mail

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

EPARED BY:	DATE		SPEC NO. EL63732B
			FILE NO.
		SHARP	ISSUE July 13, 1988
PROVED BY:	DATE	-	PAGE 8 Pages
		INTEGRATED CIRCUITS GROUP	REPRESENTATIVE DEPARTMENT
		SHARP CORPORATION	
		SPECIFICATION	
		SFECIFICATION .	
	DEVICE S	PECIFICATION FOR	
	16	K CMOS STATIC RAM (2.048 X 8b	it)
	MODEL No		
		LH5116NA-10	
		LUDIIONA IO	
		LHSTICKA IC	
		LHSIIGNA IC	
CUSTOMERS A	PPROVAL		
CUSTOMERS A	PPROVAL		
_	PPROVAL		
DATE	PPROVAL		
_	PPROVAL		
_	PPROVAL	PRESENTED BY	
DATE	PPROVAL	PRESENTED	Vitamori
DATE	PPROVAL	PRESENTED	Vitamori
DATE	PPROVAL	PRESENTED BY H. Kitamor	-
DATE	PPROVAL	PRESENTED BY H.Kitamor Dept. Gen	i
DATE	PPROVAL	PRESENTED BY H.Kitamor Dept. Gen Engineeri	i eral Manager
DATE	PPROVAL	PRESENTED BY H.Kitamor Dept. Gen Engineeri IC Engine	i eral Manager ng Dept. 4

SHARP

LH5116NA

Contents .	. ·
1. General Description ••••••••••••••••••••	P 1
2. Pin Configuration ••••••••••••••••••••••••••••••••••••	P 2
3. Operating Mode • • • • • • • • • • • • • • • • • • •	P 2
4. Block Diagram ••••••••••••••••••••••••••••••••••••	Р3
5. Absolute Maximum Ratings • • • • • • • • • • • • • • • • • • •	P 4
6. DC Electrical Characteristics ••••••••••	P 4
7. AC Characteristics • • • • • • • • • • • • • • • • • • •	P 5
8. Data Hold Characteristics ••••••••••••••	P 8
9. Pin Capacitance ••••••••••••••••••••••••••••••••••••	P 8

.

.

.

.

SHARP

1. General Description

The LH5116NA-10 is a static RAM organized as 16,384(2,048 word x 8bit) fabricated with a CMOS silicon gate process. It's main features include:

.

• .

F eatures

O Access time (MAX.) and dissipation current (MAX.)

100 ns 🖊 40 mA

 \bigcirc Single 5 V power supply (5 V ± 1 0 %)

O Full static operation requiring no clock and refresh cycle

O All input and output TTL compatible

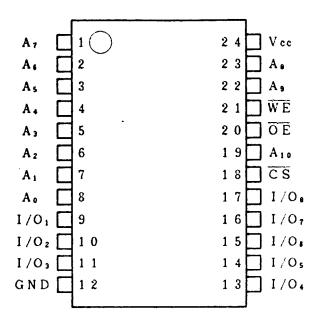
O Three state output

O Pin configuration is compatible with industry standard

16K EPROM/MASK ROM

.

O Standard 24 -pin <u>Small-Outine Package</u> (SOP)


.

٠

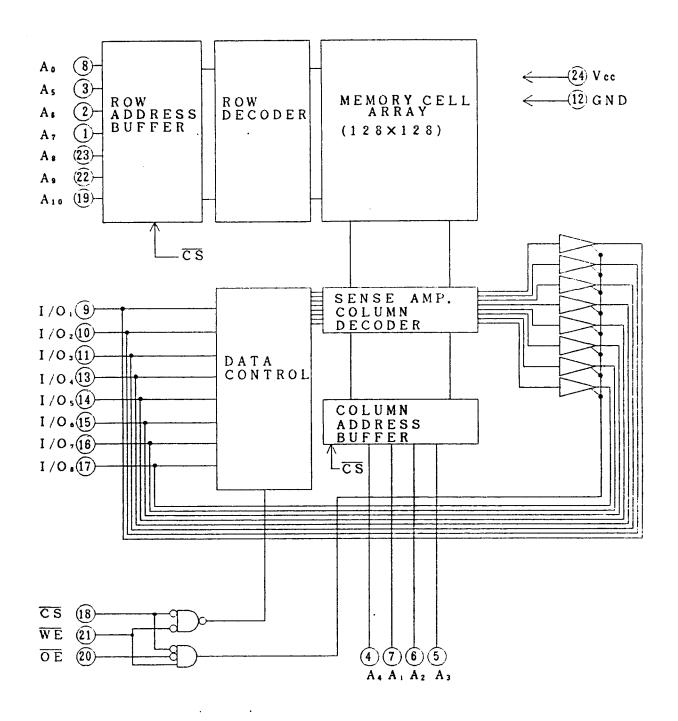
.

SHARP

2. Pin Configuration

Pin name	Signal
$A_0 \sim A_{10}$	Address input
C S	Chip select
ŌĒ	Output enable
WE	Write enable
$1/0_{1} \sim 1/0_{8}$	Data input/output
V cc	Power supply
GND	Ground

3. Operating Mode


<u>c</u> s	WE	ŌĒ	Mode	$1/0_1 \sim 1/0_8$	Supply currenat
Н	X	X	Deselect	High impedance	Standby (Icc _L)
L	L	X	Write	Data input	Operating(Icc)
L	Н	L	Read	Data output	Operating(Icc)
L	X	Н	Output disable	High impedance	Operating(Icc)

.

.

4. Block Diagram

SHARP

5. Absolute Maximum Ratings

			•
Parameter	Symbol	Rating	Unit
Supply voltage	Vcc	$-0.3 \sim +7.0$	v
Input voltage	V IN	$-0.3 \sim V cc + 0.3$	v
Operating temperature	Topr	0~+70	r
Storage temperature	Tstr	$-55 \sim +150$	Ĉ

.

. .

6. DC Electrical Characteristics

 $V cc = 5V \pm 10\%$, $T a = 0 \sim + 7 0$ °C

•

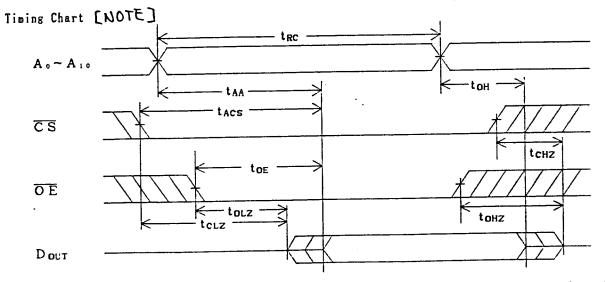
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Input"LOW"voltage	VIL		- 0.3		0.8	v
Input"HIGH"voltage	V IH		2.2		V cc + 0.3	v
Output"LOW" voltage	V ol	$I_{OL} = 2.1 \text{ mA}$			0.4	v
Output"HIGH"voltage	V он	$I_{OH} = -1.0 \text{ mA}$	2.4			v
Input leakage current	ILLI	$V_{1N} = 0 \sim V cc$			1.0 -	μA
Output leakage	ILOI	$\overline{CS} = V_{1H}$, $V_{1/0} = 0$ V ~ V cc			1.0	μA
current						
Dissipation current 1	I CC1	$\overline{CS} = 0V$, other input is $0V \sim$				
		V_{CC} , $I_{1/O} = 0 \text{ mA}$, $(\overline{OE} = V \text{ cc})$		25	30	m A
Dissipation current 2	I CC2	$\overline{CS} = V_{1L}$, other input is V_{1L}				
		$\sim V_{IH}$, $I_{I/O} = 0 \text{ mA}$, $(\overline{OE} = V_{IH})$		30	40	nA
Standby Dissipation	I CCL	$\overline{CS} \ge V_{CC} - 0.2 V$			1.0	μA
current		other input is 0 V ~ V cc			0.2*	μA

.

Note) * T a = 25 °C

.

SHARP


7. AC Characteristics

Read cycle

 \mathbf{x}

,

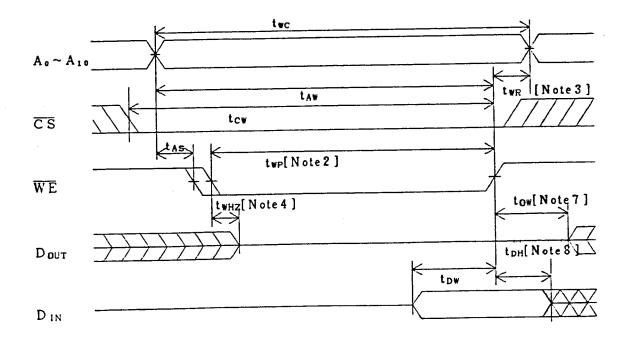
V cc = 5	V ± 10%	6 . T a = ($0 \sim + 7$	0 ℃
P arameter	Symbol	ΜΙΝ	МАХ	Unit
Read cycle time	tRC	100		ns
Adress access time	taa		100	ns
Chip enable access time	tacs		100	ns
Output floating hold time with respect to chip select	tclz	10		ns
Output enable access time	toe		4 0	ns
Output floating hold time with respect to output enable	e tolz	10		ns
Output floating time with respect to chip select	tcHZ	0	4 0	ns
Output floating time with respect to output enable	tonz	0	4 0	ns
Previous read data valid with respect to address chang	еtoн	10		ns

Note) WE is "High" level during the read cycle

•

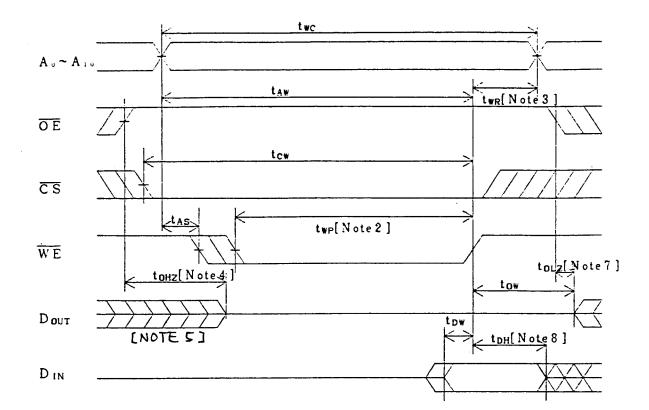
.

SHARP


Write Cycle

Parameter	Symbol	MIN	MAX	Unit
Trite cycle	twc	100		ns
Chip enable to write	tcw	80		ns
Write delay	tAw	80		ns
Address setup time	tas	0		ns
Write pulse width	twp	60		ns
Write recovery	twr	1 0		ns
Output floating time with respect to write pulse	twhz		30	ns
Data setup time	tow	30		ns
Data hold time	tdh	1 0		ns
Output floating time with respect to write	tow	1 0		ns
Output hold time with respect to output enable	tonz		40	ns

 $V cc = 5 V \pm 1 0 \%$. T $a = 0 \sim + 7 0 °C$


.

Timing Chart(No.1)[Note1,6]

SHARP

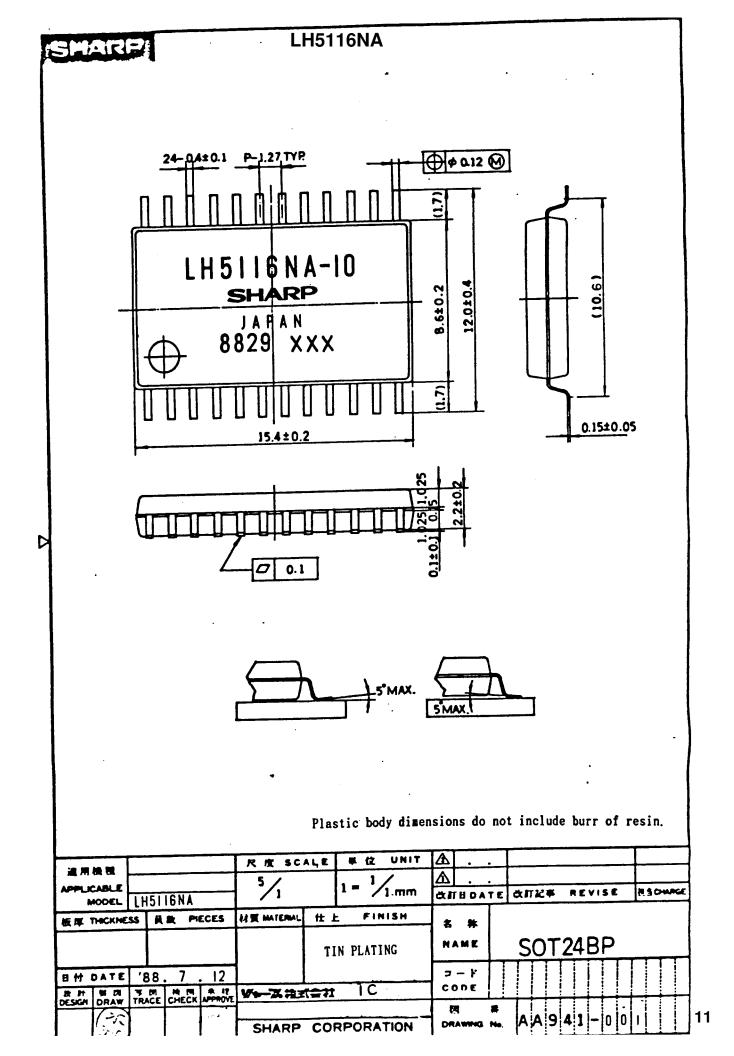
Timing Chart (No.2) [Note 1]

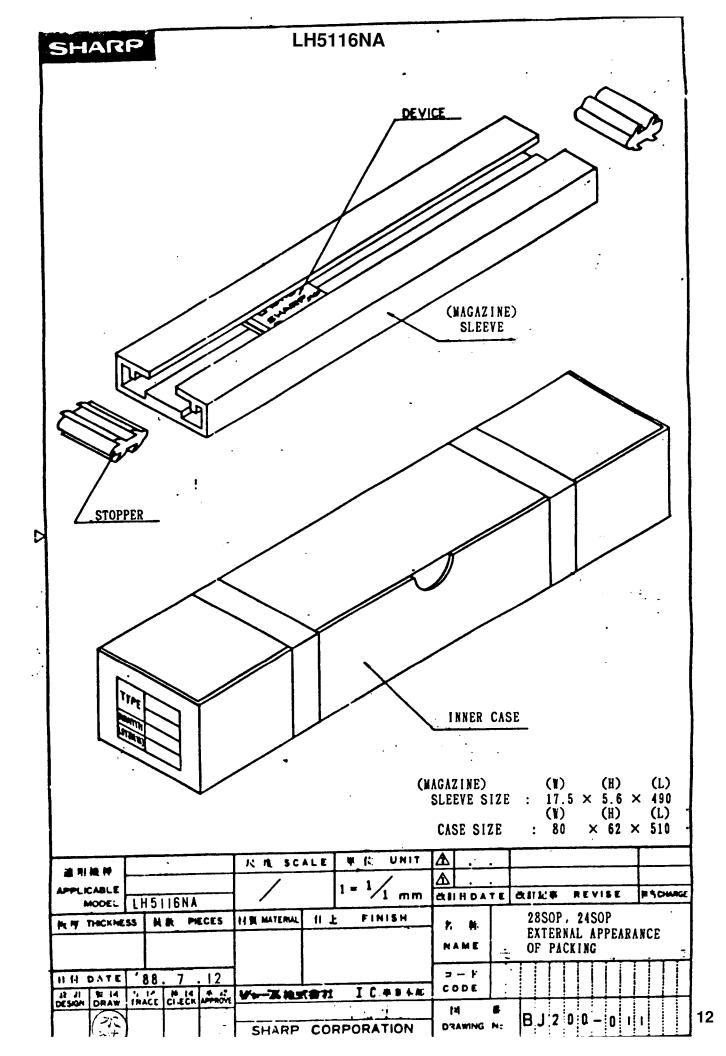
[NDTE]

- 1. WE must be High when $A_0 \sim A_{10}$ switch between high and low.
- 2. Write cycle occurs during a overlapping period of \overline{CS} = Low an \overline{WE} = Low(twp).
- 3. t_{WR} represents the time interval between the earliest rising edge of \overline{CS} or \overline{WE} and the end of write cycle.
- 4. Since during this period, I/O pins assume output state, no input signal 180° out of phase with an output signal is admitted.
- 5. If the rising edge of \overline{CS} occurs simultaneously with or after the falling edge of \overline{WE} the output buffer assume high impedance state.
- 6. \overline{OE} must be kept Low level.
- 7. DOUT generates data in phase with input data for the write cycle.
- 8. If both \overline{CS} remain Low during this period, I/O pins assume output state. At this point.no data input signal 180° out of phase with an output signal.

SHARP

1. Package Outline Specification Refer to drawing No. A A 9 4 1 - 0 0 1 -. 2. Markings 2-1. Marking contents (1) Product name : LH5116NA-10 (2) Company name : SHARP (3) Date code (Example) 88 29 $\times \times \times$ -- Indicates the product was manufactured in the 29th week of 1988. 1 $L_{--} - - \rightarrow$ Denotes the production week. T. $(01, 02, 03, \cdot \cdot \cdot \cdot 52, 53)$ (Lower two digit of the year.) (4) The marking of "JAPAN" indicates the country of origin. 2-2. Marking position Refer drawing No. A A 9 4 1 - 0 0 12-3. Marking color Silver


- 3. Packing Specification
 - 3-1. Packing materials


Material Name	Material Specification	Purpose
Magazine	Anti-static treated plastic (30devices /magazine)	Packing of device
Stopper	Plastic or rubber	Fixing of device
Label	Paper	Indication of product name, quantity and date of manufacture.
Inner case	Cardboard (1200devices/case)	Fixing of magazine
Outer case	Cardboard	Outer packing of magazine

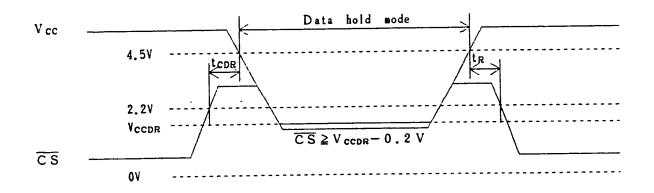
3-2. External Appearance of Packing

Refer to drawing No. B J 2 0 0 - 0 1 1

- 4. Precausion For Unpacking
 - (1) Unpacking should be done on the stand as well as human body treated with anti-ESD .
 - (2) Anti-ESD treatment is given to a magazine. Use the equivalent magazine, if it is changed to another one.
 - (3) Be sure to fix two stoppers to both ends of a magazine when storage to prevent the devices from slipping.

SHARP

AC Characteristics Test Conditions


項目	条件
Input pulse level	$V_{1N} = 2.2 V, V_{1L} = 0.8 V$
Input rise and fall time	lOns
I/O timing reference level	1.5V
Output load	1 0 0 pF + 1 T T L

8. Data Hold Characteristics at Low Supply voltage

 $Ta = 0 \sim + 7 0$ °C

Parameter	Symbol	Conditions	MIN	ТҮР	MAX	Unit
Data hold supply voltage	V CCDR					
		$\overline{C S} \ge V_{CCDR} - 0 . 2 V$	2.0			v
Data hold supply current	I CCDR	$\overline{C S} \ge V_{CCDR} - 0 . 2 V$			1.0	μA
		$V_{CCDR} = 2 V$			0.2**	μ A
Chip Select						
Setup time	tcdr		0			ns
Chip Select						
Hold time	tR		t _{RC} *		· · ·	ns

Note *Read cycle time **at Ta=25℃

9. Pin Capacitances

			Ta = 25 °C, $f = 1$ M H				
Parameter	Symbol	Condition	MIN	ТҮР	MAX	Unit	
Input capacitance	C ₁	$V_{l} = 0 V$			7	pF	
I/O capacitance	C 1/0	$V_{1/0} = 0 V$			1 0	pF	

SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE.

Suggested applications (if any) are for standard use; See Important Restrictions for limitations on special applications. See Limited Warranty for SHARP's product warranty. The Limited Warranty is in lieu, and exclusive of, all other warranties, express or implied. ALL EXPRESS AND IMPLIED WARRANTIES, INCLUDING THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR USE AND FITNESS FOR A PARTICULAR PURPOSE, ARE SPECIFICALLY EXCLUDED. In no event will SHARP be liable, or in any way responsible, for any incidental or consequential economic or property damage.

SHARP®

NORTH AMERICA

SHARP Microelectronics of the Americas 5700 NW Pacific Rim Blvd. Camas, WA 98607, U.S.A. Phone: (1) 360-834-2500 Fax: (1) 360-834-8903 Fast Info: (1) 800-833-9437 www.sharpsma.com

TAIWAN

SHARP Electronic Components (Taiwan) Corporation 8F-A, No. 16, Sec. 4, Nanking E. Rd. Taipei, Taiwan, Republic of China Phone: (886) 2-2577-7341 Fax: (886) 2-2577-7326/2-2577-7328

CHINA

SHARP Microelectronics of China (Shanghai) Co., Ltd. 28 Xin Jin Qiao Road King Tower 16F Pudong Shanghai, 201206 P.R. China Phone: (86) 21-5854-7710/21-5834-6056 Fax: (86) 21-5854-4340/21-5834-6057 Head Office:

No. 360, Bashen Road,

Xin Development Bldg. 22 Waigaoqiao Free Trade Zone Shanghai 200131 P.R. China Email: smc@china.global.sharp.co.jp

EUROPE

SHARP Microelectronics Europe Division of Sharp Electronics (Europe) GmbH Sonninstrasse 3 20097 Hamburg, Germany Phone: (49) 40-2376-2286 Fax: (49) 40-2376-2232 www.sharpsme.com

SINGAPORE

SHARP Electronics (Singapore) PTE., Ltd. 438A, Alexandra Road, #05-01/02 Alexandra Technopark, Singapore 119967 Phone: (65) 271-3566 Fax: (65) 271-3855

HONG KONG

SHARP-ROXY (Hong Kong) Ltd. 3rd Business Division, 17/F, Admiralty Centre, Tower 1 18 Harcourt Road, Hong Kong Phone: (852) 28229311 Fax: (852) 28660779 www.sharp.com.hk **Shenzhen Representative Office:** Room 13B1, Tower C, Electronics Science & Technology Building Shen Nan Zhong Road Shenzhen, P.R. China Phone: (86) 755-3273731 Fax: (86) 755-3273735

JAPAN

SHARP Corporation Electronic Components & Devices 22-22 Nagaike-cho, Abeno-Ku Osaka 545-8522, Japan Phone: (81) 6-6621-1221 Fax: (81) 6117-725300/6117-725301 www.sharp-world.com

KOREA

SHARP Electronic Components (Korea) Corporation RM 501 Geosung B/D, 541 Dohwa-dong, Mapo-ku Seoul 121-701, Korea Phone: (82) 2-711-5813 ~ 8 Fax: (82) 2-711-5819