imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

PRODUCT SPECIFICATION

Integrated Circuits Group

LH5116-10F 16K SRAM

(Model Number: LH511613)

Spec. Issue Date: Oct. 26, 2004 Spec No: EL16X147

	SPEC No. E L 1 6 X 1 4 7 ISSUE: Oct. 26. 2004
То;	
SPE	CIFICATIONS
Product Type	16k SRAM
l	LH5116-10F
Model No.	(LH511613)
	contains <u>17</u> pages including the cover and appendix.
DATE:	
BY:	PRESENTED
۲	BY: M. Okada
·	M.OKADA Dept.General Manager
	REVIEWED BY: PREPARED BY:
	M. Kawat J. morimura
	Product Development Dept.3
	System Flash Memory Division
	Integrated Circuits Group SHARP CORPORATION

LH511613

- Handle this document carefully for it contains material protected by international copyright law. Any reproduction, full or in part, of this material is prohibited without the express written permission of the company.
- When using the products covered herein, please observe the conditions written herein and the precautions outlined in the following paragraphs. In no event shall the company be liable for any damages resulting from failure to strictly adhere to these conditions and precautions.
 - The products covered herein are designed and manufactured for the following application areas. When using the products covered herein for the equipment listed in Paragraph (2), even for the following application areas, be sure to observe the precautions given in Paragraph (2). Never use the products for the equipment listed in Paragraph (3).
 - Office electronics
 - · Instrumentation and measuring equipment
 - Machine tools

SHARP

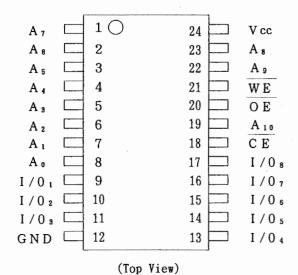
- Audiovisual equipment
- Home appliances
- · Communication equipment other than for trunk lines
- (2) Those contemplating using the products covered herein for the following equipment which demands high reliability, should first contact a sales representative of the company and then accept responsibility for incorporating into the design fail-sale operation, redundancy, and other appropriate measures for ensuring reliability and safety of the equipment and the overall system.
 - · Control and safety devices for airplanes, trains, automobiles, and other transportation equipment
 - Mainframe computers
 - · Traffic control systems
 - · Gas leak detectors and automatic cutoff devices
 - · Rescue and security equipment
 - · Other safety devices and safety equipment, etc.
- (3) Do not use the products covered herein for the following equipment which demands extremely high performance in terms of functionality, reliability, or accuracy.
 - · Aerospace equipment
 - · Communications equipment for trunk lines
 - · Control equipment for the nuclear power industry
 - · Medical equipment related to life support, etc.
- (4) Please direct all queries and comments regarding the interpretation of the above three Paragraphs to a sales representative of the company.
- Please direct all queries regarding the products covered herein to a sales representative of the company.

LH511613

Contents

1.	General Description · · · · · · · · · · · · · · · · · · 2
2.	Pin Configuration
3.	Operating Mode
4.	Block Diagram
5.	Absolute Maximum Ratings 4
6.	Recommended DC Operating Conditions
7.	DC Electrical Characteristics
8.	AC Electrical Characteristics $\cdots \cdots \cdots$
9.	Low Voltage Data Hold Characteristics
10.	Pin Capacitance
11.	Package and Packing Specification

LH511613

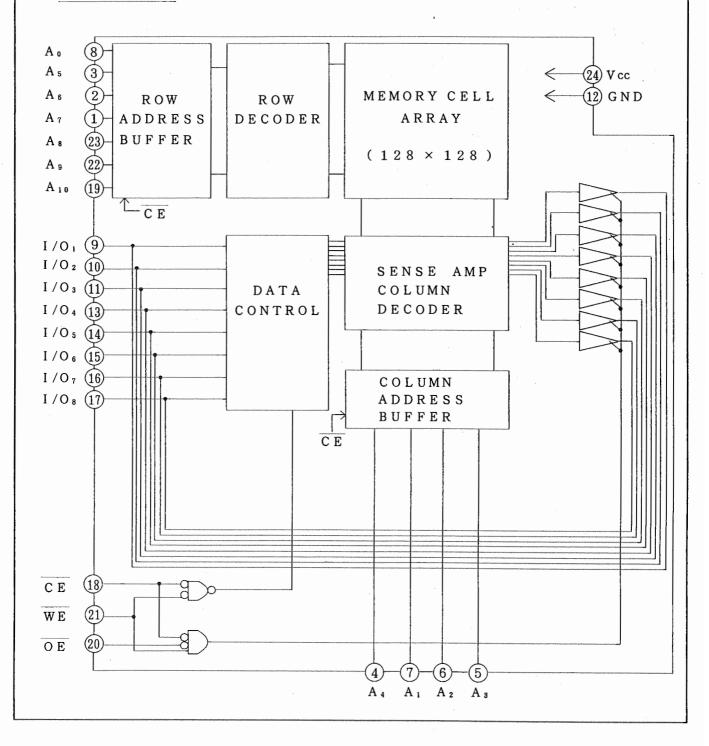

1. General Description

LH5116-10F is a static RAM organized as 16,384bits(2,048words×8bits) fabricated with a CMOS silicon gate process. It's main features include:

F eatures

⊖Access time	$\cdot \cdot \cdot 100 \text{ns}$ (MAX.)
○Current consumption Operating	•••• 40mA (MAX.)
S tandby	•••• $1 \mu A (MAX.)$
Data retention	•••• 0. 2 μ A (V cc = 2V, T a = 25°C)
$\bigcirc { t Single} { extsf{5}} { extsf{V}} $ power supply	\cdot · · · 5 V ± 1 0 %
\bigcirc Fully static operation (requiring no	clock and refresh cycle)
○A11 inputs/outputs TTL compatib	1e
○Three-state output	
\bigcirc Not designed or rated as radiation har	dened.
OStandard 24Pin DIP(DIP24-H	P-600)Package
○P-type bulk silicon	
\bigcirc Operating temperature is 0 °C to +7 (3 ° (

2. Pin Configuration


Pin Name	Signal			
A_0 to A_{10}	Address input			
CE	Chip enable			
WE	Write enable			
OE	Output enable			
I/O_1 to I/O_8	Data input/output			
Vcc	Power supply			
G N D	Ground			

LH511613

3. Operating Mode

CE	WE	ΟE	Mode	I/O_1 to I/O_8	Supply currenat
H	*	*	Deselect	High impedance	Standby (I _{sB})
L	L	*	Write	Data input	Operating (Icc)
L	Н	L	R ead	Data output	Operating (Icc)
L	*	Н	Output disable	High impedance	Operating (Icc)
(>	k = H	or L)			

4. Block Diagram

LH511613

5. Absolute Maximum Ratings

Parameter	S ymbol	Ratings	Unit
<pre>Supply voltage(*1)</pre>	Vcc	-0.3 to $+7.0$	V
Input voltage (*1)	V in	-0.3 to $V_{cc}+0.3$	V
Operating temperature	Topr	0 to + 70	°C
Storage temperature	Tstg	-55 to $+150$	°C

Note) * 1. Maximum applicable voltage on any pin with respect to GND.

6. Recommended DC Operating Conditions

				$(Ta=0^{\circ}C tc$	o +70℃)
Parameter	S ymbol	Min.	Тур.	Max.	Unit
Supply voltage	Vcc	4.5	5.0	5.5	V
Input voltage	Vin	2.2		$V_{cc} + 0.3$	V
	VIL	- 0.3		0.8	v

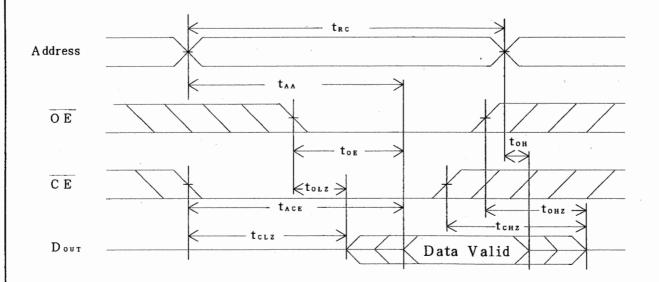
7. DC Electrical Characteristics

		(Ta=	0℃ to +	⊦70℃,V	$cc = 5V \pm$	=10%)
Parameter	S ymbol	Conditions	Min.	Тур.	Max.	Unit
Input leakage	ILI	$V_{IN} = 0 V$ to V_{cc}	- 1		1	μΑ
Current				•		
Output leakage	ILO	$\overline{C E} = V_{IH},$	-1		1	μΑ
Current		$V_{I \neq 0} = 0 V$ to V_{cc}				
Operating	I cc1	$\overline{CE} = 0 V$				
Supply Current		other input is $0 V$ to V_{cc}		25	30	mA
		$I_{I/O} = 0 \text{ mA}, (\overline{0E} = V_{cc})$		•		
	I cc2	$\overline{C E} = V_{IL}$				1
		other input is V $_{\text{IL}}$ to V $_{\text{IH}}$		30	40	mА
		$I_{1/0} = 0 \text{ m A}$, $(\overline{0E} = V_{1H})$				
Standby	Isb	$\overline{CE} \ge V_{cc} - 0.2V$			1	μΑ
Current		other input is $0 V$ to V_{cc}			0.2(*2)	
Output voltage	VOL	$I_{ol} = 2.1 \text{ mA}$			0.4	V
	Vон	$I_{oH} = -1.0 \text{ mA}$	2.4			V

Note) * 2. Ta = 25°C

8. A C Electrical Characterristics

AC Test Condition

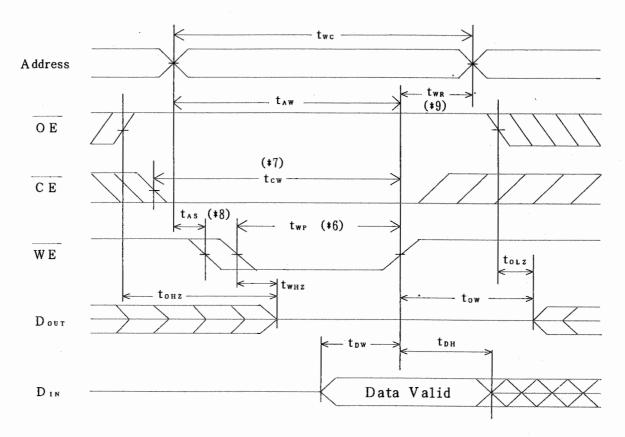

Parameter	Conditions
Input pulse level	$V_{1H} = 2.2 V$, $V_{1L} = 0.8 V$
Input rise and fall time	1 0 ns
I/O timing reference level	1.5V
Output load	$1 T T L + C_{L} (1 0 0 p F) **$
	* * Including scope and jig capa

LH511613

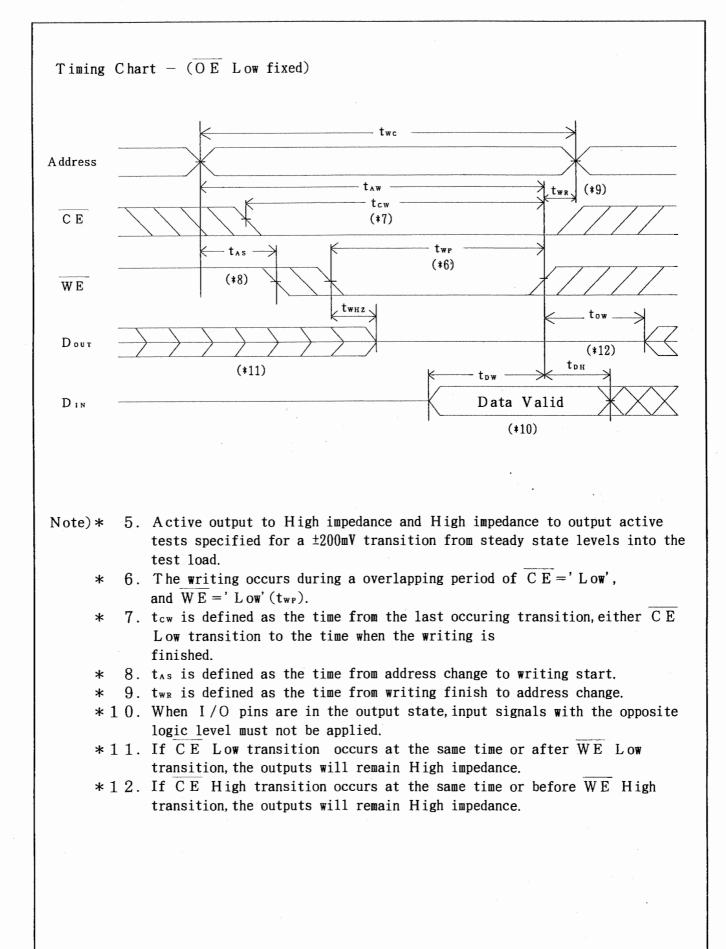
Read Cycle

(Ta=	0℃ to -	+70℃,V	cc = 5V	±10%)
Parameter	S ymbol	Min.	Max.	Unit
Read cycle time	t _{Rc}	100		ns
Address access time	t A A		100	ns
Chip enable access time	t _{ACE}		100	ns
Output enable access time	tor		4 0	ns
Output hold time	toн	10		ns
Output floating hold time with respect to \overline{CE}	tcrz	10		ns
Output floating hold time with respect to \overline{OE}	torz,	10		ns
Output floating time with respect to $\overline{\text{CE}}$	tchz	0	4 0	ns
Output floating time with respect to $\overline{\text{OE}}$	tonz	0	4 0	ns

Timing Chart (*4)


Note)*3. Active output to High impedance and High impedance to output active tests specified for a ±200mV transition from steady levels into the test load. *4. WE is 'High' level during the read cycle.

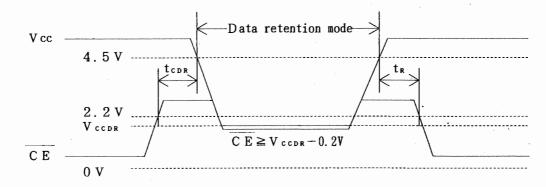
LH511613


Write cycle

(Ta = 0)	°C to +	70℃, V c	$c = 5 V \pm$:10%)	
Parameter	symbol	Min.	Max.	Unit]
Write cycle time	twc	$1 \ 0 \ 0$		ns	1
Chip enable to write	tcw	8 0		ns	1
Address valid time	t _{AW}	80		ns	1
Address setup time	tAS	0		ns]
Write pulse width	twp	60		ns]
Write recovery time	twr	10		ns]
Input data setup time	t _{DW}	30		ns	1
Input data hold time	tDH			ns	
Output floating hold time with	tow	10		ns]
respect to WE					* 5
Output floating time with respect to $\overline{\mathtt{WE}}$	twh z	0	30	ns	* 5
Output floating time with respect to $\overline{\text{OE}}$	tohz	0	4 0	ns	* 5

Timing Chart - $(\overline{OE} \text{ Controlled})$

LH511613


LH511613

9. Low Voltage Data Retention Characteristics

			(Ta=0℃	to +70	°C)
Parameter	Symbo1	Condition	Min.	T yp.	Max.	Unit
Data retention	Vccdr	$\overline{C E} \ge V c c d r - 0.2 V$				
supply voltage			2			V
Data retention	I CCDR	$V_{CCDR} = 2.0 V$			1.0	μΑ
supply current		$\overline{C E} \ge V_{CCDR} - 0.2V$			0.2(*13)	
Chip enable	tcdr					
setup time		·	0			ns
Chip enable	t _R					
hold time			$t_{Rc}(*14)$			ns
Note) * 1 3. T	a = 2 5 °	0				

*14. Read cycle time

Timing Chart

10. Pin Capacitance

	(Ta = 25 °C, f = 1 MHz)					
Parameter	Symbol	Condition	Min.	Max.	Unit]
Input capacitance	CIN	$V_{IN} = 0 V$		7	pF	*15
I/O capacitance	C 1/0	$V_{I \neq 0} = 0 V$		10	pF]*15
						-

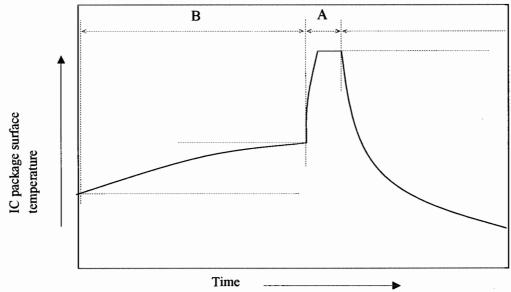
Note) * 1 5. This parameter is sample and not 100% tested.

11 Package and packing specification

[Applicability]

This specification applies to IC package of the LEAD-FREE delivered as a standard specification.

- 1. Storage Conditions.
 - Normal temperature : $5 \sim 40^{\circ}$ C
 - Normal humidity : 80% (Relative humidity) max.
 - "Humidity" means "Relative humidity"
- 2. Baking Condition.


Baking is no necessity.

3. Mounting conditions.

Please mount the ICs as follows in order to prevent the IC quality deteriorating.

1-1. Soldering conditions. (The following conditions apply only to one-time soldering.)

- (1) Solder dipping. (one-time dipping only)
 - · Temperature and period :
 - A) Peak temperature. 260° C max. for 10 seconds Max.
 - B) Preheat temperature of 120 to 150°C for 120±60 seconds
 - Measuring point :
 - A) Solder bath.
 - B) IC package surface.
 - Temperature profile :

- (2) Manual soldering (soldering iron) (one-time soldering only) Soldering iron should only touch the IC's outer leads.
 - Temperature and period :
 - 350°C max. for 3 seconds / pin max.
 - (Soldering iron should only touch the IC's outer leads.)
 - Measuring point : Soldering iron tip.

4. Condition for removal of residual flux.

- (1) Ultrasonic washing power : 25 watts / liter max.
- (2) Washing time : Total 1 minute max.
- (3) Solvent temperature : $15 \sim 40^{\circ}$ C

Refer to the attached drawing.

(Plastic body dimensions do not include burr of resin.)

The contents of LEAD-FREE TYPE application of the specifications. (*2)

6. Markings.

6-1. Marking details. (The information on the package should be given as follows.)

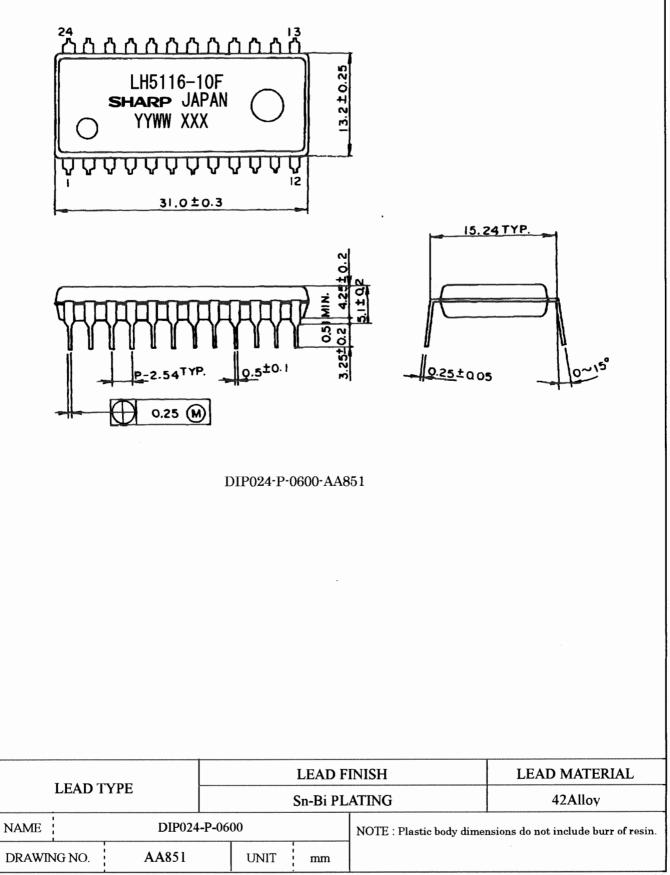
(1) Product name : LH5116-10F

(2) Company name : SHARP

- (3) Date code : (Example) YYWW XXX
 - YY \rightarrow Denotes the production year. (Last two digits of the year.)
 - WW \rightarrow Denotes the production week. $(01 \cdot 02 \cdot \sim \cdot 52 \cdot 53)$
 - XXX \rightarrow Denotes the production ref. code (1~3 digits).
- (4) "JAPAN" indicates the country of origin.

6-2. Marking layout.

The layout is shown in the attached drawing.


(However, this layout does not specify the size of the marking character and marking position.)

*2 The contents of LEAD-FREE TYPE application of the specifications.

LEAD FINISH or BALL TYPE	LEAD-FREE TYPE (Sn-Bi)	
DATE CODE	They are those with an underline.	
The word of "LEAD FREE" is printed on the packing label	Printed	

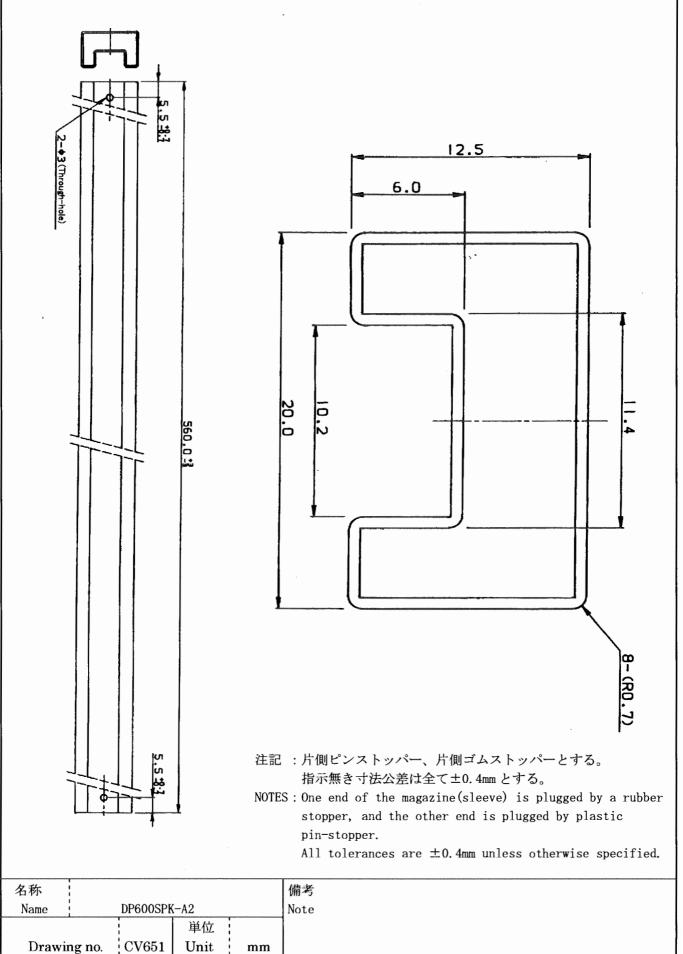
LH511613

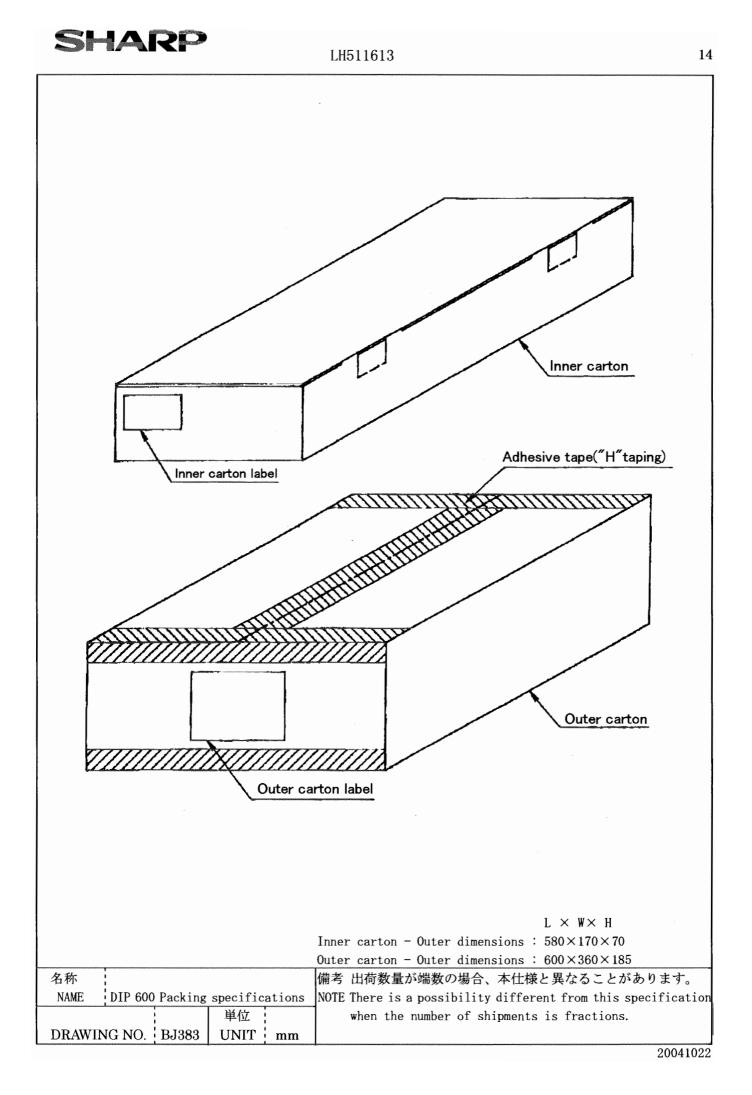
(Note) It is those with an underline printing in a date code because of a LEAD-FREE type.

7. Packing specifications.

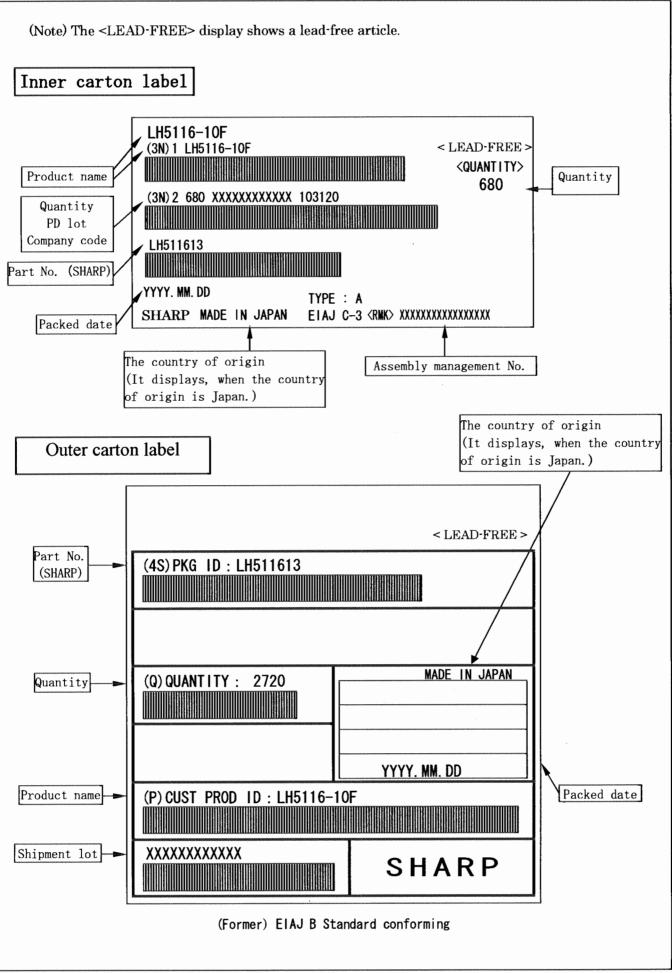
7-1. Packing	materials.
--------------	------------

· · · · ucking mutorium.					
Material name	Material specifications	Purpose			
Magazine	Anti-static treated plastic	Packing of devices.			
	(17 devices/magazine)				
Stopper	Plastic or rubber	Securing of devices.			
Label	Paper (1piece/inner carton)	Indication of product name,			
		quantity and packed date.			
Inner carton	Cardboard (680 devices/carton max.)	Packing the magazines.			
Outer carton	Cardboard (2720 devices/carton max.)	Outer packing.			


(Devices must be inserted into the magazine in the same direction.)


- 7-2. Outline dimension of magazine.
 - Refer to the attached drawing.
- 7-3. Outline dimension of carton. Refer to the attached drawing.

8.Precautions for use.


- (1) Opening must be done on an anti-ESD treated workbench. All workers must also have undergone anti-ESD treatment.
- (2) The magazines have undergone anti-ESD treatment.
- (3) Be sure to fit stoppers to both ends of the magazine when storing to prevent the devices from slipping out.
- (4) The devices should be stored at a temperature of $5\sim35$ °C (normal temperature) and maximum relative humidity of 75%, and should be mounted within one year of the date of delivery.

SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE.

Suggested applications (if any) are for standard use; See Important Restrictions for limitations on special applications. See Limited Warranty for SHARP's product warranty. The Limited Warranty is in lieu, and exclusive of, all other warranties, express or implied. ALL EXPRESS AND IMPLIED WARRANTIES, INCLUDING THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR USE AND FITNESS FOR A PARTICULAR PURPOSE, ARE SPECIFICALLY EXCLUDED. In no event will SHARP be liable, or in any way responsible, for any incidental or consequential economic or property damage.

SHARP®

NORTH AMERICA

SHARP Microelectronics of the Americas 5700 NW Pacific Rim Blvd. Camas, WA 98607, U.S.A. Phone: (1) 360-834-2500 Fax: (1) 360-834-8903 Fast Info: (1) 800-833-9437 www.sharpsma.com

TAIWAN

SHARP Electronic Components (Taiwan) Corporation 8F-A, No. 16, Sec. 4, Nanking E. Rd. Taipei, Taiwan, Republic of China Phone: (886) 2-2577-7341 Fax: (886) 2-2577-7326/2-2577-7328

CHINA

SHARP Microelectronics of China (Shanghai) Co., Ltd. 28 Xin Jin Qiao Road King Tower 16F Pudong Shanghai, 201206 P.R. China Phone: (86) 21-5854-7710/21-5834-6056 Fax: (86) 21-5854-4340/21-5834-6057 Head Office:

No. 360, Bashen Road,

Xin Development Bldg. 22 Waigaoqiao Free Trade Zone Shanghai 200131 P.R. China Email: smc@china.global.sharp.co.jp

EUROPE

SHARP Microelectronics Europe Division of Sharp Electronics (Europe) GmbH Sonninstrasse 3 20097 Hamburg, Germany Phone: (49) 40-2376-2286 Fax: (49) 40-2376-2232 www.sharpsme.com

SINGAPORE

SHARP Electronics (Singapore) PTE., Ltd. 438A, Alexandra Road, #05-01/02 Alexandra Technopark, Singapore 119967 Phone: (65) 271-3566 Fax: (65) 271-3855

HONG KONG

SHARP-ROXY (Hong Kong) Ltd. 3rd Business Division, 17/F, Admiralty Centre, Tower 1 18 Harcourt Road, Hong Kong Phone: (852) 28229311 Fax: (852) 28660779 www.sharp.com.hk **Shenzhen Representative Office:** Room 13B1, Tower C, Electronics Science & Technology Building Shen Nan Zhong Road Shenzhen, P.R. China Phone: (86) 755-3273731 Fax: (86) 755-3273735

JAPAN

SHARP Corporation Electronic Components & Devices 22-22 Nagaike-cho, Abeno-Ku Osaka 545-8522, Japan Phone: (81) 6-6621-1221 Fax: (81) 6117-725300/6117-725301 www.sharp-world.com

KOREA

SHARP Electronic Components (Korea) Corporation RM 501 Geosung B/D, 541 Dohwa-dong, Mapo-ku Seoul 121-701, Korea Phone: (82) 2-711-5813 ~ 8 Fax: (82) 2-711-5819