTS

#### PAGE

#### 2.1 Data Protection ......7 3.2 Output Disable ...... 8 4.1 Read Array Command...... 12 4.2 Read Identifier Codes Command ...... 12 4.3 Read Status Register Command...... 12 4.4 Clear Status Register Command...... 12 4.5 Block Erase Command...... 12 4.6 Byte Write Command ...... 13 4 7 Block Eraso Suspond Command 13

| 4.7 DIOCK Erase Suspend Command            | 13 |
|--------------------------------------------|----|
| 4.8 Byte Write Suspend Command             | 14 |
| 4.9 Set Block and Master Lock-Bit Commands | 14 |
| 4.10 Clear Block Lock-Bits Command         | 15 |

| 5.0 DESIGN CONSIDERATIONS                                 | 3   |
|-----------------------------------------------------------|-----|
| 5.1 Three-Line Output Control23                           | 3   |
| 5.2 RY/BY# and Block Erase, Byte Write and Lock-Bit       | t   |
| Configuration Polling23                                   | 3   |
| 5.3 Power Supply Decoupling23                             | 3   |
| 5.4 V <sub>PP</sub> Trace on Printed Circuit Boards23     | 3   |
| 5.5 V <sub>CC</sub> , V <sub>PP</sub> , RP# Transitions24 | 1   |
| 5.6 Power-Up/Down Protection24                            | 1   |
| 5.7 Power Dissipation24                                   | 1   |
|                                                           |     |
| 6.0 ELECTRICAL SPECIFICATIONS                             | 5   |
| 6.1 Absolute Maximum Ratings25                            | 5   |
| 6.2 Operating Conditions25                                | 5   |
| 6.2.1 Capacitance28                                       | 5   |
| 6.2.2 AC Input/Output Test Conditions                     | 3   |
| 6.2.3 DC Characteristics27                                | 7   |
| 6.2.4 AC Characteristics - Read-Only Operations .29       | 9   |
| 6.2.5 AC Characteristics - Write Operations32             | 2   |
| 6.2.6 Alternative CE#-Controlled Writes                   | 5   |
| 6.2.7 Reset Operations38                                  | 3   |
| 6.2.8 Block Erase, Byte Write and Lock-Bit                |     |
| Configuration Performance39                               | Э   |
|                                                           |     |
| 7.0 ADDITIONAL INFORMATION40                              | )   |
| 7.1 Ordering Information40                                | ) כ |
|                                                           |     |

#### 8.0 PACKAGE AND PACKING SPECIFICATIONS ...41

#### PAGE

#### LHF08CTE

## SHARP



- SmartVoltage Technology
   2.7V(Read-Only), 3.3V or 5V V<sub>CC</sub>
   3.3V, 5V or 12V V<sub>PP</sub>
- High-Performance Read Access Time — 85ns(5V±0.25V), 90ns(5V±0.5V), 120ns(3.3V±0.3V), 150ns(2.7V-3.6V)
- Operating Temperature
   -- -40°C to +85°C
- High-Density Symmetrically-Blocked Architecture
  - Sixteen 64K-byte Erasable Blocks
- Low Power Management
   Deep Power-Down Mode
  - Automatic Power Savings Mode Decreases I<sub>CC</sub> in Static Mode
- Enhanced Data Protection Features
  - Absolute Protection with V<sub>PP</sub>=GND
  - Flexible Block Locking
  - Block Erase/Byte Write Lockout during Power Transitions

- Automated Byte Write and Block Erase
  - Command User Interface
  - Status Register
- Enhanced Automated Suspend Options — Byte Write Suspend to Read
  - Block Erase Suspend to Byte Write
  - Block Erase Suspend to Read
- Extended Cycling Capability
   100,000 Block Erase Cycles
   1.6 Million Block Erase Cycles/Chip
- SRAM-Compatible Write Interface
- Industry-Standard Packaging — 40-Lead TSOP
- ETOX<sup>TM\*</sup> Nonvolatile Flash Technology
- CMOS Process (P-type silicon substrate)
- Not designed or rated as radiation hardened

SHARP's LH28F008SCHT-TE Flash memory with SmartVoltage technology is a high-density, low-cost, nonvolatile, read/write storage solution for a wide range of applications. Its symmetrically-blocked architecture, flexible voltage and extended cycling provide for highly flexible component suitable for resident flash arrays, SIMMs and memory cards. Its enhanced suspend capabilities provide for an ideal solution for code + data storage applications. For secure code storage applications, such as networking, where code is either directly executed out of flash or downloaded to DRAM, the LH28F008SCHT-TE offers three levels of protection: absolute protection with V<sub>PP</sub> at GND, selective hardware block locking, or flexible software block locking. These alternatives give designers ultimate control of their code security needs.

The LH28F008SCHT-TE is manufactured on SHARP's 0.38µm ETOX<sup>™</sup> process technology. It come in industry-standard package: the 40-lead TSOP, ideal for board constrained applications. Based on the 28F008SA architecture, the LH28F008SCHT-TE enables quick and easy upgrades for designs demanding the state-of-the-art.

\*ETOX is a trademark of Intel Corporation.

#### **1 INTRODUCTION**

This datasheet contains LH28F008SCHT-TE specifications. Section 1 provides a flash memory overview. Sections 2, 3, 4, and 5 describe the memory organization and functionality. Section 6 covers electrical specifications. LH28F008SCHT-TE Flash memory documentation also includes application notes and design tools which are referenced in Section 7.

#### 1.1 New Features

The LH28F008SCHT-TE SmartVoltage Flash memory maintains backwards-compatibility with SHARP's 28F008SA. Key enhancements over the 28F008SA include:

- •SmartVoltage Technology
- •Enhanced Suspend Capabilities
- In-System Block Locking

Both devices share a compatible pinout, status register, and software command set. These similarities enable a clean upgrade from the 28F008SA to LH28F008SCHT-TE. When upgrading, it is important to note the following differences:

- •Because of new feature support, the two devices have different device codes. This allows for software optimization.
- •V<sub>PPLK</sub> has been lowered from 6.5V to 1.5V to support 3.3V and 5V block erase, byte write, and lock-bit configuration operations. The V<sub>PP</sub> voltage transitions to GND is recommended for designs that switch V<sub>PP</sub> off during read operation.
- •To take advantage of SmartVoltage technology, allow  $V_{PP}$  connection to 3.3V or 5V.

#### 1.2 Product Overview

The LH28F008SCHT-TE is a high-performance 8M-bit SmartVoltage Flash memory organized as 1M-byte of 8 bits. The 1M-byte of data is arranged in sixteen 64K-byte blocks which are individually erasable, lockable, and unlockable in-system. The memory map is shown in Figure 3.

SmartVoltage technology provides a choice of V<sub>CC</sub> and V<sub>PP</sub> combinations, as shown in Table 1, to meet system performance and power expectations. 2.7V V<sub>CC</sub> consumes approximately one-fifth the power of 5V V<sub>CC</sub>. But, 5V V<sub>CC</sub> provides the highest read performance. V<sub>PP</sub> at 3.3V and 5V eliminates the need for a separate 12V converter, while V<sub>PP</sub>=12V maximizes block erase and byte write performance. In addition to flexible erase and program voltages, the dedicated V<sub>PP</sub> pin gives complete data protection when V<sub>PP</sub>≤V<sub>PPLK</sub>.

| Offered by Smartvoltage Technology              |               |  |  |  |  |  |
|-------------------------------------------------|---------------|--|--|--|--|--|
| V <sub>CC</sub> Voltage V <sub>PP</sub> Voltage |               |  |  |  |  |  |
| 2.7V <sup>(1)</sup>                             |               |  |  |  |  |  |
| 3.3V                                            | 3.3V, 5V, 12V |  |  |  |  |  |
| 5V                                              | 5V 12V        |  |  |  |  |  |

#### Table 1. V<sub>CC</sub> and V<sub>PP</sub> Voltage Combinations Offered by SmartVoltage Technology

#### NOTE:

1. Block erase, byte write and lock-bit configuration operations with  $V_{CC}$ <3.0V are not supported.

Internal  $V_{CC}$  and  $V_{PP}$  detection Circuitry automatically configures the device for optimized read and write operations.

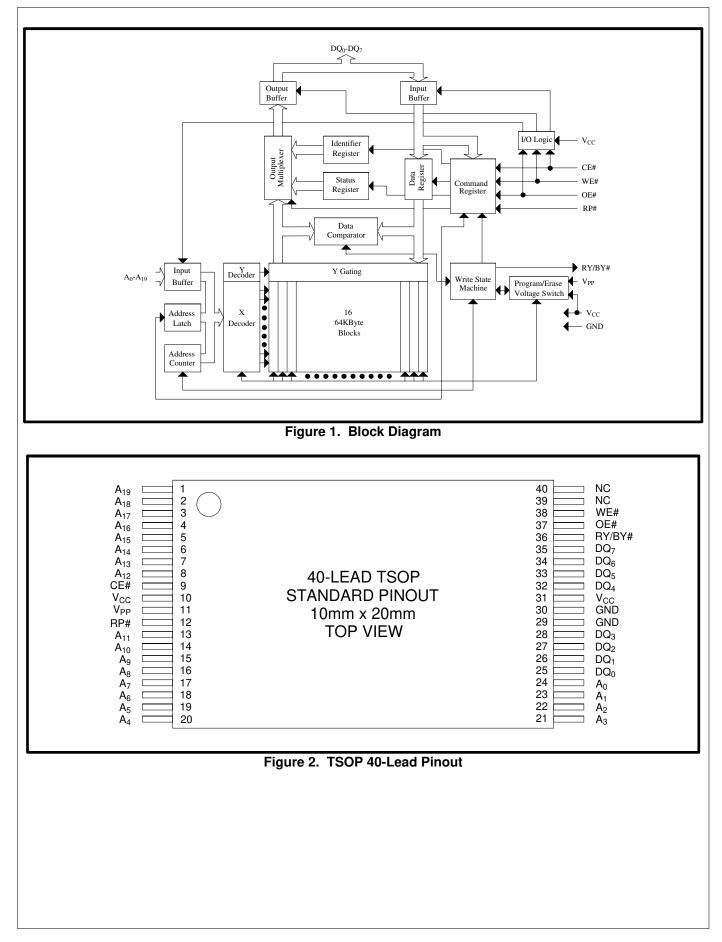
A Command User Interface (CUI) serves as the interface between the system processor and internal operation of the device. A valid command sequence written to the CUI initiates device automation. An internal Write State Machine (WSM) automatically executes the algorithms and timings necessary for block erase, byte write, and lock-bit configuration operations.

A block erase operation erases one of the device's 64K-byte blocks typically within 0.3s (5V  $V_{CC}$ , 12V  $V_{PP}$ ) independent of other blocks. Each block can be independently erased 100,000 times (1.6 million block erases per device). Block erase suspend mode allows system software to suspend block erase to read or write data from any other block.

Writing memory data is performed in byte increments typically within  $6\mu$ s (5V V<sub>CC</sub>, 12V V<sub>PP</sub>). Byte write suspend mode enables the system to read data or execute code from any other flash memory array location.

Individual block locking uses a combination of bits, sixteen block lock-bits and a master lock-bit, to lock and unlock blocks. Block lock-bits gate block erase and byte write operations, while the master lock-bit gates block lock-bit modification. Lock-bit configuration operations (Set Block Lock-Bit, Set Master Lock-Bit, and Clear Block Lock-Bits commands) set and cleared lock-bits.

The status register indicates when the WSM's block erase, byte write, or lock-bit configuration operation is finished.


The RY/BY# output gives an additional indicator of WSM activity by providing both a hardware signal of status (versus software polling) and status masking (interrupt masking for background block erase, for example). Status polling using RY/BY# minimizes both CPU overhead and system power consumption. When low, RY/BY# indicates that the WSM is performing a block erase, byte write, or lock-bit configuration. RY/BY#-high indicates that the WSM is ready for a new command, block erase is suspended (and byte write is inactive), byte write is suspended, or the device is in deep power-down mode.

The access time is 85ns ( $t_{AVQV}$ ) over the extended temperature range (-40°C to +85°C) and V<sub>CC</sub> supply voltage range of 4.75V-5.25V. At lower V<sub>CC</sub> voltages, the access times are 90ns (4.5V-5.5V), 120ns (3.0V-3.6V) and 150ns (2.7V-3.6V).

The Automatic Power Savings (APS) feature substantially reduces active current when the device is in static mode (addresses not switching). In APS mode, the typical  $I_{CCR}$  current is 1 mA at 5V  $V_{CC}$ .

When CE# and RP# pins are at  $V_{CC}$ , the  $I_{CC}$  CMOS standby mode is enabled. When the RP# pin is at GND, deep power-down mode is enabled which minimizes power consumption and provides write protection during reset. A reset time ( $t_{PHQV}$ ) is required from RP# switching high until outputs are valid. Likewise, the device has a wake time ( $t_{PHEL}$ ) from RP#-high until writes to the CUI are recognized. With RP# at GND, the WSM is reset and the status register is cleared.

The device is available in 40-lead TSOP (Thin Small Outline Package, 1.2 mm thick). Pinout is shown in Figure 2.



| Symbol         Type         Name and Punction           A <sub>0</sub> -A <sub>19</sub> INPUT         ADDRESS INPUTS: Inputs for addresses during read and write operations. Addresses are internally latched during a write cycle.           DQ <sub>0</sub> -DQ <sub>7</sub> INPUT/<br>OUTPUT         INPUT/<br>OUTPUT         DATA INPUT/OUTPUTS: Inputs data and commands during CUI write cycles; outputs data during memory array, status register, and identifier code read cycles. Data is internally latched during a write cycle.           CE#         INPUT         OHTP ENABLE: Activates the device's control logic, input buffers, decoders, and sense amplifiers. CE#-high deselects the device and reduces power consumption to standby levels.           RP#         INPUT         RESET/DEEP POWER-DOWN: Puts the device in deep power-down mode and resets internal automation. RP#-high enables normal operation. When driven low, RP# inhibits write operations which provides data protection during power transitions. Exit from deep power-down sets the device to read array mode. RP# at V <sub>HH</sub> enables setting of the master lock-bit and enables configuration of block lock-bits when the master lock-bit set. RP#=V <sub>HH</sub> overrides block lock-bits when the master lock-bit configuration with V <sub>H4</sub> =RP#           NPUT         UTPUT ENABLE: Controls writes to the CUI and array blocks. Addresses and data are latched on the rising edge of the WE# pulse.           RE##         INPUT         WRITE ENABLE: Controls writes to the CUI and array block-bit configuration. RY/BY#-high indicates the status to the internal WSM. When low, the WSM is performing an internal operation (block erase, byte write, or lock-bit configuration). RY/BY#-high indicates the statute byte write is suspended, or                                                                                                                                                                                   | Cumbal                           | Turne  | Table 2. Pin Descriptions                                                                                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--------|-----------------------------------------------------------------------------------------------------------|
| NP07         INPUT         are internally latched during a write cycle.           DQ0-DQ7         INPUT/<br>OUTPUT         INPUT/<br>OUTPUT         DATA INPUT/OUTPUTS: Inputs data and commands during CUI write cycles; outputs<br>data during memory array, status register, and identifier code read cycles. Data pins floo<br>to high-impedance when the chip is deselected or outputs are disabled. Data is internally<br>latched during a write cycle.           CE#         INPUT         CHIP ENABLE: Activates the device's control logic, input buffers, decoders, and sense<br>amplifiers. CE#-high deselects the device and reduces power consumption to standby<br>levels.           RP#         INPUT         RESET/DEEP POWER-DOWN: Puts the device in deep power-down mode and resets<br>internal automation. RP#-high enables normal operation. When driven low, RP# inhibits<br>write operations which provides data protection during power transitions. Exit from deep<br>power-down sets the device to read array mode. RP# at V <sub>HH</sub> enables setting of the<br>master lock-bit and enables configuration of block lock-bits when the master lock-bit is<br>set. RP#=V <sub>HH</sub> overrides block lock-bits thereby enabling block erase and byte write<br>operations to locked memory blocks. Block erase, byte write, o lock-bit configuration<br>with V <sub>H=</sub> <rp#< td="">           WE#         INPUT         WITTE ENABLE: Controls writes to the CUI and array blocks. Addresses and data are<br/>latched on the rising edge of the WE# pulse.           READY/BUSW#:         READY/BUSW#: Indicates the status of the internal WSM. When low, the WSM is<br/>performing an internal operation (block erase, byte write, or lock-bit configuration).<br/>RY/BY#-high indicates that the WSM is ready for new commands, block erase is<br/>suspended, and byte write is inactive, byte write, and lock-bit</rp#<>                                                                                              | Symbol                           | Туре   | Name and Function                                                                                         |
| BP#         INPUT         DATA INPUT/OUTPUTS: Inputs data and commands during CUI write cycles; outputs data during memory array, status register, and identifier code read cycles. Data pins floa to high-impedance when the chip is deselected or outputs are disabled. Data is internally latched during a write cycle.           CE#         INPUT         CHIP ENABLE: Activates the device's control logic, input buffers, decoders, and sense amplifiers. CE#-high deselects the device and reduces power consumption to standby levels.           RP#         INPUT         RESET/DEEP POWER-DOWN: Puts the device in deep power-down mode and resets internal automation. RP#-high enables normal operation. When driven low, RP# inhibits write operations which provides data protection during power transitions. Exit from deep power-down sets the device to read array mode. RP# at V <sub>HH</sub> enables setting of the master lock-bit and enables configuration of block lock-bits when the master lock-bit is set. RP#-V <sub>HH</sub> overrides block lock-bits thereby enabling block. Addresses and byte write operations which provides data the area discled.           OE#         INPUT         OUTPUT ENABLE: Controls writes to the CUI and array blocks. Addresses and data are latched on the rising edge of the WE# pulse.           RY/BY#         OUTPUT         READY/BUS#: Indicates that the WSM is ready for new commands, block erase is suspended, and byte write is inactive, byte write, or lock-bit configuration).           RY/BY#         SUPPLY         SUPPLY         BLOCK ERASE, BYTE WHETE, LOCK-BIT CONFIGURATION POWER SUPPLY: For erasing array blocks, writing bytes, or configuring lock-bits. Mith V <sub>PC</sub> SV <sub>PPLK</sub> , memory contents cannot be altered. Block erase, byte write, and lock-bit configuration w                                                                                                                                                                    | $A_0 - A_{19}$                   | INPUT  |                                                                                                           |
| DQ <sub>0</sub> -DQ <sub>7</sub> INPUT/<br>OUTPUT         data during memory array, status register, and identifier code read cycles. Data pins floa<br>to high-impedance when the chip is deselected or outputs are disabled. Data is internally<br>latched during a write cycle.           CE#         INPUT         CHIP ENABLE: Activates the device's control logic, input buffers, decoders, and sense<br>amplifiers. CE#-high deselects the device and reduces power consumption to standby<br>levels.           RP#         INPUT         RESET/DEEP POWER-DOWN: Puts the device in deep power-down mode and resets<br>internal automation. RP#-high enables normal operation. When driven low, RP# inhibits<br>write operations which provides data protection during power transitions. Exit from deep<br>power-down sets the device to read array mode. RP# at V <sub>HH</sub> enables setting of the<br>master lock-bit and enables configuration of block lock-bits when the master lock-bit is<br>set. RP#=V <sub>HH</sub> overrides block lock-bits thereby enabling block rase and byte write<br>operations to locked memory blocks. Block erase, byte write, or lock-bit configuration<br>with V <sub>HH</sub> -RP#-V <sub>HH</sub> produce spurious results and should not be attempted.           OE#         INPUT         OUTPUT         READY/BUSY#: Indicates the the WE# pulse.           RY/BY#         OUTPUT         READY/BUSY#: Indicates that the WSM is ready for new commands, block erase is<br>uspended, and byte write is inactive, byte write, or lock-bit. configuration).<br>RY/BY#-high indicates that the WSM is ready for new commands, block erase is<br>uspended, and byte write is inactive, byte write, and lock-bit. With V <sub>PPS</sub> V <sub>PPLK</sub> , memory<br>contents cannot be altered. Block erase, byte write, and lock-bit configuration with an<br>invalid V <sub>PP</sub> (see DC Characteristics) produce spurious results and should not be<br>attempted. <td>0 13</td> <td></td> <td></td> | 0 13                             |        |                                                                                                           |
| DG0 <sup>-</sup> DG7         OUTPUT         to high-impedance when the chip is deselected or outputs are disabled. Data is internally latched during a write cycle.           CE#         INPUT         CHIP ENABLE: Activates the device's control logic, input buffers, decoders, and sense amplifiers. CE#-high deselects the device and reduces power consumption to standby levels.           RP#         INPUT         RESET/DEEP POWER-DOWN: Puts the device in deep power-down mode and resets internal automation. RP#-high enables normal operation. When driven low, RP# inhibits write operations which provides data protection during power transitions. Exit from deep power-down sets the device to read array mode. RP# at V <sub>HH</sub> enables setting of the master lock-bit and enables configuration of block lock-bits when the master lock-bit is set. RP#=V <sub>HH</sub> produce spurious results and should not be attempted.           OE#         INPUT         OUTPUT ENABLE: Controls writes to the CUI and array blocks. Addresses and data are latched on the rising edge of the WE# pulse.           RY/BY#         OUTPUT         SUPPLY         READ//BUSY#: Indicates the status of the internal WSM. When low, the WSM is performing an internal operation (block erase, byte write, or lock-bit configuration).           RY/BY#         SUPPLY         SUPPLY         BLOCK ERASE, BYTE WRITE, LOCK-BIT CONFIGURATION POWER SUPPLY: For erasing array blocks, writing bytes, or configuring lock-bits. With V <sub>PP</sub> Device for 2.7V, 3.3V or 5V operation. To switch from one voltage to another, ramp V <sub>CC</sub> down to GND and then ram invalid V <sub>PP</sub> (see DC Characteristics) produce spurious results and should not be attempted.           V_PP         SUPPLY                                                                                                                                                                                                                        |                                  |        |                                                                                                           |
| CE#       INPUT       Interference       CHIP ENABLE: Activates the device's control logic, input buffers, decoders, and sense amplifiers. CE#-high deselects the device and reduces power consumption to standby levels.         RP#       INPUT       RESET/DEEP POWER-DOWN: Puts the device in deep power-down mode and resets internal automation. RP#-high enables normal operation. When driven low, RP# inhibits write operations which provides data protection during power transitions. Exit from deep power-down sets the device to read array mode. RP# at V <sub>HH</sub> enables setting of the master lock-bit and enables configuration of block lock-bits when the master lock-bit is set. RP#-V <sub>HH</sub> overrides block lock-bits thereby enabling block erase and byte write operations to locked memory blocks. Block erase, byte write, or lock-bit configuration with V <sub>H</sub> OE#       INPUT       OUTPUT ENABLE: Controls writes to the CUI and array blocks. Addresses and data are latched on the rising edge of the WE# pulse.         READY/BYBW#       READY/BUSY#: Indicates the status of the internal WSM. When low, the WSM is performing an internal operation (block erase, byte write, or lock-bit configuration). RY/BY#-high indicates that the WSM is ready for new commands, block erase is suspended, and byte write is aukays active and does not float when the chip is deselected or data outputs are disabled.         V_PP       SUPPLY       SUPPLY       SUPPLY       Extender Configuration or voltage to another, ramy V <sub>CC</sub> down to GAD and then ramy V <sub>CC</sub> to the new voltage. Or configuring lock-bits. With V <sub>PP</sub> V <sub>CC</sub> V <sub>CC</sub> SUPPLY       Gene Do Characteristics) produce spurious results and should not be attempted.       DUTPUT                                                                                                                                                                                                   | DQ <sub>0</sub> -DQ <sub>7</sub> |        |                                                                                                           |
| CE#         INPUT         CHIP ENABLE: Activates the device's control logic, input buffers, decoders, and sense<br>amplifiers. CE#-high deselects the device and reduces power consumption to standby<br>levels.           RP#         INPUT         RESET/DEEP POWER-DOWN: Puts the device in deep power-down mode and resets<br>internal automation. RP#-high enables normal operation. When low, RP# inhibits<br>write operations which provides data protection during power transitions. Exit from deep<br>power-down sets the device to read array mode. RP# at V <sub>HH</sub> enables setting of the<br>master lock-bit and enables configuration of block lock-bits when the master lock-bit is<br>set. RP#=V <sub>HH</sub> overrides block lock-bits thereby enabling block erase and byte write<br>operations to locked memory blocks. Block erase, byte write, or lock-bit configuration<br>with V <sub>H</sub> <rp#<v<sub>HH produce spurious results and should not be attempted.           OE#         INPUT         OUTPUT ENABLE: Gates the device's outputs during a read cycle.           WE#         INPUT         WRITE ENABLE: Controls writes to the CUI and array blocks. Addresses and data are<br/>latched on the rising edge of the WE# pulse.           RY/BY#         OUTPUT         READY/BUSY#: Indicates the status of the internal WSM. When low, the WSM is<br/>performing an internal operation (block erase, byte write, or lock-bit configuration).<br/>RY/BY#-indpi indicates that the WSM is ready for new commands, block erase is<br/>uspended, and byte write is inactive, byte write is suspended, or the device is in deep<br/>power-down mode. RY/BY# is always active and does not float when the chip is<br/>deselected or data outputs are disabled.           V_Pp         SUPPLY         SUPPLY         EVCC ERASE, BYTE WRITE, LOCK-BIT CONFIGURATION POWER SUPPLY; For<br/>erasing ar</rp#<v<sub>                                                                                                         | •                                | OUIFUI |                                                                                                           |
| CE#         INPUT         amplifiers. CE#-high deselects the device and reduces power consumption to standby<br>levels.           RP#         INPUT         RESET/DEEP POWER-DOWN: Puts the device in deep power-down mode and resets<br>internal automation. RP#-high enables normal operation. When driven low, RP# inhibits<br>write operations which provides data protection during power transitions. Exit from deep<br>power-down sets the device to read array mode. RP# at V <sub>HH</sub> enables setting of the<br>master lock-bit and enables configuration of block lock-bits when the master lock-bit is<br>set. RP#=V <sub>HH</sub> overrides block lock-bits thereby enabling block erase and byte write<br>operations to locked memory blocks. Block erase, byte write, or lock-bit configuration<br>with V <sub>H</sub> <rp#<v<sub>HH produce spurious results and should not be attempted.           OE#         INPUT         WRITE ENABLE: Controls writes to the CUI and array blocks. Addresses and data are<br/>latched on the rising edge of the WE# pulse.           READY/BUSY#: Indicates that the WSM is ready for new commands, block erase is<br/>suspended, and byte write is inactive, byte write is suspended, or the device is in deep<br/>power-down mode. RY/BY# is always active and does not float when the chip is<br/>deselected or data outputs are disabled.           V<sub>PP</sub>         SUPPLY         BLOCK ERASE, BYTE WRITE, LOCK-BIT CONFIGURATION POWER SUPPLY: For<br/>erasing array blocks, writing bytes, or configuring lock-bits. With V<sub>PP</sub>SV<sub>PLK</sub>, memory<br/>contents cannot be altered. Block erase, byte write, and lock-bit configuration with an<br/>invalid V<sub>PP</sub> (see DC Characteristics) produce spurious results and should not be<br/>attempted.           V<sub>CC</sub>         SUPPLY         GRUNDLY         Internal detection configures the device for 2.7V, 3.3V or 5V<br/>operation. To switch fro</rp#<v<sub>                                     |                                  |        |                                                                                                           |
| RP#       INPUT       RESET/DEEP POWER-DOWN: Puts the device in deep power-down mode and resets internal automation. RP#-high enables normal operation. When driven low, RP# inhibits write operations which provides data protection during power transitions. Exit from deep power-down sets the device to read array mode. RP# at V <sub>HH</sub> enables setting of the master lock-bit and enables configuration of block lock-bits when the master lock-bit is set. RP#=V <sub>HH</sub> overrides block lock-bits thereby enabling block erase and byte write operations to locked memory blocks. Block erase, byte write, or lock-bit configuration with V <sub>H+</sub> CRP# <v<sub>HH produce spurious results and should not be attempted.         OE#       INPUT       WRITE ENABLE: Controls writes to the CUI and array blocks. Addresses and data are latched on the rising edge of the WE# pulse.         WE#       INPUT       WRITE ENABLE: Controls writes to the CUI and array blocks. Addresses and data are latched on the rising edge of the WE# pulse.         RY/BY#       OUTPUT       READY/BUSY#: Indicates the status of the internal WSM. When low, the WSM is performing an internal operation (block erase, byte write, or lock-bit configuration). RY/BY#high indicates that the WSM is ready for new commands, block erase is suspended, and byte write is inactive, byte write is suspended, or the device is in deep power-down mode. RY/BY# is always active and does not float when the chip is deselected or data outputs are disabled.         V_PP       SUPPLY       BLOCK ERASE, BYTE WRITE, LOCK-BIT CONFIGURATION POWER SUPPLY: For erasing array blocks, writing bytes, or configuring lock-bits. With V<sub>PP</sub>         V_Cc       SUPPLY       DEVICE POWER SUPPLY: Internal detection configures the device for 2.7V, 3.3V or 5V operat</v<sub>                                                                                                                                                         | CF#                              | INPUT  |                                                                                                           |
| RP#       INPUT       RESET/DEEP POWER-DOWN: Puts the device in deep power-down mode and resets internal automation. RP#-high enables normal operation. When driven low, RP# inhibits write operations which provides data protection during power transitions. Exit from deep power-down sets the device to read array mode. RP# at V <sub>HH</sub> enables setting of the master lock-bit and enables configuration of block lock-bits when the master lock-bit is set. RP#=V <sub>HH</sub> overrides block lock-bits thereby enabling block erase and byte write operations to locked memory blocks. Block erase, byte write, or lock-bit configuration with V <sub>H+</sub> CRP#         OE#       INPUT       OUTPUT ENABLE: Gates the device's outputs during a read cycle.         WE#       INPUT       WRITE ENABLE: Controls writes to the CUI and array blocks. Addresses and data are latched on the rising edge of the WE# pulse.         RY/BY#       OUTPUT       READY/BUSY#: Indicates the status of the internal WSM. When low, the WSM is performing an internal operation (block erase, byte write, or lock-bit configuration). RY/BY#-high indicates that the WSM is ready for new commands, block erase is suspended, and byte write is inactive, byte write is suspended, or the device is in deep power-down mode. RY/BY# is always active and does not float when the chip is deselected or data outputs are disabled.         V_PP       SUPPLY       BLOCK ERASE, BYTE WRITE, LOCK-BIT CONFIGURATION POWER SUPPLY: For erasing array blocks, writing bytes, or configuring lock-bit. With V <sub>PP</sub> ≤V <sub>PPLK</sub> , memory contents cannot be altered. Block erase, byte write, and should not be attempted.         V_Cc       SUPPLY       SUPPLY       INPUT       DEVICE POWER SUPPLY: Internal detection configures the device for 2.7V,                                                                                                                                                                           | 02#                              |        |                                                                                                           |
| RP#INPUTinternal automation. RP#-high enables normal operation. When driven low, RP# inhibits<br>write operations which provides data protection during power transitions. Exit from deep<br>power-down sets the device to read array mode. RP# at V <sub>HH</sub> enables setting of the<br>master lock-bit and enables configuration of block lock-bits when the master lock-bit is<br>set. RP#=V <sub>HH</sub> overrides block lock-bits thereby enabling block erase and byte write<br>operations to locked memory blocks. Block erase, byte write, or lock-bit configuration<br>with V <sub>H4</sub><br>RP#=V <sub>HH</sub> produce spurious results and should not be attempted.OE#INPUTOUTPUT ENABLE: Controls writes to the CUI and array blocks. Addresses and data are<br>latched on the rising edge of the WE# pulse.WE#INPUTWRITE ENABLE: Controls writes to the CUI and array blocks. Addresses and data are<br>latched on the rising edge of the WE# pulse.RY/BY#OUTPUTREADY/BUSY#: Indicates the status of the internal WSM. When low, the WSM is<br>performing an internal operation (block erase, byte write, or lock-bit configuration).<br>RY/BY#-high indicates that the WSM is ready for new commands, block erase is<br>suspended, and byte write is inactive, byte write is suspended, or the device is in deep<br>power-down mode. RY/BY# is always active and does not float when the chip is<br>deselected or data outputs are disabled.V_PPSUPPLYSUPPLYELOCK ERASE, BYTE WRITE, LOCK-BIT CONFIGURATION POWER SUPPLY: For<br>erasing array blocks, writing bytes, or configuring lock-bits. With V <sub>PP</sub> SV <sub>PPLK</sub> , memory<br>contents cannot be altered. Block erase, byte write, and lock-bit configuration with an<br>invalid V <sub>PP</sub> (see DC Characteristics) produce spurious results and should not be<br>attempted.V_CCSUPPLYSUPPLY: Internal detection configures the device for 2.7V, 3.                                                                                                         |                                  |        |                                                                                                           |
| RP#INPUTwrite operations which provides data protection during power transitions. Exit from deep<br>power-down sets the device to read array mode. RP# at V <sub>HH</sub> enables setting of the<br>master lock-bit and enables configuration of block lock-bits when the master lock-bit is<br>set. RP#=V <sub>HH</sub> overrides block lock-bits thereby enabling block erase and byte write<br>operations to locked memory blocks. Block erase, byte write, or lock-bit configuration<br>with V <sub>HH</sub> <rp#<v<sub>HH produce spurious results and should not be attempted.OE#INPUTOUTPUT ENABLE: Gates the device's outputs during a read cycle.WE#INPUTWRITE ENABLE: Controls writes to the CUI and array blocks. Addresses and data are<br/>latched on the rising edge of the WE# pulse.RY/BY#OUTPUTREADY/BUSY#: Indicates the status of the internal WSM. When low, the WSM is<br/>performing an internal operation (block erase, byte write, or lock-bit configuration).<br/>RY/BY#-high indicates that the WSM is ready for new commands, block erase is<br/>suspended, and byte write is inactive, byte write is suspended, or the device is in deep<br/>power-down mode. RY/BY# is always active and does not float when the chip is<br/>deselected or data outputs are disabled.V_PPSUPPLYBLOCK ERASE, BYTE WRITE, LOCK-BIT CONFIGURATION POWER SUPPLY: For<br/>erasing array blocks, writing bytes, or configuring lock-bits. With V<sub>PP</sub>V_CCSUPPLYDEVICE POWER SUPPLY: Internal detection configures the device for 2.7V, 3.3V or 5V<br/>operation. To switch from one voltage to another, ramp V<sub>CC</sub> down to GND and then ram<br/>IV<sub>CC</sub> to the new voltage. Do not float any power pins. With V<sub>CC</sub>&lt;3.0V are not supported.</rp#<v<sub>                                                                                                                                                                                                                                                           |                                  |        |                                                                                                           |
| RP#       INPUT       power-down sets the device to read array mode. RP# at V <sub>HH</sub> enables setting of the master lock-bit and enables configuration of block lock-bits when the master lock-bit is set. RP#=V <sub>HH</sub> overrides block lock-bits thereby enabling block erase and byte write operations to locked memory blocks. Block erase, byte write, or lock-bit configuration with V <sub>IH</sub> <rp#<v<sub>HH produce spurious results and should not be attempted.         OE#       INPUT       OUTPUT ENABLE: Gates the device's outputs during a read cycle.         WE#       INPUT       WRITE ENABLE: Controls writes to the CUI and array blocks. Addresses and data are latched on the rising edge of the WE# pulse.         RY/BY#       OUTPUT       READY/BUSY#: Indicates the status of the internal WSM. When low, the WSM is performing an internal operation (block erase, byte write, or lock-bit configuration).         RY/BY#       OUTPUT       READY/BUSY#: Indicates that the WSM is ready for new commands, block erase is suspended, and byte write is inactive, byte write is suspended, or the device is in deep power-down mode. RY/BY# is always active and does not float when the chip is deselected or data outputs are disabled.         V_PP       SUPPLY       BLOCK ERASE, BYTE WRITE, LOCK-BIT CONFIGURATION POWER SUPPLY: For erasing array blocks, writing bytes, or configuring lock-bit. With V<sub>PP</sub>≤V<sub>PPLK</sub>, memory contents cannot be altered. Block erase, byte write, and lock-bit configuration with an invalid V<sub>PP</sub> (see DC Characteristics) produce spurious results and should not be attempted.         V<sub>CC</sub>       SUPPLY       Vector the altered. Block erase, byte write, and lock-bit configuration with an invalid V<sub>PP</sub> (see DC Characteristics) produc</rp#<v<sub>                                                                                                                                                              |                                  |        |                                                                                                           |
| Master lock-bit and enables contiguration of block lock-bits when the master lock-bit is<br>set. RP#=V <sub>HH</sub> overrides block lock-bits thereby enabling block erase and byte write<br>operations to locked memory blocks. Block erase, byte write, or lock-bit configuration<br>with V <sub>IH</sub> <rp#<v<sub>HH produce spurious results and should not be attempted.OE#INPUTOUTPUT ENABLE: Gates the device's outputs during a read cycle.WE#INPUTWRITE ENABLE: Controls writes to the CUI and array blocks. Addresses and data are<br/>latched on the rising edge of the WE# pulse.RY/BY#OUTPUTREADY/BUSY#: Indicates the status of the internal WSM. When low, the WSM is<br/>performing an internal operation (block erase, byte write, or lock-bit configuration).<br/>RY/BY#-high indicates that the WSM is ready for new commands, block erase is<br/>suspended, and byte write is inactive, byte write is suspended, or the device is in deep<br/>power-down mode. RY/BY# is always active and does not float when the chip is<br/>deselected or data outputs are disabled.VppSUPPLYBLOCK ERASE, BYTE WRITE, LOCK-BIT CONFIGURATION POWER SUPPLY: For<br/>erasing array blocks, writing bytes, or configuring lock-bits. With V<sub>PP</sub>≤V<sub>PPLK</sub>, memory<br/>contents cannot be altered. Block erase, byte write, and lock-bit configuration with an<br/>invalid V<sub>pP</sub> (see DC Characteristics) produce spurious results and should not be<br/>attempted.V<sub>CC</sub>SUPPLYSUPPLYINER SUPPLY: Internal detection configures the device for 2.7V, 3.3V or 5V<br/>operation. To switch from one voltage to another, ramp V<sub>CC</sub> down to GND and then ram<br/>V<sub>CC</sub> to the new voltage. Do not float any power pins. With V<sub>CC</sub>WLSUPPLYGROUND: Do not float any ground pins.</rp#<v<sub>                                                                                                                                                                                                    | DD#                              |        |                                                                                                           |
| VectorSUPPLYSUPPLYSUPPLYSUPPLYSUPPLYSUPPLYSUPPLYSUPPLYSUPPLYSUPPLYSUPPLYSUPPLYSUPPLYSUPPLYSUPPLYSUPPLYSUPPLYSUPPLYSUPPLYSUPPLYSUPPLYSUPPLYSUPPLYSUPPLYSUPPLYSUPPLYSUPPLYSUPPLYSUPPLYSUPPLYSUPPLYSUPPLYSUPPLYSUPPLYSUPPLYSUPPLYSUPPLYSUPPLYSUPPLYSUPPLYSUPPLYSUPPLYSUPPLYSUPPLYSUPPLYSUPPLYSUPPLYSUPPLYSUPPLYSUPPLYSUPPLYSUPPLYSUPPLYSUPPLYSUPPLYSUPPLYSUPPLYSUPPLYSUPPLYSUPPLYSUPPLYSUPPLYSUPPLYSUPPLYSUPPLYSUPPLYSUPPLYSUPPLYSUPPLYSUPPLYSUPPLYSUPPLYSUPPLYSUPPLYSUPPLYSUPPLYSUPPLYSUPPLYSUPPLYSUPPLYSUPPLYSUPPLYSUPPLYSUPPLYSUPPLYSUPPLYSUPPLYSUPPLYSUPPLYSUPPLYSUPPLYSUPPLYSUPPLYSUPPLYSUPPLYSUPPLYSUPPLYSUPPLYSUPPLYSUPPLYSUPPLYSUPPLYSUPPLYSUPPLYSUPPLYSUPPLYSUPPLYSUPPLYSUPPLYSUPPLYSUPPLYSUPPLYSUPPLYSUPPLYSUPPLYSUPPLYSUPPLYSUPPLYSUPPLYSUPPLYSUPPLYSUPPLYSUPPLYSUPPLYSUPPLYSUPPLYSUPPLYSUPPLYSUPPLYSUPPLYSUPPLYSUPPLYSUPPLYSUPPLYSUPPL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nr#                              |        |                                                                                                           |
| OE#         With V <sub>IH</sub> <rp#<v<sub>HH produce spurious results and should not be attempted.           OE#         INPUT         OUTPUT ENABLE: Gates the device's outputs during a read cycle.           WE#         INPUT         WRITE ENABLE: Controls writes to the CUI and array blocks. Addresses and data are latched on the rising edge of the WE# pulse.           RY/BY#         OUTPUT         READY/BUSY#: Indicates the status of the internal WSM. When low, the WSM is performing an internal operation (block erase, byte write, or lock-bit configuration).           RY/BY#         OUTPUT         READY/BUSY#: Indicates that the WSM is ready for new commands, block erase is suspended, and byte write is inactive, byte write is suspended, or the device is in deep power-down mode. RY/BY# is always active and does not float when the chip is deselected or data outputs are disabled.           VPP         SUPPLY         BLOCK ERASE, BYTE WRITE, LOCK-BIT CONFIGURATION POWER SUPPLY: For erasing array blocks, writing bytes, or configuring lock-bits. With V<sub>PP</sub>         V<sub>PP</sub>           V<sub>CC</sub>         SUPPLY         DEVICE POWER SUPPLY: Internal detection configures the device for 2.7V, 3.3V or 5V operation. To switch from one voltage to another, ramp V<sub>CC</sub> down to GND and then ramp V<sub>CC</sub> to the new voltage. Do not float any power pins. With V<sub>CC</sub><v<sub>LKO, all write attempts to the flash memory are inhibited. Device operations at invalid V<sub>CC</sub> voltage (see DC Characteristics) produce spurious results and should not be attempted. Block erase, byte write and lock-bit configuration operations with V<sub>CC</sub>&lt;3.0V are not supported.</v<sub></rp#<v<sub>                                                                                                                                                                                                                                                       |                                  |        |                                                                                                           |
| OE#INPUTOUTPUT ENABLE: Gates the device's outputs during a read cycle.WE#INPUTWRITE ENABLE: Controls writes to the CUI and array blocks. Addresses and data are latched on the rising edge of the WE# pulse.RY/BY#READY/BUSY#: Indicates the status of the internal WSM. When low, the WSM is performing an internal operation (block erase, byte write, or lock-bit configuration).<br>RY/BY#-high indicates that the WSM is ready for new commands, block erase is suspended, and byte write is inactive, byte write is suspended, or the device is in deep power-down mode. RY/BY# is always active and does not float when the chip is deselected or data outputs are disabled.VPPSUPPLYBLOCK ERASE, BYTE WRITE, LOCK-BIT CONFIGURATION POWER SUPPLY: For erasing array blocks, writing bytes, or configuring lock-bits. With V <sub>PP</sub> SV <sub>PPLK</sub> , memory contents cannot be altered. Block erase, byte write, and lock-bit configuration with an invalid V <sub>PP</sub> (see DC Characteristics) produce spurious results and should not be attempted.VCCSUPPLYDEVICE POWER SUPPLY: Internal detection configures the device for 2.7V, 3.3V or 5V operation. To switch from one voltage to another, ramp V <sub>CC</sub> down to GND and then ram V <sub>CC</sub> to the new voltage. Do not float any power pins. With V <sub>CC</sub> voltage (see DC Characteristics) produce spurious results and should not be attempted.WCCSUPPLYGROUND: Do not float any ground pins.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                  |        |                                                                                                           |
| WE#         INPUT         WRITE ENABLE: Controls writes to the CUI and array blocks. Addresses and data are latched on the rising edge of the WE# pulse.           RY/BY#         OUTPUT         READY/BUSY#: Indicates the status of the internal WSM. When low, the WSM is performing an internal operation (block erase, byte write, or lock-bit configuration). RY/BY#-high indicates that the WSM is ready for new commands, block erase is suspended, and byte write is inactive, byte write is suspended, or the device is in deep power-down mode. RY/BY# is always active and does not float when the chip is deselected or data outputs are disabled.           VPP         SUPPLY         BLOCK ERASE, BYTE WRITE, LOCK-BIT CONFIGURATION POWER SUPPLY: For erasing array blocks, writing bytes, or configuring lock-bits. With V <sub>PP</sub> SV <sub>PPLK</sub> , memory contents cannot be altered. Block erase, byte write, and lock-bit configuration with an invalid V <sub>PP</sub> (see DC Characteristics) produce spurious results and should not be attempted.           V <sub>CC</sub> SUPPLY         DEVICE POWER SUPPLY: Internal detection configures the device for 2.7V, 3.3V or 5V operation. To switch from one voltage to another, ramp V <sub>CC</sub> down to GND and then ram V <sub>CC</sub> to the new voltage. Do not float any power pins. With V <sub>CC</sub> <3.0V are not supported.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 05"                              |        |                                                                                                           |
| WE#INPUTlatched on the rising edge of the WE# pulse.RY/BY#OUTPUTREADY/BUSY#: Indicates the status of the internal WSM. When low, the WSM is<br>performing an internal operation (block erase, byte write, or lock-bit configuration).<br>RY/BY#-high indicates that the WSM is ready for new commands, block erase is<br>suspended, and byte write is inactive, byte write is suspended, or the device is in deep<br>power-down mode. RY/BY# is always active and does not float when the chip is<br>deselected or data outputs are disabled.VPPSUPPLYBLOCK ERASE, BYTE WRITE, LOCK-BIT CONFIGURATION POWER SUPPLY: For<br>erasing array blocks, writing bytes, or configuring lock-bits. With VPPVCCSUPPLYContents cannot be altered. Block erase, byte write, and lock-bit configuration with an<br>invalid VPP (see DC Characteristics) produce spurious results and should not be<br>attempted.VCCSUPPLYDEVICE POWER SUPPLY: Internal detection configures the device for 2.7V, 3.3V or 5V<br>operation. To switch from one voltage to another, ramp V <sub>CC</sub> down to GND and then ram<br>V <sub>CC</sub> to the new voltage. Do not float any power pins. With V <sub>CC</sub> voltage (see DC<br>Characteristics) produce spurious results and should not be attempted.MCCSUPPLYGROUND: Do not float any ground pins.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | OE#                              | INPUT  |                                                                                                           |
| RY/BY#OUTPUT <b>READY/BUSY#:</b> Indicates the status of the internal WSM. When low, the WSM is<br>performing an internal operation (block erase, byte write, or lock-bit configuration).<br>RY/BY#-high indicates that the WSM is ready for new commands, block erase is<br>suspended, and byte write is inactive, byte write is suspended, or the device is in deep<br>power-down mode. RY/BY# is always active and does not float when the chip is<br>deselected or data outputs are disabled.VPPSUPPLY <b>BLOCK ERASE, BYTE WRITE, LOCK-BIT CONFIGURATION POWER SUPPLY:</b> For<br>erasing array blocks, writing bytes, or configuring lock-bits. With VPPVPPVCCSUPPLY <b>BLOCK ERASE, BYTE WRITE, LOCK-BIT CONFIGURATION POWER SUPPLY:</b> For<br>erasing array blocks, writing bytes, or configuring lock-bits. With VPPVPPVCC <b>BLOCK ERASE, BYTE WRITE, LOCK-BIT CONFIGURATION POWER SUPPLY:</b> For<br>erasing array blocks, writing bytes, or configuring lock-bits. With VPPVPPLK, memory<br>contents cannot be altered. Block erase, byte write, and lock-bit configuration with an<br>invalid VPP (see DC Characteristics) produce spurious results and should not be<br>attempted.VCCSUPPLY <b>DEVICE POWER SUPPLY:</b> Internal detection configures the device for 2.7V, 3.3V or 5V<br>operation. To switch from one voltage to another, ramp VCC down to GND and then ram<br>VCC to the new voltage. Do not float any power pins. With VCC VLKO, all write attempts<br>to the flash memory are inhibited. Device operations at invalid VCC voltage (see DC<br>Characteristics) produce spurious results and should not be attempted. Block erase, byte<br>write and lock-bit configuration operations with VCCGNDSUPPLY <b>GROUND:</b> Do not float any ground pins.                                                                                                                                                                                                                                                                        | WE#                              | INPUT  |                                                                                                           |
| RY/BY#OUTPUTperforming an internal operation (block erase, byte write, or lock-bit configuration).<br>RY/BY#-high indicates that the WSM is ready for new commands, block erase is<br>suspended, and byte write is inactive, byte write is suspended, or the device is in deep<br>power-down mode. RY/BY# is always active and does not float when the chip is<br>deselected or data outputs are disabled.V_PPSUPPLYBLOCK ERASE, BYTE WRITE, LOCK-BIT CONFIGURATION POWER SUPPLY: For<br>erasing array blocks, writing bytes, or configuring lock-bits. With Vpp≤VpPLK, memory<br>contents cannot be altered. Block erase, byte write, and lock-bit configuration with an<br>invalid Vpp (see DC Characteristics) produce spurious results and should not be<br>attempted.V_CCSUPPLYDEVICE POWER SUPPLY: Internal detection configures the device for 2.7V, 3.3V or 5V<br>operation. To switch from one voltage to another, ramp V <sub>CC</sub> down to GND and then ram<br>V <sub>CC</sub> to the new voltage. Do not float any power pins. With V <sub>CC</sub> ≤V <sub>LKO</sub> , all write attempts<br>to the flash memory are inhibited. Device operations at invalid V <sub>CC</sub> voltage (see DC<br>Characteristics) produce spurious results and should not be attempted. Block erase, byte<br>write and lock-bit configuration operations with V <sub>CC</sub> <3.0V are not supported.GNDSUPPLYGROUND: Do not float any ground pins.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                  |        |                                                                                                           |
| RY/BY#OUTPUTRY/BY#-high indicates that the WSM is ready for new commands, block erase is<br>suspended, and byte write is inactive, byte write is suspended, or the device is in deep<br>power-down mode. RY/BY# is always active and does not float when the chip is<br>deselected or data outputs are disabled.VPPSUPPLYBLOCK ERASE, BYTE WRITE, LOCK-BIT CONFIGURATION POWER SUPPLY: For<br>erasing array blocks, writing bytes, or configuring lock-bits. With V <sub>PP</sub> <v<sub>PPLK, memory<br/>contents cannot be altered. Block erase, byte write, and lock-bit configuration with an<br/>invalid V<sub>PP</sub> (see DC Characteristics) produce spurious results and should not be<br/>attempted.V_CCSUPPLYDEVICE POWER SUPPLY: Internal detection configures the device for 2.7V, 3.3V or 5V<br/>operation. To switch from one voltage to another, ramp V<sub>CC</sub> down to GND and then ram<br/>V<sub>CC</sub> to the new voltage. Do not float any power pins. With V<sub>CC</sub> <vlko, all="" attempts<br="" write=""></vlko,>to the flash memory are inhibited. Device operations at invalid V<sub>CC</sub> voltage (see DC<br/>Characteristics) produce spurious results and should not be attempted. Block erase, byte<br/>write and lock-bit configuration operations with V<sub>CC</sub><br/>GROUND: Do not float any ground pins.</v<sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                  |        |                                                                                                           |
| RY/BY#       OUTPOT       suspended, and byte write is inactive, byte write is suspended, or the device is in deep power-down mode. RY/BY# is always active and does not float when the chip is deselected or data outputs are disabled.         VPP       SUPPLY       BLOCK ERASE, BYTE WRITE, LOCK-BIT CONFIGURATION POWER SUPPLY: For erasing array blocks, writing bytes, or configuring lock-bits. With V <sub>PP</sub> ≤V <sub>PPLK</sub> , memory contents cannot be altered. Block erase, byte write, and lock-bit configuration with an invalid V <sub>PP</sub> (see DC Characteristics) produce spurious results and should not be attempted.         V <sub>CC</sub> SUPPLY       DEVICE POWER SUPPLY: Internal detection configures the device for 2.7V, 3.3V or 5V operation. To switch from one voltage to another, ramp V <sub>CC</sub> down to GND and then ram V <sub>CC</sub> to the new voltage. Do not float any power pins. With V <sub>CC</sub> voltage (see DC Characteristics) produce spurious results and should not be attempted.         V <sub>CC</sub> SUPPLY       GROUND: Do not float any ground pins.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                  |        |                                                                                                           |
| VPPSUPPLYBLOCK ERASE, BYTE WRITE, LOCK-BIT CONFIGURATION POWER SUPPLY: For<br>erasing array blocks, writing bytes, or configuring lock-bits. With VPPSVPPLK, memory<br>contents cannot be altered. Block erase, byte write, and lock-bit configuration with an<br>invalid VPP (see DC Characteristics) produce spurious results and should not be<br>attempted.V_CCSUPPLYDEVICE POWER SUPPLY: Internal detection configures the device for 2.7V, 3.3V or 5V<br>operation. To switch from one voltage to another, ramp VCC down to GND and then ram<br>VCC to the new voltage. Do not float any power pins. With VCCSVLKO, all write attempts<br>to the flash memory are inhibited. Device operations at invalid VCC voltage (see DC<br>Characteristics) produce spurious results and should not be attempted. Block erase, byte<br>write and lock-bit configuration operations with VCCSVLKO, all write attempts<br>to the flash memory are inhibited. Device operations at invalid VCC voltage (see DC<br>Characteristics) produce spurious results and should not be attempted. Block erase, byte<br>write and lock-bit configuration operations with VCCSIDEGNDSUPPLYGROUND: Do not float any ground pins.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RY/BY#                           | OUIPUI |                                                                                                           |
| VPP       SUPPLY       BLOCK ERASE, BYTE WRITE, LOCK-BIT CONFIGURATION POWER SUPPLY: For erasing array blocks, writing bytes, or configuring lock-bits. With V <sub>PP</sub> ≤V <sub>PPLK</sub> , memory contents cannot be altered. Block erase, byte write, and lock-bit configuration with an invalid V <sub>PP</sub> (see DC Characteristics) produce spurious results and should not be attempted.         V <sub>CC</sub> SUPPLY       DEVICE POWER SUPPLY: Internal detection configures the device for 2.7V, 3.3V or 5V operation. To switch from one voltage to another, ramp V <sub>CC</sub> down to GND and then ram V <sub>CC</sub> to the new voltage. Do not float any power pins. With V <sub>CC</sub> ≤V <sub>LKO</sub> , all write attempts to the flash memory are inhibited. Device operations at invalid V <sub>CC</sub> voltage (see DC Characteristics) produce spurious results and should not be attempted. Block erase, byte write and lock-bit configuration operations with V <sub>CC</sub> <3.0V are not supported.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |        |                                                                                                           |
| VPPSUPPLYerasing array blocks, writing bytes, or configuring lock-bits. With VPPVPPWith VPPVPPSUPPLYSUPPLYcontents cannot be altered. Block erase, byte write, and lock-bit configuration with an<br>invalid VPP (see DC Characteristics) produce spurious results and should not be<br>attempted.V_CCDEVICE POWER SUPPLY: Internal detection configures the device for 2.7V, 3.3V or 5V<br>operation. To switch from one voltage to another, ramp VCC down to GND and then ram<br>VCC to the new voltage. Do not float any power pins. With VCCWith VCCV_CCto the flash memory are inhibited. Device operations at invalid VCC voltage (see DC<br>Characteristics) produce spurious results and should not be attempted. Block erase, byte<br>write and lock-bit configuration operations with VCCGNDSUPPLYGROUND: Do not float any ground pins.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                  |        |                                                                                                           |
| V <sub>PP</sub> SUPPLY       contents cannot be altered. Block erase, byte write, and lock-bit configuration with an invalid V <sub>PP</sub> (see DC Characteristics) produce spurious results and should not be attempted.         V <sub>CC</sub> DEVICE POWER SUPPLY: Internal detection configures the device for 2.7V, 3.3V or 5V operation. To switch from one voltage to another, ramp V <sub>CC</sub> down to GND and then ram V <sub>CC</sub> to the new voltage. Do not float any power pins. With V <sub>CC</sub> ≤V <sub>LKO</sub> , all write attempts to the flash memory are inhibited. Device operations at invalid V <sub>CC</sub> voltage (see DC Characteristics) produce spurious results and should not be attempted. Block erase, byte write and lock-bit configuration operations with V <sub>CC</sub> GND       SUPPLY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |        |                                                                                                           |
| V <sub>CC</sub> SUPPLY       SUPPLY       Internal detection configures the device for 2.7V, 3.3V or 5V operation. To switch from one voltage to another, ramp V <sub>CC</sub> down to GND and then ram V <sub>CC</sub> to the new voltage. Do not float any power pins. With V <sub>CC</sub> ≤V <sub>LKO</sub> , all write attempts to the flash memory are inhibited. Device operations at invalid V <sub>CC</sub> voltage (see DC Characteristics) produce spurious results and should not be attempted.         GND       SUPPLY       GROUND: Do not float any ground pins.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  |        |                                                                                                           |
| VCC       SUPPLY       DEVICE POWER SUPPLY: Internal detection configures the device for 2.7V, 3.3V or 5V operation. To switch from one voltage to another, ramp V <sub>CC</sub> down to GND and then ram V <sub>CC</sub> to the new voltage. Do not float any power pins. With V <sub>CC</sub> ≤V <sub>LKO</sub> , all write attempts to the flash memory are inhibited. Device operations at invalid V <sub>CC</sub> voltage (see DC Characteristics) produce spurious results and should not be attempted. Block erase, byte write and lock-bit configuration operations with V <sub>CC</sub> <3.0V are not supported.         GND       SUPPLY       GROUND: Do not float any ground pins.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V <sub>PP</sub>                  | SUPPLY |                                                                                                           |
| V <sub>CC</sub> SUPPLYDEVICE POWER SUPPLY: Internal detection configures the device for 2.7V, 3.3V or 5V<br>operation. To switch from one voltage to another, ramp V <sub>CC</sub> down to GND and then ram<br>V <sub>CC</sub> to the new voltage. Do not float any power pins. With V <sub>CC</sub> ≤V <sub>LKO</sub> , all write attempts<br>to the flash memory are inhibited. Device operations at invalid V <sub>CC</sub> voltage (see DC<br>Characteristics) produce spurious results and should not be attempted. Block erase, byte<br>write and lock-bit configuration operations with V <sub>CC</sub> <3.0V are not supported.GNDSUPPLYGROUND: Do not float any ground pins.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                  |        |                                                                                                           |
| V <sub>CC</sub> SUPPLY       operation. To switch from one voltage to another, ramp V <sub>CC</sub> down to GND and then ramp V <sub>CC</sub> to the new voltage. Do not float any power pins. With V <sub>CC</sub> ≤V <sub>LKO</sub> , all write attempts to the flash memory are inhibited. Device operations at invalid V <sub>CC</sub> voltage (see DC Characteristics) produce spurious results and should not be attempted. Block erase, byte write and lock-bit configuration operations with V <sub>CC</sub> GND       SUPPLY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                  |        |                                                                                                           |
| V <sub>CC</sub> SUPPLY       V <sub>CC</sub> to the new voltage. Do not float any power pins. With V <sub>CC</sub> ≤V <sub>LKO</sub> , all write attempts to the flash memory are inhibited. Device operations at invalid V <sub>CC</sub> voltage (see DC Characteristics) produce spurious results and should not be attempted. Block erase, byte write and lock-bit configuration operations with V <sub>CC</sub> <3.0V are not supported.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                  |        |                                                                                                           |
| VCC       VCC       to the flash memory are inhibited. Device operations at invalid V <sub>CC</sub> voltage (see DC Characteristics) produce spurious results and should not be attempted. Block erase, byte write and lock-bit configuration operations with V <sub>CC</sub> <3.0V are not supported.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | V <sub>CC</sub>                  |        | operation. To switch from one voltage to another, ramp $V_{CC}$ down to GND and then ramp                 |
| Characteristics) produce spurious results and should not be attempted. Block erase, byte write and lock-bit configuration operations with V <sub>CC</sub> <3.0V are not supported.<br>GND SUPPLY <b>GROUND:</b> Do not float any ground pins.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                  | SUPPLY | $v_{CC}$ to the new voltage. Do not float any power pins. With $v_{CC} \leq v_{LKO}$ , all write attempts |
| write and lock-bit configuration operations with V <sub>CC</sub> <3.0V are not supported.           GND         SUPPLY <b>GROUND:</b> Do not float any ground pins.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 00                               |        |                                                                                                           |
| GND SUPPLY GROUND: Do not float any ground pins.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  |        |                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | GND                              | SUPPLY |                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  | 001121 |                                                                                                           |

#### 2 PRINCIPLES OF OPERATION

The LH28F008SCHT-TE SmartVoltage Flash memory includes an on-chip WSM to manage block erase, byte write, and lock-bit configuration functions. It allows for: 100% TTL-level control inputs, fixed power supplies during block erasure, byte write, and lock-bit configuration, and minimal processor overhead with RAM-Like interface timings.

After initial device power-up or return from deep power-down mode (see Bus Operations), the device defaults to read array mode. Manipulation of external memory control pins allow array read, standby, and output disable operations.

Status register and identifier codes can be accessed through the CUI independent of the  $V_{PP}$  voltage. High voltage on  $V_{PP}$  enables successful block erasure, byte writing, and lock-bit configuration. All functions associated with altering memory contents-block erase, byte write, lock-bit configuration, status, and identifier codes-are accessed via the CUI and verified through the status register.

Commands are written using standard microprocessor write timings. The CUI contents serve as input to the WSM, which controls the block erase, byte write, and lock-bit configuration. The internal algorithms are regulated by the WSM, including pulse repetition, internal verification, and margining of data. Addresses and data are internally latch during write cycles. Writing the appropriate command outputs array data, accesses the identifier codes, or outputs status register data.

Interface software that initiates and polls progress of block erase, byte write, and lock-bit configuration can be stored in any block. This code is copied to and executed from system RAM during flash memory updates. After successful completion, reads are again possible via the Read Array command. Block erase suspend allows system software to suspend a block erase to read or write data from any other block. Byte write suspend allows system software to suspend a byte write to read data from any other flash memory array location.

| FFFFF          | 64K-byte Block | 15 |
|----------------|----------------|----|
| EFFFF          | 64K-byte Block | 14 |
| DEFFF          | 64K-byte Block | 13 |
| COUCC          | 64K-byte Block | 12 |
| BEEFFF         | 64K-byte Block | 11 |
| A0000          | 64K-byte Block | 10 |
| 90000          | 64K-byte Block | 9  |
| 8FFFF          | 64K-byte Block | 8  |
| 7FFFF<br>70000 | 64K-byte Block | 7  |
| 60000          | 64K-byte Block | 6  |
| 5FFFF<br>50000 | 64K-byte Block | 5  |
| 40000          | 64K-byte Block | 4  |
| SFFFF<br>30000 | 64K-byte Block | 3  |
| 2FFFF<br>20000 | 64K-byte Block | 2  |
| 10000          | 64K-byte Block | 1  |
| )FFFF          | 64K-byte Block | 0  |

Figure 3. Memory Map

#### 2.1 Data Protection

Depending on the application, the system designer may choose to make the  $V_{PP}$  power supply switchable (available only when memory block erases, byte writes, or lock-bit configurations are required) or hardwired to  $V_{PPH1/2/3}$ . The device accommodates either design practice and encourages optimization of the processor-memory interface.

When  $V_{PP} \le V_{PPLK}$ , memory contents cannot be altered. The CUI, with two-step block erase, byte write, or lock-bit configuration command sequences, provides protection from unwanted operations even when high voltage is applied to  $V_{PP}$ . All write functions are disabled when  $V_{CC}$  is below the write lockout voltage  $V_{LKO}$  or when RP# is at  $V_{IL}$ . The device's block locking capability provides additional protection from inadvertent code or data alteration by gating erase and byte write operations.

#### **3 BUS OPERATION**

The local CPU reads and writes flash memory in-system. All bus cycles to or from the flash memory conform to standard microprocessor bus cycles.

#### 3.1 Read

Information can be read from any block, identifier codes, or status register independent of the  $V_{PP}$  voltage. RP# can be at either  $V_{IH}$  or  $V_{HH}$ .

The first task is to write the appropriate read mode command (Read Array, Read Identifier Codes, or Read Status Register) to the CUI. Upon initial device power-up or after exit from deep power-down mode, the device automatically resets to read array mode. Four control pins dictate the data flow in and out of the component: CE#, OE#, WE#, and RP#. CE# and OE# must be driven active to obtain data at the outputs. CE# is the device selection control, and when active enables the selected memory device. OE# is the data output (DQ<sub>0</sub>-DQ<sub>7</sub>) control and when active drives the selected memory data onto the I/O bus. WE# must be at V<sub>IH</sub> and RP# must be at V<sub>IH</sub> or V<sub>HH</sub>. Figure 15 illustrates a read cycle.

#### 3.2 Output Disable

With OE# at a logic-high level ( $V_{IH}$ ), the device outputs are disabled. Output pins  $DQ_0$ - $DQ_7$  are placed in a high-impedance state.

#### 3.3 Standby

CE# at a logic-high level ( $V_{IH}$ ) places the device in standby mode which substantially reduces device power consumption.  $DQ_0$ - $DQ_7$  outputs are placed in a high-impedance state independent of OE#. If deselected during block erase, byte write, or lock-bit configuration, the device continues functioning, and

consuming active power until the operation completes.

#### 3.4 Deep Power-Down

RP# at  $V_{II}$  initiates the deep power-down mode.

In read modes, RP#-low deselects the memory, places output drivers in a high-impedance state and turns off all internal circuits. RP# must be held low for a minimum of 100 ns. Time t<sub>PHQV</sub> is required after return from power-down until initial memory access outputs are valid. After this wake-up interval, normal operation is restored. The CUI is reset to read array mode and status register is set to 80H.

During block erase, byte write, or lock-bit configuration modes, RP#-low will abort the operation. RY/BY# remains low until the reset operation is complete. Memory contents being altered are no longer valid; the data may be partially erased or written. Time  $t_{PHWL}$  is required after RP# goes to logic-high (V<sub>IH</sub>) before another command can be written.

As with any automated device, it is important to assert RP# during system reset. When the system comes out of reset, it expects to read from the flash memory. Automated flash memories provide status information when accessed during block erase, byte write, or lock-bit configuration modes. If a CPU reset occurs with no flash memory reset, proper CPU initialization may not occur because the flash memory may be providing status information instead of array data. SHARP's flash memories allow proper CPU initialization following a system reset through the use of the RP# input. In this application, RP# is controlled by the same RESET# signal that resets the system CPU.

#### 3.5 Read Identifier Codes Operation

The read identifier codes operation outputs the manufacturer code, device code, block lock configuration codes for each block, and the master lock configuration code (see Figure 4). Using the manufacturer and device codes, the system CPU can automatically match the device with its proper algorithms. The block lock and master lock configuration codes identify locked and unlocked blocks and master lock-bit setting.

| FFFFF |                                       |
|-------|---------------------------------------|
|       | Reserved for                          |
| F0004 | Future Implementation                 |
| F0003 |                                       |
| F0002 | Block 15 Lock Configuration Code      |
| F0001 | Reserved for                          |
| F0000 | Future Implementation<br>Block 15     |
|       |                                       |
|       | (Blocks 2 through 14)                 |
| 1FFFF |                                       |
|       | Descrived for                         |
| 10004 | Reserved for<br>Future Implementation |
| 10003 |                                       |
| 10002 | Block 1 Lock Configuration Code       |
| 10001 | Reserved for                          |
| 10000 | Future Implementation Block 1         |
| 0FFFF | 2.000                                 |
|       | Reserved for                          |
| 00004 | Future Implementation                 |
| 00003 | Master Lock Configuration Code        |
| 00002 | Block 0 Lock Configuration Code       |
| 00001 | Device Code                           |
| 00000 |                                       |
|       | Manufacturer Code Block 0             |
| i i   |                                       |

Figure 4. Device Identifier Code Memory Map

#### 3.6 Write

Writing commands to the CUI enable reading of device data and identifier codes. They also control inspection and clearing of the status register. When  $V_{PP}=V_{PPH1/2/3}$ , the CUI additionally controls block erasure, byte write, and lock-bit configuration.

The Block Erase command requires appropriate command data and an address within the block to be erased. The Byte Write command requires the command and address of the location to be written. Set Master and Block Lock-Bit commands require the command and address within the device (Master Lock) or block within the device (Block Lock) to be locked. The Clear Block Lock-Bits command requires the command and address within the device.

The CUI does not occupy an addressable memory location. It is written when WE# and CE# are active. The address and data needed to execute a command are latched on the rising edge of WE# or CE# (whichever goes high first). Standard microprocessor write timings are used. Figures 16 and 17 illustrate WE# and CE#-controlled write operations.

#### **4 COMMAND DEFINITIONS**

When the V<sub>PP</sub> voltage  $\leq$  V<sub>PPLK</sub>, Read operations from the status register, identifier codes, or blocks are enabled. Placing V<sub>PPH1/2/3</sub> on V<sub>PP</sub> enables successful block erase, byte write and lock-bit configuration operations.

Device operations are selected by writing specific commands into the CUI. Table 4 defines these commands.



| Table 3. Bus Operations |         |                                       |                 |                 |                 |                 |                 |                   |                 |  |
|-------------------------|---------|---------------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-------------------|-----------------|--|
| Mode                    | Notes   | RP#                                   | CE#             | OE#             | WE#             | Address         | V <sub>PP</sub> | DQ <sub>0-7</sub> | RY/BY#          |  |
| Read                    | 1,2,3,8 | V <sub>IH</sub> or<br>V <sub>HH</sub> | $V_{\text{IL}}$ | V <sub>IL</sub> | V <sub>IH</sub> | х               | Х               | D <sub>OUT</sub>  | Х               |  |
| Output Disable          | 3       | V <sub>IH</sub> or<br>V <sub>HH</sub> | V <sub>IL</sub> | V <sub>IH</sub> | V <sub>IH</sub> | Х               | Х               | High Z            | Х               |  |
| Standby                 | 3       | V <sub>IH</sub> or<br>V <sub>HH</sub> | V <sub>IH</sub> | Х               | Х               | х               | Х               | High Z            | Х               |  |
| Deep Power-Down         | 4       | VII                                   | Х               | Х               | Х               | Х               | Х               | High Z            | V <sub>OH</sub> |  |
| Read Identifier Codes   | 8       | V <sub>IH</sub> or<br>V <sub>HH</sub> | $V_{\text{IL}}$ | V <sub>IL</sub> | V <sub>IH</sub> | See<br>Figure 4 | Х               | Note 5            | V <sub>OH</sub> |  |
| Write                   | 3,6,7,8 | V <sub>IH</sub> or<br>V <sub>HH</sub> | V <sub>IL</sub> | V <sub>IH</sub> | V <sub>IL</sub> | x               | Х               | D <sub>IN</sub>   | Х               |  |

#### NOTES:

- 1. Refer to DC Characteristics. When  $V_{PP} \leq V_{PPLK}$ , memory contents can be read, but not altered.
- X can be V<sub>IL</sub> or V<sub>IH</sub> for control pins and addresses, and V<sub>PPLK</sub> or V<sub>PPH1/2/3</sub> for V<sub>PP</sub>. See DC Characteristics for V<sub>PPLK</sub> and V<sub>PPH1/2/3</sub> voltages.
   RY/BY# is V<sub>OL</sub> when the WSM is executing internal block erase, byte write, or lock-bit configuration algorithms.
- RY/BY# is V<sub>OL</sub> when the WSM is executing internal block erase, byte write, or lock-bit configuration algorithms. It is V<sub>OH</sub> during when the WSM is not busy, in block erase suspend mode (with byte write inactive), byte write suspend mode, or deep power-down mode.
- 4. RP# at GND±0.2V ensures the lowest deep power-down current.
- 5. See Section 4.2 for read identifier code data.
- Command writes involving block erase, write, or lock-bit configuration are reliably executed when V<sub>PP</sub>=V<sub>PPH1/2/3</sub> and V<sub>CC</sub>=V<sub>CC2/3/4</sub>. Block erase, byte write, or lock-bit configuration with V<sub>CC</sub><3.0V or V<sub>IH</sub><RP#<V<sub>HH</sub> produce spurious results and should not be attempted.
- 7. Refer to Table 4 for valid  $\mathsf{D}_{\mathsf{IN}}$  during a write operation.
- 8. Don't use the timing both OE and WE# are V<sub>IL</sub>.

| Table 4. Command Definitions <sup>(9)</sup> |                   |       |                     |                     |                     |                     |                     |                     |  |  |
|---------------------------------------------|-------------------|-------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|--|--|
|                                             | <b>Bus Cycles</b> |       | Fir                 | First Bus Cycle     |                     |                     | Second Bus Cycle    |                     |  |  |
| Command                                     | Req'd.            | Notes | Oper <sup>(1)</sup> | Addr <sup>(2)</sup> | Data <sup>(3)</sup> | Oper <sup>(1)</sup> | Addr <sup>(2)</sup> | Data <sup>(3)</sup> |  |  |
| Read Array/Reset                            | 1                 |       | Ŵrite               | Х                   | FFH                 |                     |                     |                     |  |  |
| Read Identifier Codes                       | ≥2                | 4     | Write               | Х                   | 90H                 | Read                | IA                  | ID                  |  |  |
| Read Status Register                        | 2                 |       | Write               | Х                   | 70H                 | Read                | Х                   | SRD                 |  |  |
| Clear Status Register                       | 1                 |       | Write               | Х                   | 50H                 |                     |                     |                     |  |  |
| Block Erase                                 | 2                 | 5     | Write               | BA                  | 20H                 | Write               | BA                  | D0H                 |  |  |
| Byte Write                                  | 2                 | 5,6   | Write               | WA                  | 40H<br>or<br>10H    | Write               | WA                  | WD                  |  |  |
| Block Erase and Byte Write Suspend          | 1                 | 5     | Write               | Х                   | B0H                 |                     |                     |                     |  |  |
| Block Erase and Byte Write Resume           | 1                 | 5     | Write               | Х                   | D0H                 |                     |                     |                     |  |  |
| Set Block Lock-Bit                          | 2                 | 7     | Write               | BA                  | 60H                 | Write               | BA                  | 01H                 |  |  |
| Set Master Lock-Bit                         | 2                 | 7     | Write               | Х                   | 60H                 | Write               | Х                   | F1H                 |  |  |
| Clear Block Lock-Bits                       | 2                 | 8     | Write               | Х                   | 60H                 | Write               | Х                   | D0H                 |  |  |

#### NOTES:

- 1. BUS operations are defined in Table 3.
- X=Any valid address within the device.
   IA=Identifier Code Address: see Figure 4.
   BA=Address within the block being erased or locked.
   WA=Address of memory location to be written.
- SRD=Data read from status register. See Table 7 for a description of the status register bits. WD=Data to be written at location WA. Data is latched on the rising edge of WE# or CE# (whichever goes high first).

ID=Data read from identifier codes.

- 4. Following the Read Identifier Codes command, read operations access manufacturer, device, block lock, and master lock codes. See Section 4.2 for read identifier code data.
- If the block is locked, RP# must be at V<sub>HH</sub> to enable block erase or byte write operations. Attempts to issue a block erase or byte write to a locked block while RP# is V<sub>IH</sub>.
- 6. Either 40H or 10H are recognized by the WSM as the byte write setup.
- If the master lock-bit is set, RP# must be at V<sub>HH</sub> to set a block lock-bit. RP# must be at V<sub>HH</sub> to set the master lock-bit. If the master lock-bit is not set, a block lock-bit can be set while RP# is V<sub>IH</sub>.
- If the master lock-bit is set, RP# must be at V<sub>HH</sub> to clear block lock-bits. The clear block lock-bits operation simultaneously clears all block lock-bits. If the master lock-bit is not set, the Clear Block Lock-Bits command can be done while RP# is V<sub>IH</sub>.
- 9. Commands other than those shown above are reserved by SHARP for future device implementations and should not be used.

#### 4.1 Read Array Command

Upon initial device power-up and after exit from deep power-down mode, the device defaults to read array mode. This operation is also initiated by writing the Read Array command. The device remains enabled for reads until another command is written. Once the internal WSM has started a block erase, byte write or lock-bit configuration, the device will not recognize the Read Array command until the WSM completes its operation unless the WSM is suspended via an Erase Suspend or Byte Write Suspend command. The Read Array command functions independently of the  $V_{PP}$  voltage and RP# can be  $V_{IH}$  or  $V_{HH}$ .

#### 4.2 Read Identifier Codes Command

The identifier code operation is initiated by writing the Read Identifier Codes command. Following the command write, read cycles from addresses shown in Figure 4 retrieve the manufacturer, device, block lock configuration and master lock configuration codes (see Table 5 for identifier code values). To terminate the operation, write another valid command. Like the Read Array command, the Read Identifier Codes command functions independently of the VPP voltage and RP# can be  $\rm V_{IH}$  or  $\rm V_{HH}.$  Following the Read Identifier Codes command, the following information can be read:

| Code                                        | Address              | Data               |
|---------------------------------------------|----------------------|--------------------|
| Manufacture Code                            | 00000                | 89                 |
| Device Code                                 | 00001                | A6                 |
| Block Lock Configuration                    | X0002 <sup>(1)</sup> |                    |
| <ul> <li>Block is Unlocked</li> </ul>       |                      | DQ <sub>0</sub> =0 |
| <ul> <li>Block is Locked</li> </ul>         |                      | DQ <sub>0</sub> =1 |
| <ul> <li>Reserved for Future Use</li> </ul> |                      | DQ <sub>1-7</sub>  |
| Master Lock Configuration                   | 00003                |                    |
| <ul> <li>Device is Unlocked</li> </ul>      |                      | DQ <sub>0</sub> =0 |
| <ul> <li>Device is Locked</li> </ul>        |                      | DQ <sub>0</sub> =1 |
| <ul> <li>Reserved for Future Use</li> </ul> |                      | DQ <sub>1-7</sub>  |
| NOTE                                        |                      |                    |

#### Table 5. Identifier Codes

1. X selects the specific block lock configuration code to be read. See Figure 4 for the device identifier code memory map.

#### 4.3 Read Status Register Command

The status register may be read to determine when a block erase, byte write, or lock-bit configuration is complete and whether the operation completed successfully. It may be read at any time by writing the Read Status Register command. After writing this command, all subsequent read operations output data from the status register until another valid command is written. The status register contents are latched on the falling edge of OE# or CE#, whichever occurs. OE# or CE# must toggle to VIH before further reads to update the status register latch. The Read Status Register command functions independently of the  $V_{PP}$  voltage. RP# can be  $V_{IH}$  or  $V_{HH}$ .

#### 4.4 Clear Status Register Command

Status register bits SR.5, SR.4, SR.3, and SR.1 are set to "1"s by the WSM and can only be reset by the Clear Status Register command. These bits indicate various failure conditions (see Table 7). By allowing system software to reset these bits, several operations (such as cumulatively erasing or locking multiple blocks or writing several bytes in sequence) may be performed. The status register may be polled to determine if an error occurre during the sequence.

To clear the status register, the Clear Status Register command (50H) is written. It functions independently of the applied  $V_{PP}$  Voltage. RP# can be  $V_{IH}$  or  $V_{HH}$ . This command is not functional during block erase or byte write suspend modes.

#### 4.5 Block Erase Command

Erase is executed one block at a time and initiated by a two-cycle command. A block erase setup is first written, followed by an block erase confirm. This command sequence requires appropriate sequencing and an address within the block to be erased (erase changes all block data to FFH). Block preconditioning, erase, and verify are handled internally by the WSM (invisible to the system). After the two-cycle block erase sequence is written, the device automatically outputs status register data when read (see Figure 5). The CPU can detect block erase completion by analyzing the output data of the RY/BY# pin or status register bit SR.7.

When the block erase is complete, status register bit SR.5 should be checked. If a block erase error is detected, the status register should be cleared before system software attempts corrective actions. The CUI remains in read status register mode until a new command is issued.

This two-step command sequence of set-up followed by execution ensures that block contents are not accidentally erased. An invalid Block Erase command sequence will result in both status register bits SR.4 and SR.5 being set to "1". Also, reliable block erasure can only occur when  $V_{CC}=V_{CC2/3/4}$ and V<sub>PP</sub>=V<sub>PPH1/2/3</sub>. In the absence of this high voltage, block contents are protected against erasure. If block erase is attempted while V<sub>PP</sub>≤V<sub>PPLK</sub>, SR.3 and SR.5 will be set to "1". Successful block erase requires that the corresponding block lock-bit be cleared or, if set, that  $RP\#=V_{HH}$ . If block erase is attempted when the corresponding block lock-bit is set and RP#=VIH, SR.1 and SR.5 will be set to "1". Block erase operations with VIH<RP#<VHH produce spurious results and should not be attempted.

#### 4.6 Byte Write Command

Byte write is executed by a two-cycle command sequence. Byte write setup (standard 40H or alternate 10H) is written, followed by a second write that specifies the address and data (latched on the rising edge of WE#). The WSM then takes over, controlling the byte write and write verify algorithms internally. After the byte write sequence is written, the device automatically outputs status register data when read (see Figure 6). The CPU can detect the completion of the byte write event by analyzing the RY/BY# pin or status register bit SR.7.

When byte write is complete, status register bit SR.4 should be checked. If byte write error is detected, the status register should be cleared. The internal WSM verify only detects errors for "1"s that do not successfully write to "0"s. The CUI remains in read status register mode until it receives another command.

Reliable byte writes can only occur when  $V_{CC}=V_{CC2/3/4}$  and  $V_{PP}=V_{PPH1/2/3}$ . In the absence of this high voltage, memory contents are protected against byte writes. If byte write is attempted while  $V_{PP}\leq V_{PPLK}$ , status register bits SR.3 and SR.4 will be set to "1". Successful byte write requires that the

corresponding block lock-bit be cleared or, if set, that  $RP\#=V_{HH}$ . If byte write is attempted when the corresponding block lock-bit is set and  $RP\#=V_{IH}$ , SR.1 and SR.4 will be set to "1". Byte write operations with  $V_{IH}$ <br/>RP#< $V_{HH}$  produce spurious results and should not be attempted.

#### 4.7 Block Erase Suspend Command

The Block Erase Suspend command allows block-erase interruption to read or byte-write data in another block of memory. Once the block-erase process starts, writing the Block Erase Suspend command requests that the WSM suspend the block erase sequence at a predetermined point in the algorithm. The device outputs status register data when read after the Block Erase Suspend command is written. Polling status register bits SR.7 and SR.6 can determine when the block erase operation has been suspended (both will be set to "1"). RY/BY# will also transition to  $V_{OH}$ . Specification  $t_{WHRH2}$  defines the block erase suspend latency.

At this point, a Read Array command can be written to read data from blocks other than that which is suspended. A Byte Write command sequence can also be issued during erase suspend to program data in other blocks. Using the Byte Write Suspend command (see Section 4.8), a byte write operation can also be suspended. During a byte write operation with block erase suspended, status register bit SR.7 will return to "0" and the RY/BY# output will transition to  $V_{OL}$ . However, SR.6 will remain "1" to indicate block erase suspend status.

The only other valid commands while block erase is suspended are Read Status Register and Block Erase Resume. After a Block Erase Resume command is written to the flash memory, the WSM will continue the block erase process. Status register bits SR.6 and SR.7 will automatically clear and RY/BY# will return to  $V_{OL}$ . After the Erase Resume command is written, the device automatically outputs status register data when read (see Figure 7).  $V_{PP}$  must remain at  $V_{PPH1/2/3}$  (the same  $V_{PP}$  level used for block erase) while block erase is suspended. RP# must also remain at  $V_{IH}$  or  $V_{HH}$  (the same RP# level used for block erase). Block erase cannot resume until byte write operations initiated during block erase suspend have completed.

13

#### 4.8 Byte Write Suspend Command

The Byte Write Suspend command allows byte write interruption to read data in other flash memory locations. Once the byte write process starts, writing the Byte Write Suspend command requests that the WSM suspend the byte write sequence at a predetermined point in the algorithm. The device continues to output status register data when read after the Byte Write Suspend command is written. Polling status register bits SR.7 and SR.2 can determine when the byte write operation has been suspended (both will be set to "1"). RY/BY# will also transition to  $V_{OH}$ . Specification t<sub>WHRH1</sub> defines the byte write suspend latency.

At this point, a Read Array command can be written to read data from locations other than that which is suspended. The only other valid commands while byte write is suspended are Read Status Register and Byte Write Resume. After Byte Write Resume command is written to the flash memory, the WSM will continue the byte write process. Status register bits SR.2 and SR.7 will automatically clear and RY/BY# will return to V<sub>OL</sub>. After the Byte Write command is written, the device Resume automatically outputs status register data when read (see Figure 8).  $V_{PP}$  must remain at  $V_{PPH1/2/3}$  (the same V<sub>PP</sub> level used for byte write) while in byte write suspend mode. RP# must also remain at VIH or VHH (the same RP# level used for byte write).

#### 4.9 Set Block and Master Lock-Bit Commands

A flexible block locking and unlocking scheme is enabled via a combination of block lock-bits and a master lock-bit. The block lock-bits gate program and erase operations while the master lock-bit gates block-lock bit modification. With the master lock-bit not set, individual block lock-bits can be set using the Set Block Lock-Bit command. The Set Master Lock-Bit command, in conjunction with  $RP#=V_{HH}$ , sets the master lock-bit. After the master lock-bit is set, subsequent setting of block lock-bits requires both the Set Block Lock-Bit command and  $V_{HH}$  on the RP# pin. See Table 6 for a summary of hardware and software write protection options.

Set block lock-bit and master lock-bit are executed by a two-cycle command sequence. The set block or master lock-bit setup along with appropriate block or device address is written followed by either the set block lock-bit confirm (and an address within the block to be locked) or the set master lock-bit confirm (and any device address). The WSM then controls the set lock-bit algorithm. After the sequence is written, the device automatically outputs status register data when read (see Figure 9). The CPU can detect the completion of the set lock-bit event by analyzing the RY/BY# pin output or status register bit SR.7.

When the set lock-bit operation is complete, status register bit SR.4 should be checked. If an error is detected, the status register should be cleared. The CUI will remain in read status register mode until a new command is issued.

This two-step sequence of set-up followed by execution ensures that lock-bits are not accidentally set. An invalid Set Block or Master Lock-Bit command will result in status register bits SR.4 and SR.5 being set to "1". Also, reliable operations occur only when  $V_{CC}=V_{CC2/3/4}$  and  $V_{PP}=V_{PPH1/2/3}$ . In the absence of this high voltage, lock-bit contents are protected against alteration.

A successful set block lock-bit operation requires that the master lock-bit be cleared or, if the master lock-bit is set, that  $RP#=V_{HH}$ . If it is attempted with the master lock-bit set and  $RP#=V_{IH}$ , SR.1 and SR.4 will be set to "1" and the operation will fail. Set block lock-bit operations while  $V_{IH}$ <RP#< $V_{HH}$  produce spurious results and should not be attempted. A successful set master lock-bit operation requires that RP#= $V_{HH}$ . If it is attempted with RP#= $V_{IH}$ , SR.1 and SR.4 will be set to "1" and the operation will fail. Set master lock-bit operations with  $V_{IH}$ <RP#< $V_{HH}$ produce spurious results and should not be attempted.

#### 4.10 Clear Block Lock-Bits Command

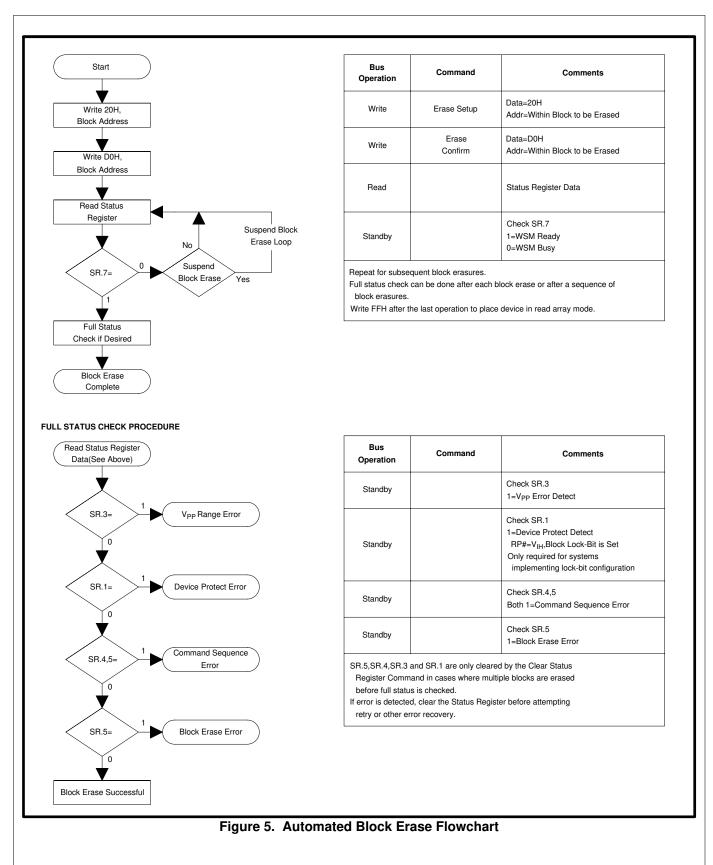
All set block lock-bits are cleared in parallel via the Clear Block Lock-Bits command. With the master lock-bit not set, block lock-bits can be cleared using only the Clear Block Lock-Bits command. If the master lock-bit is set, clearing block lock-bits requires both the Clear Block Lock-Bits command and  $V_{HH}$  on the RP# pin. See Table 6 for a summary of hardware and software write protection options.

Clear block lock-bits operation is executed by a two-cycle command sequence. A clear block lock-bits setup is first written. After the command is written, the device automatically outputs status register data when read (see Figure 10). The CPU can detect completion of the clear block lock-bits event by analyzing the RY/BY# Pin output or status register bit SR.7.

When the operation is complete, status register bit SR.5 should be checked. If a clear block lock-bit error is detected, the status register should be cleared. The CUI will remain in read status register mode until another command is issued.

This two-step sequence of set-up followed by execution ensures that block lock-bits are not accidentally cleared. An invalid Clear Block Lock-Bits command sequence will result in status register bits SR.4 and SR.5 being set to "1". Also, a reliable clear block lock-bits operation can only occur when  $V_{CC}=V_{CC2/3/4}$  and  $V_{PP}=V_{PPH1/2/3}$ . If a clear block lock-bits operation is attempted while V<sub>PP</sub> ≤ V<sub>PPLK</sub>, SR.3 and SR.5 will be set to "1". In the absence of this high voltage, the block lock-bits content are protected against alteration. A successful clear block lock-bits operation requires that the master lock-bit is not set or, if the master lock-bit is set, that  $RP#=V_{HH}$ . If it is attempted with the master lock-bit set and RP#=VIH, SR.1 and SR.5 will be set to "1" and the operation will fail. A clear block lock-bits operation with VIH<RP#<VHH produce spurious results and should not be attempted.

If a clear block lock-bits operation is aborted due to  $V_{PP}$  or  $V_{CC}$  transitioning out of valid range or RP# active transition, block lock-bit values are left in an undetermined state. A repeat of clear block lock-bits is required to initialize block lock-bit contents to known values. Once the master lock-bit is set, it cannot be cleared.


| Operation      | Master<br>Lock-Bit | Block<br>Lock-Bit | RP#                                | Effect                                                 |
|----------------|--------------------|-------------------|------------------------------------|--------------------------------------------------------|
| Block Erase or |                    | 0                 | V <sub>IH</sub> or V <sub>HH</sub> | Block Erase and Byte Write Enabled                     |
| Byte Write     | Х                  | 1                 | VIH                                | Block is Locked. Block Erase and Byte Write Disabled   |
|                |                    |                   | V                                  | Block Lock-Bit Override. Block Erase and Byte Write    |
|                |                    |                   | V <sub>HH</sub>                    | Enabled                                                |
| Set Block      | 0                  | X                 | V <sub>IH</sub> or V <sub>HH</sub> | Set Block Lock-Bit Enabled                             |
| Lock-Bit       | 1                  | Х                 | VIH                                | Master Lock-Bit is Set. Set Block Lock-Bit Disabled    |
|                |                    |                   | V <sub>HH</sub>                    | Master Lock-Bit Override. Set Block Lock-Bit Enabled   |
| Set Master     | Х                  | Х                 | VIH                                | Set Master Lock-Bit Disabled                           |
| Lock-Bit       |                    |                   | V <sub>HH</sub>                    | Set Master Lock-Bit Enabled                            |
| Clear Block    | 0                  | Х                 | V <sub>IH</sub> or V <sub>HH</sub> | Clear Block Lock-Bits Enabled                          |
| Lock-Bits      | 1                  | Х                 | V <sub>IH</sub>                    | Master Lock-Bit is Set. Clear Block Lock-Bits Disabled |
|                |                    |                   |                                    | Master Lock-Bit Override. Clear Block Lock-Bits        |
|                |                    |                   | V <sub>HH</sub>                    | Enabled                                                |

#### Table 6. Write Protection Alternatives

#### LHF08CTE

| WSMS                                                                                                | ESS                                                                                                                            | ECLBS                                                                                                        | BWSLBS                                            | VPPS                                                                                                                                   | BWSS                                                                                                                                                     | DPS                                                                                                                                                                                                | R                                                                                                      |
|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| 7                                                                                                   | 6                                                                                                                              | 5                                                                                                            | 4                                                 | 3                                                                                                                                      | 2                                                                                                                                                        | 1                                                                                                                                                                                                  | 0                                                                                                      |
|                                                                                                     |                                                                                                                                |                                                                                                              |                                                   | NOTES:                                                                                                                                 |                                                                                                                                                          |                                                                                                                                                                                                    |                                                                                                        |
| 1 = Read<br>0 = Busy                                                                                |                                                                                                                                | CHINE STATU                                                                                                  | S                                                 | write, or lock-<br>SR.6-0 are in                                                                                                       | bit configuratic<br>valid while SR                                                                                                                       | letermine block<br>on completion.<br>.7="0".<br>1"s after a blocl                                                                                                                                  |                                                                                                        |
| 1 = Block                                                                                           | Erase Susper                                                                                                                   |                                                                                                              | d                                                 |                                                                                                                                        | uration attemp                                                                                                                                           | ot, an improper                                                                                                                                                                                    |                                                                                                        |
| 1 = Error<br>0 = Succe<br>SR.4 = BYTE<br>1 = Error                                                  | in Block Erası<br>essful Block E<br>WRITE AND<br>in Byte Write<br>essful Byte Wr                                               | R LOCK-BITS<br>ure or Clear Loc<br>rase or Clear Loc<br>SET LOCK-BI<br>or Set Master/E<br>rite or Set Master | ck-Bits<br>ock-Bits<br>I STATUS<br>llock Lock-Bit | level. The WS<br>only after Bloc<br>Lock-Bit, or C<br>SR.3 is not gu<br>only when V <sub>P</sub><br>SR.1 does no                       | M interrogate:<br>ck Erase, Byte<br>lear Block Loc<br>laranteed to re<br>P <sup>≠</sup> V <sub>PPH1/2/3</sub> .<br>t provide a con                       | ntinuous indicat<br>s and indicates<br>Write, Set Bloo<br>k-Bits comman<br>eports accurate<br>ntinuous indicat                                                                                     | the V <sub>PP</sub> leve<br>ck/Master<br>d sequences<br>feedback<br>tion of maste                      |
| $0 = V_{PP} C$ $SR.2 = BYTE$ $1 = Byte V$ $0 = Byte V$ $SR.1 = DEVI$ $1 = Maste$ $Dete$ $0 = Unloc$ | ow Detect, Op<br>DK<br>WRITE SUSI<br>Write Suspend<br>Write in Progre<br>CE PROTECT<br>er Lock-Bit, Blo<br>cted, Operatio<br>k | ess/Completed<br>F STATUS<br>ock Lock-Bit an<br>n Abort                                                      | d/or RP# Lock                                     | master lock-b<br>Erase, Byte V<br>sequences. It<br>attempted op<br>lock-bit is set,<br>lock and mas<br>the Read Ider<br>and block lock | it, block lock-b<br>Irite, or Lock-b<br>informs the sy-<br>eration, if the b<br>and/or RP# is<br>ter lock configu-<br>tifier Codes con-<br>k-bit status. | he WSM interro<br>bit, and RP# onl<br>Bit configuratior<br>ystem, dependin<br>block lock-bit is<br>s not V <sub>HH</sub> . Read<br>uration codes a<br>ommand indica<br>use and should<br>register. | y after Block<br>n command<br>ng on the<br>set, master<br>ling the block<br>fter writing<br>tes master |
| SR.0 = RESE                                                                                         | RVED FOR F                                                                                                                     | UTURE ENHA                                                                                                   | NCEMENTS                                          |                                                                                                                                        |                                                                                                                                                          |                                                                                                                                                                                                    |                                                                                                        |





17



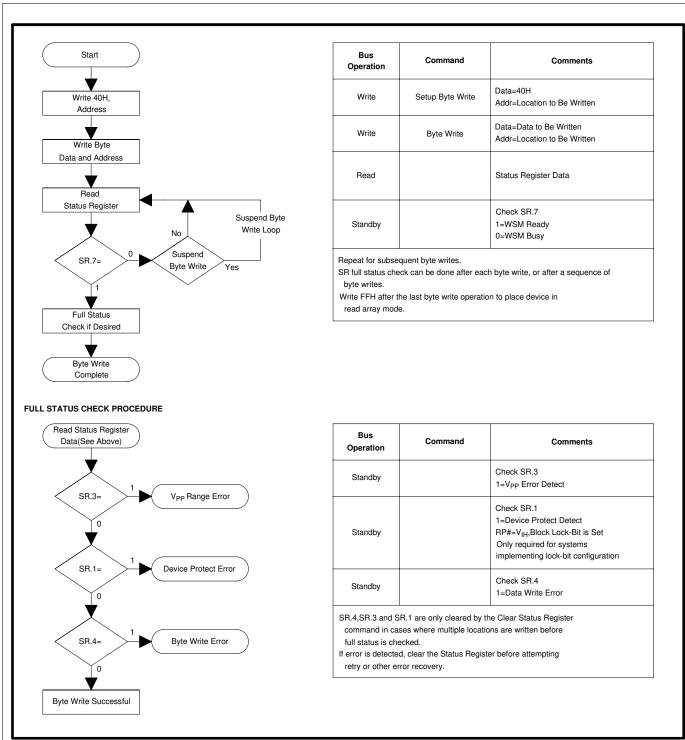



Figure 6. Automated Byte Write Flowchart

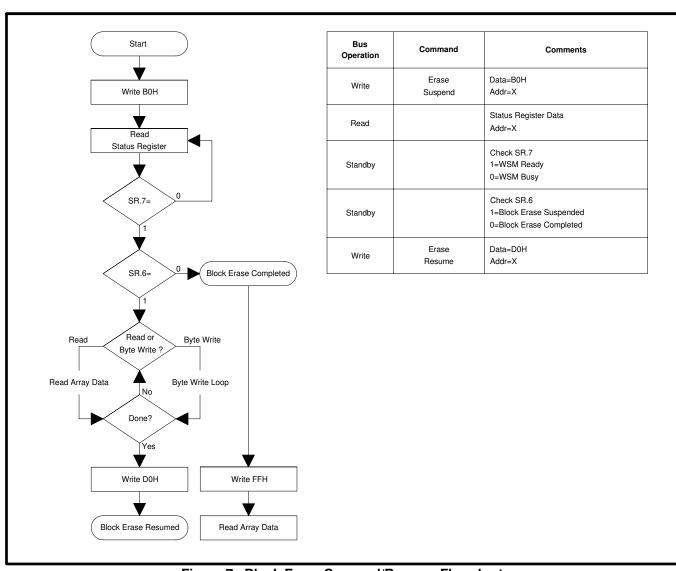
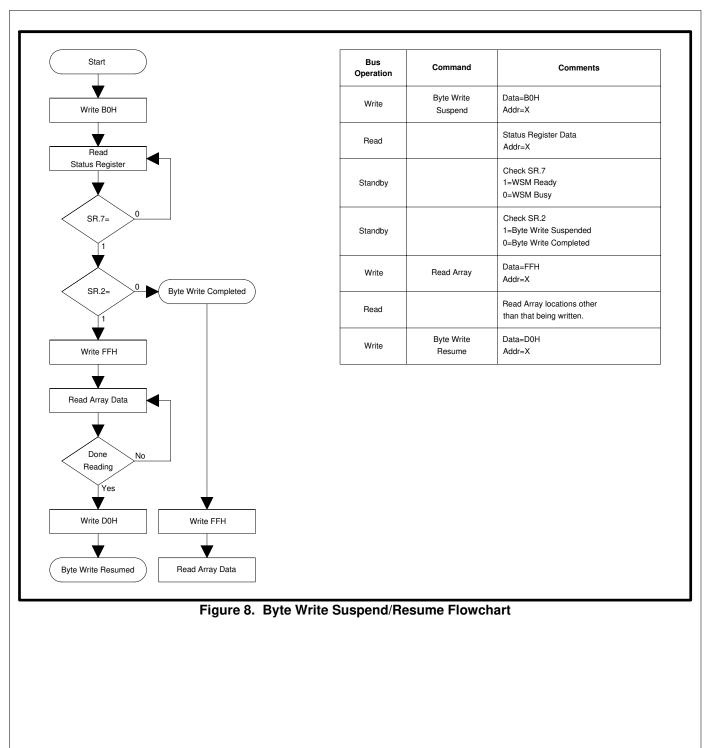




Figure 7. Block Erase Suspend/Resume Flowchart







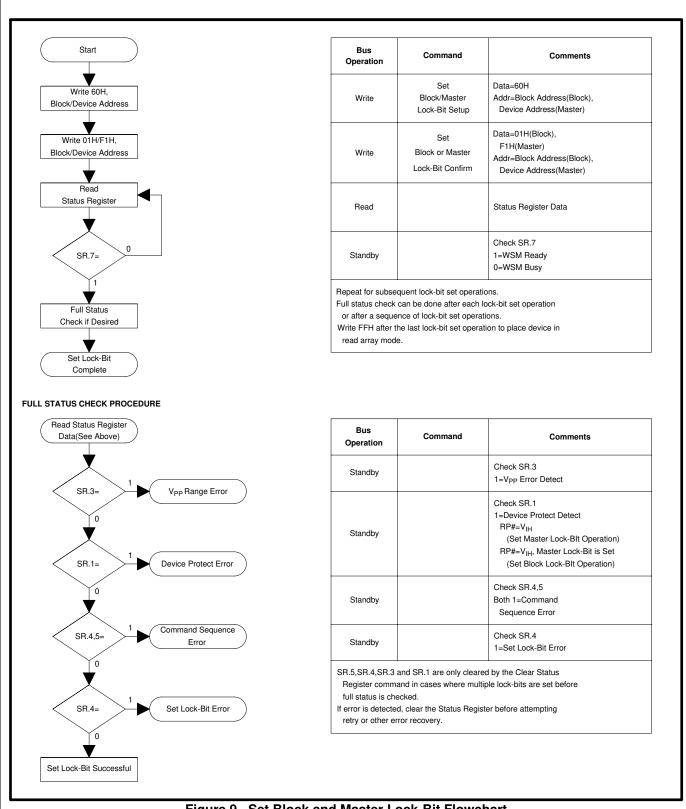
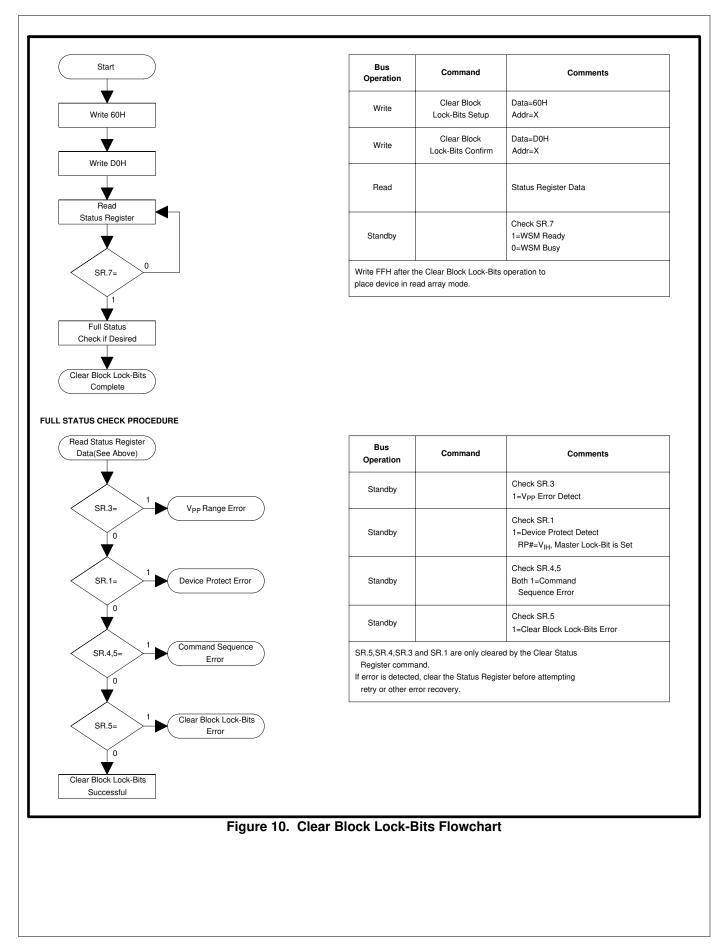




Figure 9. Set Block and Master Lock-Bit Flowchart



