

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Flash Memory 32M (2MB × 16)

(Model No.: LHF100L13)

Spec No.: 且163054

Issue Date: March16, 2004

BY:

SPEC No.	EL	163	054
ISSUE:	Mar.	16,	2004

To;			
10.			

SPECIFICATIONS Product Type 3 2 M b i t F l a s h M e m o r y LHF00L13 Model No. (LHF00L13) If you have any objections, please contact us before issuing purchasing order. * This specifications contains 34 pages including the cover and appendix. * Refer to LHF00LXX series Appendix (FUM03802). CUSTOMERS ACCEPTANCE DATE: **PRESENTED** Dept. General Manager

REVIEWED BY:

PREPARED BY:

1-Takata Sotani

Product Development Dept. I System-Flash Division Integrated Circuits Group SHARP CORPORATION

- Handle this document carefully for it contains material protected by international copyright law. Any reproduction, full or in part, of this material is prohibited without the express written permission of the company.
- When using the products covered herein, please observe the conditions written herein and the precautions outlined in the following paragraphs. In no event shall the company be liable for any damages resulting from failure to strictly adhere to these conditions and precautions.
 - (1) The products covered herein are designed and manufactured for the following application areas. When using the products covered herein for the equipment listed in Paragraph (2), even for the following application areas, be sure to observe the precautions given in Paragraph (2). Never use the products for the equipment listed in Paragraph (3).
 - Office electronics
 - Instrumentation and measuring equipment
 - Machine tools
 - Audiovisual equipment
 - Home appliance
 - Communication equipment other than for trunk lines
 - (2) Those contemplating using the products covered herein for the following equipment which demands high reliability, should first contact a sales representative of the company and then accept responsibility for incorporating into the design fail-safe operation, redundancy, and other appropriate measures for ensuring reliability and safety of the equipment and the overall system.
 - Control and safety devices for airplanes, trains, automobiles, and other transportation equipment
 - Mainframe computers
 - Traffic control systems
 - Gas leak detectors and automatic cutoff devices
 - Rescue and security equipment
 - Other safety devices and safety equipment, etc.
 - (3) Do not use the products covered herein for the following equipment which demands extremely high performance in terms of functionality, reliability, or accuracy.
 - Aerospace equipment
 - Communications equipment for trunk lines
 - Control equipment for the nuclear power industry
 - Medical equipment related to life support, etc.
 - (4) Please direct all queries and comments regarding the interpretation of the above three Paragraphs to a sales representative of the company.
- Please direct all queries regarding the products covered herein to a sales representative of the company.

CONTENTS

PAGE	PAGE
48-Lead TSOP (Normal Bend) Pinout 3	1 Electrical Specifications
Pin Descriptions	1.1 Absolute Maximum Ratings 14
Memory Map 5	1.2 Operating Conditions
Identifier Codes and OTP Address	1.2.1 Capacitance
for Read Operation	1.2.2 AC Input/Output Test Conditions 15
OTP Block Address Map for OTP Program 7	1.2.3 DC Characteristics
Bus Operation	1.2.4 AC Characteristics
Command Definitions	- Read-Only Operations
Functions of Block Lock and Block Lock-Down 11	1.2.5 AC Characteristics - Write Operations
Block Locking State Transitions	-
upon Command Write	1.2.6 Reset Operations
Block Locking State Transitions	1.2.7 Block Erase, Full Chip Erase,
upon WP# Transition	Program and OTP Program Performance. 23
Status Register Definition	2 Related Document Information
	3 Package and packing specification

LHF00L13 32Mbit (2Mbit×16) Flash MEMORY

- 32-M density with 16-bit I/O Interface
- Read Operation
 - 90ns
- Low Power Operation
 - 2.7V Read and Write Operations
 - \bullet V_{CCQ} for Input/Output Power Supply Isolation
 - • Automatic Power Savings Mode reduces I_{CCR} in Static Mode
- Enhanced Code + Data Storage
 - 5µs Typical Erase/Program Suspends
- OTP (One Time Program) Block
 - 4-Word Factory-Programmed Area
 - 4-Word User-Programmable Area
- Operating Temperature -40°C to +85°C
- CMOS Process (P-type silicon substrate)
- Flexible Blocking Architecture
 - Eight 4-Kword Parameter Blocks
 - One 32-Kword Block
 - Thirty-one 64-Kword Blocks
 - Bottom Parameter Location

- Enhanced Data Protection Features
 - Individual Block Lock and Block Lock-Down with Zero-Latency
 - All blocks are locked at power-up or device reset.
 - Absolute Protection with V_{PP}≤V_{PPLK}
 - Block Erase, Full Chip Erase, Word Program Lockout during Power Transitions
- Automated Erase/Program Algorithms
 - 3.0V Low-Power 10µs/Word (Typ.) Programming
 - 12.0V No Glue Logic 9µs/Word (Typ.) Production Programming and 0.8s Erase (Typ.)
- Cross-Compatible Command Support
 - Basic Command Set
 - Common Flash Interface (CFI)
- Extended Cycling Capability
 - Minimum 100,000 Block Erase Cycles
- 48-Lead TSOP (Normal Bend)
- ETOX^{TM*} Flash Technology
- Not designed or rated as radiation hardened

The product is a low power, high density, low cost, nonvolatile read/write storage solution for a wide range of applications. The product can operate at V_{CC} =2.7V-3.6V and V_{PP} =1.65V-3.6V or 11.7V-12.3V. Its low voltage operation capability greatly extends battery life for portable applications.

The memory array block architecture utilizes Enhanced Data Protection features, which provides maximum flexibility for safe nonvolatile code and data storage.

Special OTP (One Time Program) block provides an area to store permanent code such as an unique number.

* ETOX is a trademark of Intel Corporation.

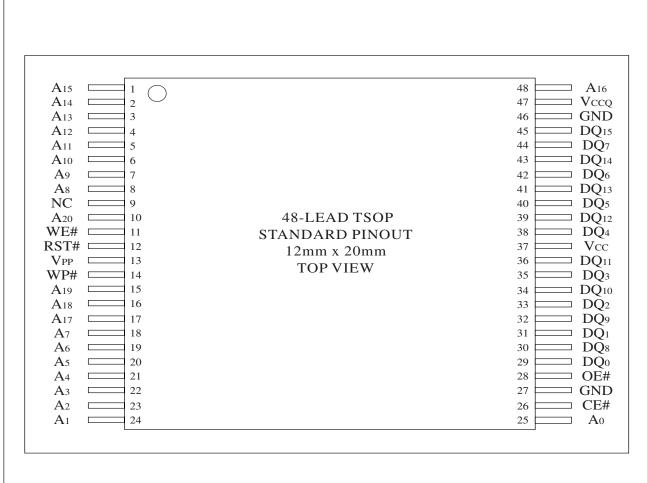


Figure 1. 48-Lead TSOP (Normal Bend) Pinout

Table 1. Pin Descriptions

Symbol	Type	Name and Function
A ₂₀ -A ₀	INPUT	ADDRESS INPUTS: Inputs for addresses.
DQ ₁₅ -DQ ₀ INPUT/ OUTPUT		DATA INPUTS/OUTPUTS: Inputs data and commands during CUI (Command User Interface) write cycles, outputs data during memory array, status register, query code, identifier code reads. Data pins float to high-impedance (High Z) when the chip or outputs are deselected. Data is internally latched during an erase or program cycle.
CE#	INPUT	CHIP ENABLE: Activates the device's control logic, input buffers, decoders and sense amplifiers. CE#-high (V_{IH}) deselects the device and reduces power consumption to standby levels.
RST#	INPUT	RESET: When low (V_{IL}) , RST# resets internal automation and inhibits write operations which provides data protection. RST#-high (V_{IH}) enables normal operation. After power-up or reset mode, the device is automatically set to read array mode. RST# must be low during power-up/down.
OE#	INPUT	OUTPUT ENABLE: Gates the device's outputs during a read cycle.
WE#	INPUT	WRITE ENABLE: Controls writes to the CUI and array blocks. Addresses and data are latched on the rising edge of CE# or WE# (whichever goes high first).
WP#	INPUT	WRITE PROTECT: When WP# is V_{IL} , locked-down blocks cannot be unlocked. Erase or program operation can be executed to the blocks which are not locked and not locked-down. When WP# is V_{IH} , lock-down is disabled.
$ m V_{PP}$	INPUT/SUPPLY	MONITORING POWER SUPPLY VOLTAGE: V_{PP} is not used for power supply pin. With $V_{PP} \le V_{PPLK}$, block erase, full chip erase, program or OTP program cannot be executed and should not be attempted. Applying 12.0V±0.3V to V_{PP} provides fast erasing or fast programming mode. In this mode, V_{PP} is power supply pin. Applying 12.0V±0.3V to V_{PP} during erase/program can only be done for a maximum of 1,000 cycles on each block. V_{PP} may be connected to 12.0V±0.3V for a total of 80 hours maximum. Use of this pin at 12.0V+0.3V beyond these limits may reduce block cycling capability or cause permanent damage.
V _{CC}	SUPPLY	DEVICE POWER SUPPLY (2.7V-3.6V): With $V_{CC} \le V_{LKO}$, all write attempts to the flash memory are inhibited. Device operations at invalid V_{CC} voltage (see DC Characteristics) produce spurious results and should not be attempted.
V _{CCQ}	SUPPLY	INPUT/OUTPUT POWER SUPPLY (2.7V-3.6V): Power supply for all input/output pins.
GND	SUPPLY	GROUND: Do not float any ground pins.
NC		NO CONNECT: Lead is not internally connected; it may be driven or floated.

$[A_{20}-A_{0}]$		
1EFFFF 1F0000 1EFFFF	64-Kword Block 39	
1EFFFF 1E0000	64-Kword Block 38	
1DFFFF 1D0000	64-Kword Block 37	
1CFFFF 1C0000	64-Kword Block 36	
1BFFFF 1B0000	64-Kword Block 35	
1AFFFF 1A0000	64-Kword Block 34	
19FFFF 190000	64-Kword Block 33	
18FFFF 180000	64-Kword Block 32	
17FFFF 170000	64-Kword Block 31	
16FFFF 160000	64-Kword Block 30	
15FFFF 150000 14FFFF	64-Kword Block 29	
140000 13FFFF	64-Kword Block 28	
130000 12FFFF	64-Kword Block 27	
120000 11FFF	64-Kword Block 26	
110000 10FFFF	64-Kword Block 25	
100000 0FFFFF	64-Kword Block 24	
0F0000 0EFFFF	64-Kword Block 23	
0E0000 0DFFFF	64-Kword Block 22	
0D0000 0CFFFF	64-Kword Block 21	
0C0000 0BFFFF	64-Kword Block 20	
0B0000 0AFFFF	64-Kword Block 19	
0A0000 09FFFF	64-Kword Block 18 64-Kword Block 17	
090000 08FFFF	64-Kword Block 16	
080000 07FFFF	64-Kword Block 15	
070000 06FFFF	64-Kword Block 14	
060000 05FFFF	64-Kword Block 13	
050000 04FFFF	64-Kword Block 12	
040000 03FFF	64-Kword Block 11	
030000 02FFFF	64-Kword Block 10	
020000 01FFFF 010000	64-Kword Block 9	
010000 00FFFF 008000	32-Kword Block 8	
008000 007FFF 007000	4-Kword Block 7	
006FFF	4-Kword Block 6	
006000 005FFF 005000	4-Kword Block 5	
005000 004FFF 004000	4-Kword Block 4	
003FFF	4-Kword Block 3	
003000 002FFF 002000	4-Kword Block 2	
001FFF 001000	4-Kword Block 1	
000FFF 000000	4-Kword Block 0	

Figure 2. Memory Map (Bottom Parameter)

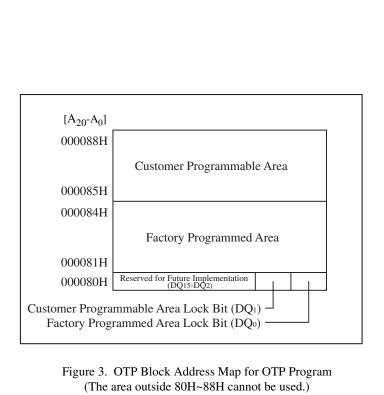


Table 2. Identifier Codes and OTP Address for Read Operation

	Code	Address [A ₂₀ -A ₀]	Data [DQ ₁₅ -DQ ₀]	Notes
Manufacturer Code	Manufacturer Code	000000Н	00B0H	
Device Code	Device Code	000001H	00A1H	
Block Lock Configuration	Block is Unlocked		$DQ_0 = 0$	1
Code	Block is Locked	Block Address	$DQ_0 = 1$	1
	Block is not Locked-Down + 2		$DQ_1 = 0$	1
	Block is Locked-Down		$DQ_1 = 1$	1
OTP	OTP Lock	000080Н	OTP-LK	2
	OTP	000081-000088H	OTP	3

- Block Address = The beginning location of a block address. DQ₁₅-DQ₂ are reserved for future implementation.
 OTP-LK=OTP Block Lock configuration.
 OTP=OTP Block data.

Rev. 2.45

Table 3. Bu	s Operation ^(1, 2)
-------------	-------------------------------

Mode	Notes	RST#	CE#	OE#	WE#	Address	V _{PP}	DQ ₁₅₋₀
Read Array	6	V _{IH}	V _{IL}	V _{IL}	V _{IH}	X	X	D _{OUT}
Output Disable		V _{IH}	V _{IL}	V _{IH}	V _{IH}	X	X	High Z
Standby		V _{IH}	V _{IH}	X	X	X	X	High Z
Reset	3	V _{IL}	X	X	X	X	X	High Z
Read Identifier Codes/OTP	6	V _{IH}	V _{IL}	V _{IL}	V _{IH}	See Table 2	X	See Table 2
Read Query	6,7	V _{IH}	V _{IL}	V _{IL}	V _{IH}	See Appendix	X	See Appendix
Read Status Register	6	V _{IH} V _{IL}		V _{IL}	V _{IH}	X	X	D _{OUT}
Write	4,5,6	V _{IH}	$V_{\rm IL}$	V _{IH}	V _{IL}	X	V _{PPH1/2}	D _{IN}

- 1. Refer to DC Characteristics. When $V_{PP} \le V_{PPLK}$, memory contents can be read, but cannot be altered. 2. X can be V_{IL} or V_{IH} for control pins and addresses, and V_{PPLK} or $V_{PPH1/2}$ for V_{PP} Refer to DC Characteristics for V_{PPLK} and $V_{PPH1/2}$ voltages. 3. RST# at GND±0.2V ensures the lowest power consumption.
- 4. Command writes involving block erase, full chip erase, program or OTP program are reliably executed when V_{PP}=V_{PPH1/2} and V_{CC}=2.7V-3.6V.

 5. Refer to Table 4 for valid D_{IN} during a write operation.

 6. Never hold OE# low and WE# low at the same timing.

- 7. Refer to Appendix of LHF00LXX series for more information about query code.

Table 4.	Command Definitions ⁽¹⁰⁾	
Table 4.	Command Definitions	

	Bus		I	First Bus Cycle			Second Bus Cycle		
Command	Cycles Req'd	Notes	Oper ⁽¹⁾	Addr ⁽²⁾	Data	Oper ⁽¹⁾	Addr ⁽²⁾	Data ⁽³⁾	
Read Array	1		Write	X	FFH				
Read Identifier Codes/OTP	≥ 2	4	Write	X	90H	Read	IA or OA	ID or OD	
Read Query	≥ 2	4	Write	X	98H	Read	QA	QD	
Read Status Register	2		Write	X	70H	Read	X	SRD	
Clear Status Register	1		Write	X	50H				
Block Erase	2	5	Write	BA	20H	Write	BA	D0H	
Full Chip Erase	2	5, 8	Write	X	30H	Write	X	D0H	
Program	2	5,6	Write	WA	40H or 10H	Write	WA	WD	
Block Erase and Program Suspend	1	7, 8	Write	X	ВОН				
Block Erase and Program Resume	1	7, 8	Write	X	D0H				
Set Block Lock Bit	2		Write	BA	60H	Write	BA	01H	
Clear Block Lock Bit	2	9	Write	BA	60H	Write	BA	D0H	
Set Block Lock-down Bit	2		Write	BA	60H	Write	BA	2FH	
OTP Program	2	8	Write	OA	СОН	Write	OA	OD	

- 1. Bus operations are defined in Table 3.
- 2. All addresses which are written at the first bus cycle should be the same as the addresses which are written at the second bus cycle.
 - X=Any valid address within the device.
 - IA=Identifier codes address (See Table 2).
 - QA=Query codes address. Refer to Appendix of LHF00LXX series for details.
 - BA=Address within the block being erased, set/cleared block lock bit or set block lock-down bit.
 - WA=Address of memory location for the Program command.
 - OA=Address of OTP block to be read or programmed (See Figure 3).
- 3. ID=Data read from identifier codes. (See Table 2).
 - QD=Data read from query database. Refer to Appendix of LHF00LXX series for details.
 - SRD=Data read from status register. See Table 8 for a description of the status register bits.
 - WD=Data to be programmed at location WA. Data is latched on the rising edge of WE# or CE# (whichever goes high first) during command write cycles.
 - OD=Data within OTP block. Data is latched on the rising edge of WE# or CE# (whichever goes high first) during command write cycles.
- 4. Following the Read Identifier Codes/OTP command, read operations access manufacturer code, device code, block lock configuration code and the data within OTP block (See Table 2).
 - The Read Query command is available for reading CFI (Common Flash Interface) information.
- 5. Block erase, full chip erase or program cannot be executed when the selected block is locked. Unlocked block can be erased or programmed when RST# is V_{IH} .
- 6. Either 40H or 10H are recognized by the CUI (Command User Interface) as the program setup.
- 7. If the program operation and the erase operation are both suspended, the suspended program operation will be resumed first.
- 8. Full chip erase and OTP program operations can not be suspended. The OTP Program command can not be accepted while the block erase operation is being suspended.

 Following the Clear Block Lock Bit command, block which is not locked-down is unlocked when WP# is V_{IL}. When WP# is V_{IH}, lock-down bit is disabled and the selected block is unlocked regardless of lock-down configuration. Commands other than those shown above are reserved by SHARP for future device implementations and should not be used.

		(2)			
State	WP# $DQ_1^{(1)}$ $DQ_0^{(1)}$		DQ ₀ ⁽¹⁾	State Name	Erase/Program Allowed (2)
[000]	0	0	0	Unlocked	Yes
$[001]^{(3)}$	0	0 1		Locked	No
[011]	0	1	1	Locked-down	No
[100]	1	0	0	Unlocked	Yes
$[101]^{(3)}$	1	0	1	Locked	No
[110] ⁽⁴⁾	1	1	0	Lock-down Disable	Yes
[111]	1	1	1	Lock-down Disable	No

Table 5. Functions of Block Lock⁽⁵⁾ and Block Lock-Down

NOTES:

- 1. DQ₀=1: a block is locked; DQ₀=0: a block is unlocked. DQ₁=1: a block is locked-down; DQ₁=0: a block is not locked-down.
- 2. Erase and program are general terms, respectively, to express: block erase, full chip erase and program operations.
- 3. At power-up or device reset, all blocks default to locked state and are not locked-down, that is, [001] (WP#=0) or [101] (WP#=1), regardless of the states before power-off or reset operation.
- 4. When WP# is driven to $V_{\rm IL}$ in [110] state, the state changes to [011] and the blocks are automatically locked.
- 5. OTP (One Time Program) block has the lock function which is different from those described above.

Current State				Result after Lock Command Written (Next State)				
State	WP#	DQ ₁	DQ_0	Set Lock ⁽¹⁾ Clear Lock ⁽¹⁾		Set Lock-down ⁽¹⁾		
[000]	0	0	0	[001]	No Change	[011] ⁽²⁾		
[001]	0	0	1	No Change ⁽³⁾	[000]	[011]		
[011]	0	1	1	No Change	No Change	No Change		
[100]	1	0	0	[101]	No Change	[111] ⁽²⁾		
[101]	1	0	1	No Change	[100]	[111]		
[110]	1	1	0	[111]	No Change	[111] ⁽²⁾		
[111]	1	1	1	No Change	[110]	No Change		

Table 6. Block Locking State Transitions upon Command Write⁽⁴⁾

- 1. "Set Lock" means Set Block Lock Bit command, "Clear Lock" means Clear Block Lock Bit command and "Set Lock-down" means Set Block Lock-Down Bit command.
- 2. When the Set Block Lock-Down Bit command is written to the unlocked block (D Q_0 =0), the corresponding block is locked-down and automatically locked at the same time.
- 3. "No Change" means that the state remains unchanged after the command written.
- 4. In this state transitions table, assumes that WP# is not changed and fixed V_{IL} or V_{IH} .

Table 7.	Block Locking	State	Transitions upor	wP#	Transition ⁽⁴⁾
radic /.	DIOCK LOCKING	State	Transitions apor	1 11 11	Tiumbition

D : C: .		Current Sta	ite		Result after WP# Transition (Next State)			
Previous State	State	WP#	DQ ₁	DQ_0	WP#=0→1 ⁽¹⁾	WP#=1→0 ⁽¹⁾		
-	[000]	0	0	0	[100]	-		
-	[001]	0	0	1	[101]	-		
[110] ⁽²⁾	[011]	0	1	1	[110]	-		
Other than [110] ⁽²⁾					[111]	-		
-	[100]	1	0	0	-	[000]		
-	[101]	1	0	1	-	[001]		
-	[110]	1	1	0	-	[011] ⁽³⁾		
-	[111]	1	1	1	-	[011]		

- "WP#=0→1" means that WP# is driven to V_{IH} and "WP#=1→0" means that WP# is driven to V_{IL}.
 State transition from the current state [011] to the next state depends on the previous state.
 When WP# is driven to V_{IL} in [110] state, the state changes to [011] and the blocks are
- automatically locked.
- 4. In this state transitions table, assumes that lock configuration commands are not written in previous, current and next state.

Table 8. Status Register Defin	inition
--------------------------------	---------

R	R	R	R	R	R	R	R
15	14	13	12	11	10	9	8
WSMS	BESS	BEFCES	POPS	VPPS	PSS	DPS	R
7	6	5	4	3	2	1	0

SR.15 - SR.8 = RESERVED FOR FUTURE ENHANCEMENTS (R)

SR.7 = WRITE STATE MACHINE STATUS (WSMS)

1 = Ready

0 = Busy

SR.6 = BLOCK ERASE SUSPEND STATUS (BESS)

1 = Block Erase Suspended

0 = Block Erase in Progress/Completed

SR.5 = BLOCK ERASE AND FULL CHIP ERASE STATUS (BEFCES)

1 = Error in Block Erase or Full Chip Erase

0 = Successful Block Erase or Full Chip Erase

SR.4 = PROGRAM AND OTP PROGRAM STATUS (POPS)

1 = Error in Program or OTP Program

0 = Successful Program or OTP Program

 $SR.3 = V_{PP} STATUS (VPPS)$

 $1 = V_{PP}$ LOW Detect, Operation Abort

 $0 = V_{pp} OK$

SR.2 = PROGRAM SUSPEND STATUS (PSS)

1 = Program Suspended

0 = Program in Progress/Completed

SR.1 = DEVICE PROTECT STATUS (DPS)

1 = Erase or Program Attempted on a Locked Block, Operation Abort

0 = Unlocked

SR.0 = RESERVED FOR FUTURE ENHANCEMENTS (R)

NOTES:

Status Register indicates the status of the WSM (Write State Machine).

Check SR.7 to determine block erase, full chip erase, program or OTP program completion. SR.6 - SR.1 are invalid while SR.7="0".

If both SR.5 and SR.4 are "1"s after a block erase, full chip erase, program, set/clear block lock bit, set block lock-down bit attempt, an improper command sequence was entered.

SR.3 does not provide a continuous indication of V_{PP} level. The WSM interrogates and indicates the V_{PP} level only after Block Erase, Full Chip Erase, Program or OTP Program command sequences. SR.3 is not guaranteed to report accurate feedback when $V_{PP} \neq V_{PPH1}$, V_{PPH2} or V_{PPLK} .

SR.1 does not provide a continuous indication of block lock bit. The WSM interrogates the block lock bit only after Block Erase, Full Chip Erase, Program or OTP Program command sequences. It informs the system, depending on the attempted operation, if the block lock bit is set. Reading the block lock configuration codes after writing the Read Identifier Codes/OTP command indicates block lock bit status.

SR.15 - SR.8 and SR.0 are reserved for future use and should be masked out when polling the status register.

1 Electrical Specifications

1.1 Absolute Maximum Ratings*

Operating Temperature

During Read, Erase and Program ...-40°C to +85°C (1)

Storage Temperature

During under Bias.....-40°C to +85°C During non Bias...--65°C to +125°C

Voltage On Any Pin (except V_{CC}, V_{CCQ} and V_{PP})

.....-0.5V to V_{CCQ} +0.5V $^{(2)}$

 V_{CC} and V_{CCO} Supply Voltage -0.2V to +3.9V $^{(2)}$

 V_{PP} Supply Voltage-0.2V to +12.6V (2, 3, 4)

Output Short Circuit Current......100mA (5)

*WARNING: Stressing the device beyond the "Absolute Maximum Ratings" may cause permanent damage. These are stress ratings only. Operation beyond the "Operating Conditions" is not recommended and extended exposure beyond the "Operating Conditions" may affect device reliability.

NOTES:

- 1. Operating temperature is for extended temperature product defined by this specification.
- 2. All specified voltages are with respect to GND. Minimum DC voltage is -0.5V on input/output pins and -0.2V on V_{CC} , V_{CCQ} and V_{PP} pins. During transitions, this level may undershoot to -2.0V for periods <20ns. Maximum DC voltage on input/output pins is V_{CC} +0.5V which, during transitions, may overshoot to V_{CC} +2.0V for periods <20ns.
- 3. Maximum DC voltage on V_{PP} may overshoot to +13.0V for periods <20ns.
- 4. V_{PP} erase/program voltage is normally 2.7V-3.6V. Applying 11.7V-12.3V to V_{PP} during erase/program can be done for a maximum of 1,000 cycles on each block. V_{PP} may be connected to 11.7V-12.3V for a total of 80 hours maximum.
- 5. Output shorted for no more than one second. No more than one output shorted at a time.

1.2 Operating Conditions

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Operating Temperature	T_{A}	-40	+25	+85	°C	
V _{CC} Supply Voltage	V _{CC}	2.7	3.0	3.6	V	1
I/O Supply Voltage	V _{CCQ}	2.7	3.0	3.6	V	1
V _{PP} Voltage when Used as a Logic Control	V _{PPH1}	1.65	3.0	3.6	V	1
V _{PP} Supply Voltage	V _{PPH2}	11.7	12.0	12.3	V	1, 2
Block Erase Cycling: V _{PP} =V _{PPH1}		100,000			Cycles	
Block Erase Cycling: V _{PP} =V _{PPH2} , 80 hrs.				1,000	Cycles	
Maximum V _{PP} hours at V _{PPH2}				80	Hours	

- 1. See DC Characteristics tables for voltage range-specific specification.
- 2. Applying V_{PP} =11.7V-12.3V during a erase or program can be done for a maximum of 1,000 cycles on each block. A permanent connection to V_{PP} =11.7V-12.3V is not allowed and can cause damage to the device.

1.2.1 Capacitance $^{(1)}$ (T_A=+25°C, f=1MHz)

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Input Capacitance	C _{IN}	V _{IN} =0.0V		4	7	pF
Output Capacitance	C _{OUT}	V _{OUT} =0.0V		6	10	pF

NOTE:

1. Sampled, not 100% tested.

1.2.2 AC Input/Output Test Conditions

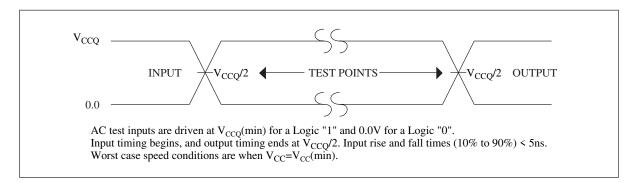


Figure 4. Transient Input/Output Reference Waveform for V_{CC} =2.7V-3.6V

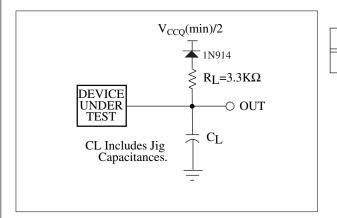


Figure 5. Transient Equivalent Testing Load Circuit

Table 9. Test Configuration Capacitance Loading Value

Test Configuration	$C_L(pF)$
V _{CC} =2.7V-3.6V	50

1.2.3 DC Characteristics

V_{CC}=2.7V-3.6V

Symbol	Parameter	Notes	Min.	Тур.	Max.	Unit	Test Conditions
I_{LI}	Input Load Current	1	-1.0		+1.0	μΑ	V _{CC} =V _{CC} Max.,
I_{LO}	Output Leakage Current	1	-1.0		+1.0	μА	V _{CCQ} =V _{CCQ} Max., V _{IN} /V _{OUT} =V _{CCQ} or GND
I _{CCS}	V _{CC} Standby Current	1,7		4	10	μА	$V_{\text{CC}} = V_{\text{CC}} \text{Max.},$ CE\#=RST\#= $V_{\text{CCQ}} \pm 0.2 \text{V},$ $\text{WP\#=} V_{\text{CCQ}} \text{ or GND}$
I _{CCAS}	V _{CC} Automatic Power Savings Current	1,4,7		4	10	μΑ	V _{CC} =V _{CC} Max., CE#=GND±0.2V, WP#=V _{CCQ} or GND
I_{CCD}	V _{CC} Reset Current	1,7		4	10	μΑ	RST#=GND±0.2V
I _{CCR}	V _{CC} Read Current	1,7			17	mA	$V_{CC}=V_{CC}Max.,$ $CE\#=V_{IL},$ $OE\#=V_{IH},$ $f=5MHz$
T	V _{CC} Program Current	1,5,7		20	60	mA	V _{PP} =V _{PPH1}
I_{CCW}	VCC Flogram Current	1,5,7		10	20	mA	V _{PP} =V _{PPH2}
T	V _{CC} Block Erase,	1,5,7		10	30	mA	V _{PP} =V _{PPH1}
I_{CCE}	Full Chip Erase Current	1,5,7		4	10	mA	V _{PP} =V _{PPH2}
I _{CCWS} I _{CCES}	V _{CC} Program or Block Erase Suspend Current	1,2,7		10	200	μΑ	CE#=V _{IH}
I _{PPS} I _{PPR}	V _{PP} Standby or Read Current	1,6,7		2	5	μА	$V_{PP} \leq V_{CC}$
T	V _{PP} Program Current	1,5,6,7		2	5	μΑ	V _{PP} =V _{PPH1}
I_{PPW}	v pp Flogram Current	1,5,6,7		10	30	mA	V _{PP} =V _{PPH2}
т	V _{PP} Block Erase,	1,5,6,7		2	5	μΑ	V _{PP} =V _{PPH1}
I_{PPE}	Full Chip Erase Current	1,5,6,7		5	15	mA	V _{PP} =V _{PPH2}
I	V _{PP} Program	1,6,7		2	5	μΑ	V _{PP} =V _{PPH1}
I _{PPWS}	Suspend Current	1,6,7		10	200	μΑ	V _{PP} =V _{PPH2}
I	V _{PP} Block Erase Suspend Current	1,6,7		2	5	μΑ	V _{PP} =V _{PPH1}
I _{PPES}	v pp Diock Erase Suspend Current	1,6,7		10	200	μΑ	V _{PP} =V _{PPH2}

DC Characteristics (Continued)

$V_{CC} = 2.7 \text{V} - 3.6 \text{V}$

Symbol	Parameter	Notes	Min.	Typ.	Max.	Unit	Test Conditions
$V_{\rm IL}$	Input Low Voltage	5	-0.4		0.4	V	
V _{IH}	Input High Voltage	5	2.4		V _{CCQ} + 0.4	V	
V _{OL}	Output Low Voltage	5			0.2	V	$\begin{aligned} &V_{CC} {=} V_{CC} Min., \\ &V_{CCQ} {=} V_{CCQ} Min., \\ &I_{OL} {=} 100 \mu A \end{aligned}$
V _{OH}	Output High Voltage	5	V _{CCQ} -0.2			V	$\begin{aligned} &V_{CC} {=} V_{CC} Min., \\ &V_{CCQ} {=} V_{CCQ} Min., \\ &I_{OH} {=} {-} 100 \mu A \end{aligned}$
V _{PPLK}	V _{PP} Lockout during Normal Operations	3,5,6			0.4	V	
V _{PPH1}	V _{PP} during Block Erase, Full Chip Erase, Program or OTP Program Operations	6	1.65	3.0	3.6	V	
V _{PPH2}	V _{PP} during Block Erase, Full Chip Erase, Program or OTP Program Operations	6	11.7	12.0	12.3	V	
V_{LKO}	V _{CC} Lockout Voltage		1.5			V	

- 1. All currents are in RMS unless otherwise noted. Typical values are the reference values at V_{CC} =3.0V, V_{CCQ} =3.0V and T_A =+25°C unless V_{CC} is specified.
- 2. I_{CCWS} and I_{CCES} are specified with the device de-selected. If read or program is executed while in block erase suspend mode, the device's current draw is the sum of I_{CCES} and I_{CCR} or I_{CCW}. If read is executed while in program suspend mode, the device's current draw is the sum of I_{CCWS} and I_{CCR}.
- mode, the device's current draw is the sum of I_{CCWS} and I_{CCR}.

 3. Block erase, full chip erase, program and OTP program are inhibited when V_{PP}≤V_{PPLK}, and not guaranteed in the range between V_{PPLK}(max.) and V_{PPH1}(min.), between V_{PPH1}(max.) and V_{PPH2}(min.), and above V_{PPH2}(max.).
- 4. The Automatic Power Savings (APS) feature automatically places the device in power save mode after read cycle completion. Standard address access timings (t_{AVOV}) provide new data when addresses are changed.
- 5. Sampled, not 100% tested.
- 6. V_{PP} is not used for power supply pin. With V_{PP}≤V_{PPLK}, block erase, full chip erase, program and OTP program cannot be executed and should not be attempted.
 - Applying 12.0V \pm 0.3V to V_{PP} provides fast erasing or fast programming mode. In this mode, V_{PP} is power supply pin and supplies the memory cell current for block erasing and programming. Use similar power supply trace widths and layout considerations given to the V_{CC} power bus.
 - Applying $12.0V\pm0.3V$ to V_{PP} during erase/program can only be done for a maximum of 1,000 cycles on each block. V_{PP} may be connected to $12.0V\pm0.3V$ for a total of 80 hours maximum.
- 7. For all pins other than those shown in test conditions, input level is V_{CCO} or GND.

1.2.4 AC Characteristics - Read-Only Operations⁽¹⁾

V_{CC} =2.7V-3.6V, T_A =-40°C to +85°C

Symbol	Parameter	Notes	Min.	Max.	Unit
t _{AVAV}	Read Cycle Time		90		ns
t _{AVQV}	Address to Output Delay			90	ns
t _{ELQV}	CE# to Output Delay	3		90	ns
$t_{\rm GLQV}$	OE# to Output Delay	3		20	ns
t _{PHQV}	RST# High to Output Delay			150	ns
$t_{\rm EHQZ},t_{\rm GHQZ}$	CE# or OE# to Output in High Z, Whichever Occurs First	2		20	ns
t _{ELQX}	CE# to Output in Low Z	2	0		ns
t _{GLQX}	OE# to Output in Low Z	2	0		ns
t _{OH}	Output Hold from First Occurring Address, CE# or OE# change	2	0		ns

- 1. See AC input/output reference waveform for timing measurements and maximum allowable input slew rate.
- 2. Sampled, not 100% tested.
- 3. OE# may be delayed up to t_{ELQV} — t_{GLQV} after the falling edge of CE# without impact to t_{ELQV} .

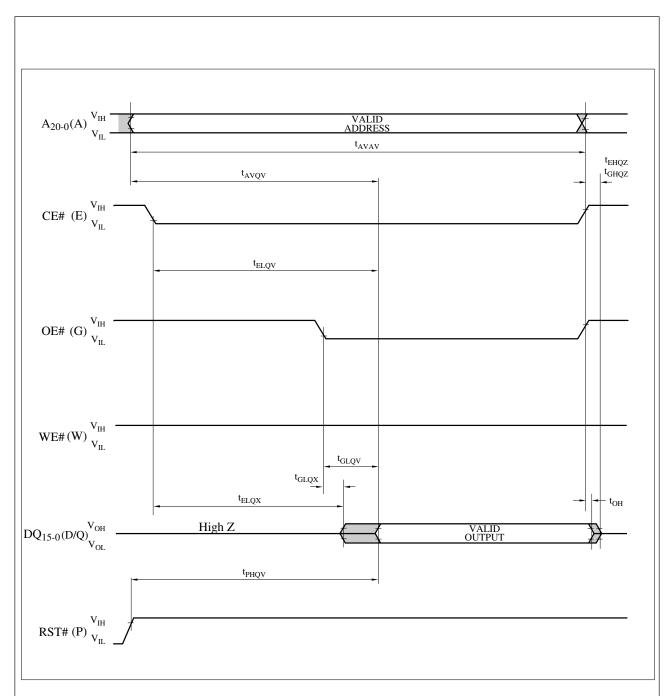
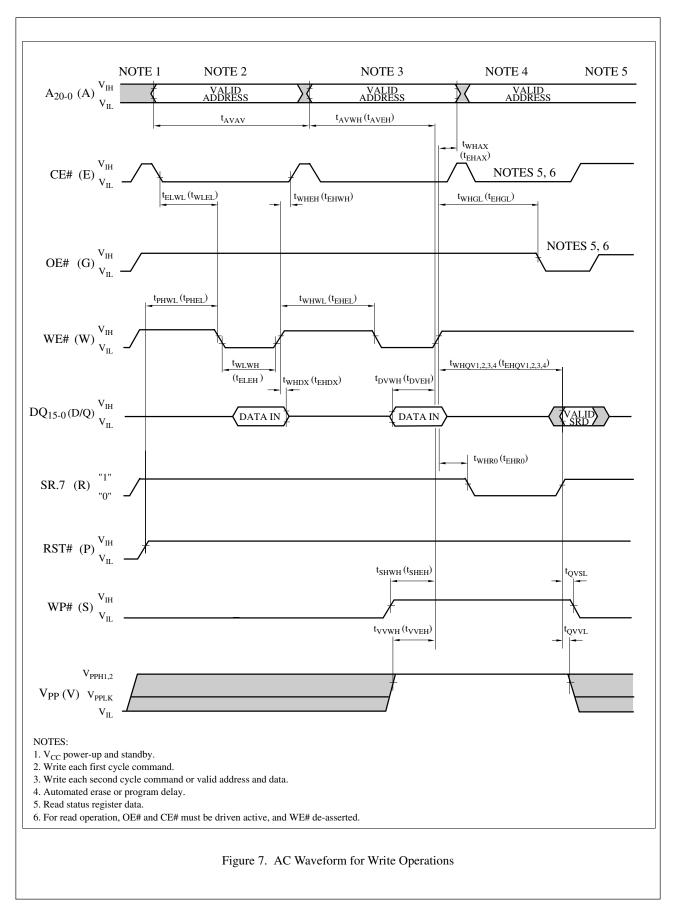


Figure 6. AC Waveform for Read Operations

1.2.5 AC Characteristics - Write Operations^{(1), (2)}


V_{CC} =2.7V-3.6V, T_{A} =-40°C to +85°C

Symbol	Parameter	Notes	Min.	Max.	Unit
t _{AVAV}	Write Cycle Time		90		ns
$t_{PHWL} (t_{PHEL})$	RST# High Recovery to WE# (CE#) Going Low	3	150		ns
t _{ELWL} (t _{WLEL})	CE# (WE#) Setup to WE# (CE#) Going Low		0		ns
$t_{WLWH} (t_{ELEH})$	WE# (CE#) Pulse Width	4	60		ns
t _{DVWH} (t _{DVEH})	Data Setup to WE# (CE#) Going High	8	40		ns
t _{AVWH} (t _{AVEH})	Address Setup to WE# (CE#) Going High	8	50		ns
$t_{WHEH} (t_{EHWH})$	CE# (WE#) Hold from WE# (CE#) High		0		ns
$t_{WHDX}\left(t_{EHDX}\right)$	Data Hold from WE# (CE#) High		0		ns
$t_{WHAX} (t_{EHAX})$	Address Hold from WE# (CE#) High		0		ns
t _{WHWL} (t _{EHEL})	WE# (CE#) Pulse Width High	5	30		ns
t _{SHWH} (t _{SHEH})	WP# High Setup to WE# (CE#) Going High	3	0		ns
$t_{VVWH} (t_{VVEH})$	V _{PP} Setup to WE# (CE#) Going High	3	200		ns
$t_{\mathrm{WHGL}} (t_{\mathrm{EHGL}})$	Write Recovery before Read		30		ns
t _{QVSL}	WP# High Hold from Valid SRD	3, 6	0		ns
t _{QVVL}	V _{PP} Hold from Valid SRD	3, 6	0		ns
t _{WHR0} (t _{EHR0})	WE# (CE#) High to SR.7 Going "0"	3,7		t _{AVQV} +	ns

- 1. The timing characteristics for reading the status register during block erase, full chip erase, program and OTP program operations are the same as during read-only operations. Refer to AC Characteristics for read-only operations.
- 2. A write operation can be initiated and terminated with either CE# or WE#.
- 3. Sampled, not 100% tested.
- 4. Write pulse width (t_{WP}) is defined from the falling edge of CE# or WE# (whichever goes low last) to the rising edge of CE# or WE# (whichever goes high first). Hence, twp=twLwH=teleH=twLeH=teleH.

 5. Write pulse width high (twpH) is defined from the rising edge of CE# or WE# (whichever goes high first) to the falling
- edge of CE# or WE# (whichever goes low last). Hence, t_{WPH}=t_{WHWL}=t_{EHEL}=t_{WHEL}=t_{EHWL}.

 6. V_{PP} should be held at V_{PP}=V_{PPH1/2} until determination of block erase, full chip erase, program or OTP program success (SR.1/3/4/5=0).
- 7. t_{WHR0} (t_{EHR0}) after the Read Query or Read Identifier Codes/OTP command=t_{AVOV}+100ns.
- 8. Refer to Table 4 for valid address and data for block erase, full chip erase, program, OTP program or lock bit configuration.

1.2.6 Reset Operations **t**PHQV RST# (P) **t**PLPH High Z VALID OUTPUT (A) Reset during Read Array Mode ABORT SR.7="1" COMPLETE **t**plrh **t**phqv RST# (P) V_{IL} **t**PLPH VALID $DQ_{15-0}(D/Q)$ (B) Reset during Erase or Program Mode $V_{CC}(min)$ tvhqv GND · t₂VPH **t**phqv RST# (P) High Z VALID DQ₁₅₋₀ (D/Q)

Figure 8. AC Waveform for Reset Operations

(C) RST# rising timing

Reset AC Specifications (V_{CC} =2.7V-3.6V, T_A =-40°C to +85°C)

Symbol	Parameter	Notes	Min.	Max.	Unit
t_{PLPH}	RST# Low to Reset during Read (RST# should be low during power-up.)	1, 2, 3	100		ns
t _{PLRH}	RST# Low to Reset during Erase or Program	1, 3, 4		22	μs
t _{2VPH}	V _{CC} 2.7V to RST# High	1, 3, 5	100		ns
t _{VHQV}	V _{CC} 2.7V to Output Delay	3		1	ms

NOTES:

- 1. A reset time, t_{PHQV} , is required from the later of SR.7 going "1" or RST# going high until outputs are valid. Refer to AC Characteristics Read-Only Operations for t_{PHQV} .
- 2. t_{PLPH} is <100ns the device may still reset but this is not guaranteed.
- 3. Sampled, not 100% tested.
- 4. If RST# asserted while a block erase, full chip erase, program or OTP program operation is not executing, the reset will complete within 100ns.
- 5. When the device power-up, holding RST# low minimum 100ns is required after V_{CC} has been in predefined range and also has been in stable there.

OUTPUT