

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

LHF00L15 Flash Memory 32M (2Mb x 16)

(Model Number: LHF00L15)

Spec. Issue Date: June 16, 2004

Spec No: EL163056A

SPEC No.	EL	1630) 5 6 A
ISSUE:	Jun.	16,	2004

To;	

7,	
S	PECIFICATIONS
Product Ty	pe 32 M b i t Flash Memory
	L H F 0 0 L 1 5
Model	No. (LHF00L15)
* This spec * Refer to : CUSTOMERS AC DATE:	ifications contains 34 pages including the cover and appendix. LHF00LXX series Appendix (FUM03802). CEPTANCE
BY:	PRESENTED
	BY: HOTTA Dept. General Manager
	REVIEWED BY: PREPARED BY:
	Product Development Dept. I System-Flash Division Integrated Circuits Group

SHARP CORPORATION

SHARP

LHF00L15

- Handle this document carefully for it contains material protected by international copyright law. Any reproduction, full or in part, of this material is prohibited without the express written permission of the company.
- When using the products covered herein, please observe the conditions written herein and the precautions outlined in the following paragraphs. In no event shall the company be liable for any damages resulting from failure to strictly adhere to these conditions and precautions.
 - (1) The products covered herein are designed and manufactured for the following application areas. When using the products covered herein for the equipment listed in Paragraph (2), even for the following application areas, be sure to observe the precautions given in Paragraph (2). Never use the products for the equipment listed in Paragraph (3).
 - Office electronics
 - Instrumentation and measuring equipment
 - Machine tools
 - Audiovisual equipment
 - Home appliance
 - Communication equipment other than for trunk lines
 - (2) Those contemplating using the products covered herein for the following equipment which demands high reliability, should first contact a sales representative of the company and then accept responsibility for incorporating into the design fail-safe operation, redundancy, and other appropriate measures for ensuring reliability and safety of the equipment and the overall system.
 - Control and safety devices for airplanes, trains, automobiles, and other transportation equipment
 - Mainframe computers
 - Traffic control systems
 - Gas leak detectors and automatic cutoff devices
 - Rescue and security equipment
 - Other safety devices and safety equipment, etc.
 - (3) Do not use the products covered herein for the following equipment which demands extremely high performance in terms of functionality, reliability, or accuracy.
 - Aerospace equipment
 - Communications equipment for trunk lines
 - Control equipment for the nuclear power industry
 - Medical equipment related to life support, etc.
 - (4) Please direct all queries and comments regarding the interpretation of the above three Paragraphs to a sales representative of the company.
- Please direct all queries regarding the products covered herein to a sales representative of the company.

1

CONTENTS

PAGE	PAGE
48-Lead TSOP (Normal Bend) Pinout	1 Electrical Specifications
Pin Descriptions	1.1 Absolute Maximum Ratings
Memory Map 5	1.2 Operating Conditions
Identifier Codes and OTP Address for Read Operation	1.2.1 Capacitance
OTP Block Address Map for OTP Program 7	1.2.2 AC Input/Output Test Conditions 15
Bus Operation	1.2.3 DC Characteristics
•	1.2.4 AC Characteristics
Command Definitions	- Read-Only Operations
Functions of Block Lock and Block Lock-Down 11	1.2.5 AC Characteristics - Write Operations
Block Locking State Transitions	•
upon Command Write11	1.2.6 Reset Operations
Block Locking State Transitions	1.2.7 Block Erase, Full Chip Erase,
upon WP#/ACC Transition 12	Program and OTP Program Performance. 23
Status Register Definition	2 Related Document Information
	3 Package and packing specification

2

LHF00L15 32Mbit (2Mbit×16) Flash MEMORY

- 32-M density with 16-bit I/O Interface
- Read Operation

HARP

- 90ns
- Low Power Operation
 - 2.7V Read and Write Operations
 - Automatic Power Savings Mode reduces I_{CCR} in Static Mode
- Enhanced Code + Data Storage
 - 5µs Typical Erase/Program Suspends
- OTP (One Time Program) Block
 - 4-Word Factory-Programmed Area
 - 4-Word User-Programmable Area
- Operating Temperature -40°C to +85°C
- CMOS Process (P-type silicon substrate)
- Flexible Blocking Architecture
 - Eight 4-Kword Parameter Blocks
 - One 32-Kword Block
 - Thirty-one 64-Kword Blocks
 - Bottom Parameter Location

- Enhanced Data Protection Features
 - Individual Block Lock and Block Lock-Down with Zero-Latency
 - All blocks are locked at power-up or device reset.
 - Block Erase, Full Chip Erase, Word Program Lockout during Power Transitions
- Automated Erase/Program Algorithms
 - 3.0V Low-Power 10µs/Word (Typ.) Programming
 - 12.0V No Glue Logic 9µs/Word (Typ.) Production Programming and 0.8s Erase (Typ.)
- Cross-Compatible Command Support
 - · Basic Command Set
 - Common Flash Interface (CFI)
- Extended Cycling Capability
 - Minimum 100,000 Block Erase Cycles
- 48-Lead TSOP (Normal Bend)
- ETOX^{TM*} Flash Technology
- Not designed or rated as radiation hardened

The product is a low power, high density, low cost, nonvolatile read/write storage solution for a wide range of applications. The product can operate at V_{CC} =2.7V-3.6V. Its low voltage operation capability greatly extends battery life for portable applications.

The memory array block architecture utilizes Enhanced Data Protection features, which provides maximum flexibility for safe nonvolatile code and data storage.

Special OTP (One Time Program) block provides an area to store permanent code such as an unique number.

* ETOX is a trademark of Intel Corporation.

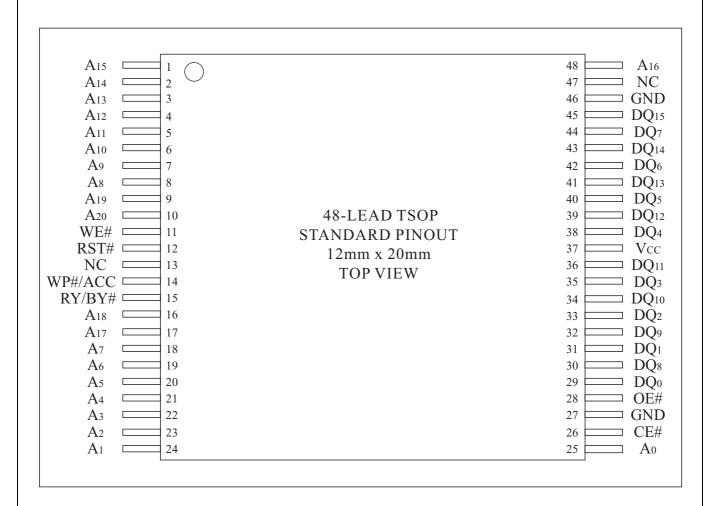


Figure 1. 48-Lead TSOP (Normal Bend) Pinout

Table 1. Pin Descriptions

Symbol	Type	Name and Function
A ₂₀ -A ₀	INPUT	ADDRESS INPUTS: Inputs for addresses.
DQ ₁₅ -DQ ₀	INPUT/ OUTPUT	DATA INPUTS/OUTPUTS: Inputs data and commands during CUI (Command User Interface) write cycles, outputs data during memory array, status register, query code, identifier code reads. Data pins float to high-impedance (High Z) when the chip or outputs are deselected. Data is internally latched during an erase or program cycle.
CE#	INPUT	CHIP ENABLE: Activates the device's control logic, input buffers, decoders and sense amplifiers. CE#-high (V_{IH}) deselects the device and reduces power consumption to standby levels.
RST#	INPUT	RESET: When low (V_{IL}) , RST# resets internal automation and inhibits write operations which provides data protection. RST#-high (V_{IH}) enables normal operation. After power-up or reset mode, the device is automatically set to read array mode. RST# must be low during power-up/down.
OE#	INPUT	OUTPUT ENABLE: Gates the device's outputs during a read cycle.
WE#	INPUT	WRITE ENABLE: Controls writes to the CUI and array blocks. Addresses and data are latched on the rising edge of CE# or WE# (whichever goes high first).
WP#/ACC	INPUT/ SUPPLY	WRITE PROTECT: When WP#/ACC is V_{IL} , locked-down blocks cannot be unlocked. Erase or program operation can be executed to the blocks which are not locked and not locked-down. When WP#/ACC is V_{IH} , lock-down is disabled. Applying 12.0V±0.3V to WP#/ACC provides fast erasing or fast programming mode. In this mode, WP#/ACC is power supply pin. Applying 12.0V±0.3V to WP#/ACC during erase/program can only be done for a maximum of 1,000 cycles on each block. WP#/ACC may be connected to 12.0V±0.3V for a total of 80 hours maximum. Use of this pin at 12.0V+0.3V beyond these limits may reduce block cycling capability or cause permanent damage.
RY/BY#	OPEN DRAIN OUTPUT	READY/BUSY#: Indicates the status of the internal WSM (Write State Machine). When low, WSM is performing an internal operation (block erase, full chip erase, program or OTP program). RY/BY#-High Z indicates that the WSM is ready for new commands, block erase is suspended and program is inactive, program is suspended, or the device is in reset mode.
V _{CC}	SUPPLY	DEVICE POWER SUPPLY (2.7V-3.6V): With $V_{CC} \le V_{LKO}$, all write attempts to the flash memory are inhibited. Device operations at invalid V_{CC} voltage (see DC Characteristics) produce spurious results and should not be attempted.
GND	SUPPLY	GROUND: Do not float any ground pins.
NC		NO CONNECT: Lead is not internally connected; it may be driven or floated.

$[A_{20}-A_{0}]$		
1EFFFF	64-Kword Block 39	
1F0000 1EFFFF 1E0000	64-Kword Block 38	
1DFFFF 1D0000	64-Kword Block 37	
1CFFFF 1C0000	64-Kword Block 36	
1BFFFF 1B0000	64-Kword Block 35	
1AFFF 1A0000	64-Kword Block 34	
19FFFF 190000	64-Kword Block 33	
18FFF 180000	64-Kword Block 32	
17FFFF 170000	64-Kword Block 31	
16FFFF 160000	64-Kword Block 30	
15FFFF 150000	64-Kword Block 29	
14FFFF 140000 13FFFF	64-Kword Block 28	
130000	64-Kword Block 27	
12FFFF 120000	64-Kword Block 26	
11FFFF 110000	64-Kword Block 25	
10FFFF 100000	64-Kword Block 24	
0FFFFF 0F0000	64-Kword Block 23	
0EFFFF 0E0000	64-Kword Block 22	
0DFFFF 0D0000	64-Kword Block 21	
0CFFFF 0C0000	64-Kword Block 20	
0BFFFF 0B0000	64-Kword Block 19	
0AFFFF 0A0000	64-Kword Block 18	
09FFFF 090000	64-Kword Block 17	
08FFFF 080000	64-Kword Block 16	
07FFFF 070000	64-Kword Block 15	
06FFFF 060000 05FFFF	64-Kword Block 14	
057777 050000 04FFFF	64-Kword Block 13	
040000 03FFFF	64-Kword Block 12	
030000 02FFFF	64-Kword Block 11	
020000 01FFFF	64-Kword Block 10	
010000 00FFFF	64-Kword Block 9	
008000 007FFF	32-Kword Block 8	
007000 006FFF	4-Kword Block 7	
006000 005FFF	4-Kword Block 6	
005000 004FFF	4-Kword Block 5	
004000 003FFF	4-Kword Block 4	
003000 002FFF	4-Kword Block 3	
002000 001FFF	4-Kword Block 2	
001000 000FFF	4-Kword Block 1	
000000	4-Kword Block 0	

Figure 2. Memory Map (Bottom Parameter)

SHARP

Table 2. Identifier Codes and OTP Address for Read Operation

	Code	Address [A ₂₀ -A ₀]	Data [DQ ₁₅ -DQ ₀]	Notes
Manufacturer Code	Manufacturer Code	000000Н	00B0H	
Device Code	Device Code	000001H	00A1H	
Block Lock Configuration	Block is Unlocked		$DQ_0 = 0$	1
Code	Block is Locked	Block Address	$DQ_0 = 1$	1
	Block is not Locked-Down	+ 2	$DQ_1 = 0$	1
	Block is Locked-Down		$DQ_1 = 1$	1
OTP	OTP Lock	000080Н	OTP-LK	2
	OTP	000081-000088H	OTP	3

- Block Address = The beginning location of a block address. DQ₁₅-DQ₂ are reserved for future implementation.
 OTP-LK=OTP Block Lock configuration.
 OTP=OTP Block data.

SHARP

LHF00L15

7

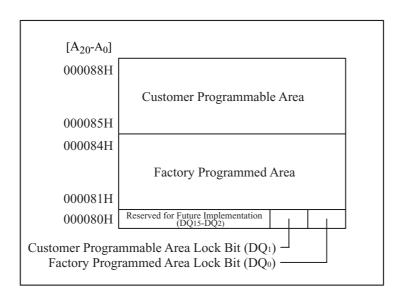


Figure 3. OTP Block Address Map for OTP Program (The area outside 80H~88H cannot be used.)

8 LHF00L15

Table 3. Bus Operation $^{(1,2)}$

Mode	Notes	RST#	CE#	OE#	WE#	Address	DQ ₁₅₋₀	RY/BY# (8)
Read Array	6	V_{IH}	V_{IL}	V_{IL}	V _{IH}	X	D _{OUT}	High Z
Output Disable		V_{IH}	V_{IL}	V_{IH}	V_{IH}	X	High Z	X
Standby		V _{IH}	V _{IH}	X	X	X	High Z	X
Reset	3	V_{IL}	X	X	X	X	High Z	High Z
Read Identifier Codes/OTP	6	V _{IH}	V _{IL}	V _{IL}	V _{IH}	See Table 2	See Table 2	High Z
Read Query	6,7	V_{IH}	$V_{\rm IL}$	V _{IL}	V _{IH}	See Appendix	See Appendix	High Z
Read Status Register	6	V _{IH}	V_{IL}	V _{IL}	V _{IH}	X	D _{OUT}	X
Write	4,5,6	V _{IH}	V _{IL}	V _{IH}	V _{IL}	X	D _{IN}	X

- 1. Refer to DC Characteristics for V_{IL} or V_{IH} voltages.
- 2. X can be V_{IL} or V_{IH} for control pins and addresses. 3. RST# at GND±0.2V ensures the lowest power consumption.
- 4. Command writes involving block erase, full chip erase, program or OTP program are reliably executed when V_{CC} =2.7V-3.6V. 5. Refer to Table 4 for valid D_{IN} during a write operation.
- 6. Never hold OE# low and WE# low at the same timing.
- 7. Refer to Appendix of LHF00LXX series for more information about query code.
- 8. RY/BY# is V_{OL} when the WSM (Write State Machine) is executing internal block erase, full chip erase, program or OTP program algorithms. It is High Z during when the WSM is not busy, in block erase suspend mode (with program inactive), program suspend mode, or reset mode.

LHF00L15 9

	Bus		First Bus Cycle			Second Bus Cycle		
Command	Cycles Req'd	Notes	Oper ⁽¹⁾	Addr ⁽²⁾	Data	Oper ⁽¹⁾	Addr ⁽²⁾	Data ⁽³⁾
Read Array	1		Write	X	FFH			
Read Identifier Codes/OTP	≥ 2	4	Write	X	90H	Read	IA or OA	ID or OD
Read Query	≥ 2	4	Write	X	98H	Read	QA	QD
Read Status Register	2		Write	X	70H	Read	X	SRD
Clear Status Register	1		Write	X	50H			
Block Erase	2	5	Write	BA	20H	Write	BA	D0H
Full Chip Erase	2	5, 8	Write	X	30H	Write	X	D0H
Program	2	5,6	Write	WA	40H or 10H	Write	WA	WD
Block Erase and Program Suspend	1	7, 8	Write	X	ВОН			
Block Erase and Program Resume	1	7, 8	Write	X	D0H			
Set Block Lock Bit	2		Write	BA	60H	Write	BA	01H
Clear Block Lock Bit	2	9	Write	BA	60H	Write	BA	D0H
Set Block Lock-down Bit	2		Write	BA	60H	Write	BA	2FH
OTP Program	2	8	Write	OA	С0Н	Write	OA	OD

Table 4. Command Definitions⁽¹⁰⁾

- 1. Bus operations are defined in Table 3.
- 2. All addresses which are written at the first bus cycle should be the same as the addresses which are written at the second bus cycle.
 - X=Any valid address within the device.
 - IA=Identifier codes address (See Table 2).
 - QA=Query codes address. Refer to Appendix of LHF00LXX series for details.
 - BA=Address within the block being erased, set/cleared block lock bit or set block lock-down bit.
 - WA=Address of memory location for the Program command.
 - OA=Address of OTP block to be read or programmed (See Figure 3).
- 3. ID=Data read from identifier codes. (See Table 2).
 - QD=Data read from query database. Refer to Appendix of LHF00LXX series for details.
 - SRD=Data read from status register. See Table 8 for a description of the status register bits.
 - WD=Data to be programmed at location WA. Data is latched on the rising edge of WE# or CE# (whichever goes high first) during command write cycles.
 - OD=Data within OTP block. Data is latched on the rising edge of WE# or CE# (whichever goes high first) during command write cycles.
- 4. Following the Read Identifier Codes/OTP command, read operations access manufacturer code, device code, block lock configuration code and the data within OTP block (See Table 2).
 - The Read Query command is available for reading CFI (Common Flash Interface) information.
- 5. Block erase, full chip erase or program cannot be executed when the selected block is locked. Unlocked block can be erased or programmed when RST# is V_{IH} .
- 6. Either 40H or 10H are recognized by the CUI (Command User Interface) as the program setup.
- 7. If the program operation and the erase operation are both suspended, the suspended program operation will be resumed first.
- 8. Full chip erase and OTP program operations can not be suspended. The OTP Program command can not be accepted while the block erase operation is being suspended.

LHF00L15 10

9. Following the Clear Block Lock Bit command, block which is not locked-down is unlocked when WP#/ACC is V_{IL} . When WP#/ACC is V_{IH} , lock-down bit is disabled and the selected block is unlocked regardless of lock-down configuration.
10. Commands other than those shown above are reserved by SHARP for future device implementations and should not be used.

		(2)			
State	WP#/ACC	DQ ₁ ⁽¹⁾	$DQ_0^{(1)}$	State Name	Erase/Program Allowed (2)
[000]	0	0	0	Unlocked	Yes
[001] ⁽³⁾	0	0	1	Locked	No
[011]	0	1	1	Locked-down	No
[100]	1	0	0	Unlocked	Yes
[101] ⁽³⁾	1	0	1	Locked	No
[110] ⁽⁴⁾	1	1	0	Lock-down Disable	Yes
[111]	1	1	1	Lock-down Disable	No

Table 5. Functions of Block Lock⁽⁵⁾ and Block Lock-Down

NOTES:

- 1. $DQ_0=1$: a block is locked; $DQ_0=0$: a block is unlocked. $DQ_1=1$: a block is locked-down; $DQ_1=0$: a block is not locked-down.
- 2. Erase and program are general terms, respectively, to express: block erase, full chip erase and program operations.
- 3. At power-up or device reset, all blocks default to locked state and are not locked-down, that is, [001] (WP#/ACC=0) or [101] (WP#/ACC=1), regardless of the states before power-off or reset operation.
- 4. When WP#/ACC is driven to V_{IL} in [110] state, the state changes to [011] and the blocks are automatically locked.
- 5. OTP (One Time Program) block has the lock function which is different from those described

	Current S	State		Result after L	ock Command Writte	n (Next State)
State	WP#/ACC	DQ ₁	DQ_0	Set Lock ⁽¹⁾	Clear Lock ⁽¹⁾	Set Lock-down ⁽¹⁾
[000]	0	0	0	[001]	No Change	[011] ⁽²⁾
[001]	0	0	1	No Change ⁽³⁾	[000]	[011]
[011]	0	1	1	No Change	No Change	No Change
[100]	1	0	0	[101]	No Change	[111] ⁽²⁾
[101]	1	0	1	No Change	[100]	[111]
[110]	1	1	0	[111]	No Change	[111] ⁽²⁾
[111]	1	1	1	No Change	[110]	No Change

Table 6. Block Locking State Transitions upon Command Write⁽⁴⁾

- 1. "Set Lock" means Set Block Lock Bit command, "Clear Lock" means Clear Block Lock Bit command and "Set Lock-down" means Set Block Lock-Down Bit command.
- 2. When the Set Block Lock-Down Bit command is written to the unlocked block (DQ $_0$ =0), the corresponding block is locked-down and automatically locked at the same time.
- 3. "No Change" means that the state remains unchanged after the command written.
- 4. In this state transitions table, assumes that WP#/ACC is not changed and fixed V_{IL} or V_{IH} .

SHARP

	Table 7.	Block Locking Sta	te Transitions upon	WP#/ACC	Transition ⁽⁴⁾
--	----------	-------------------	---------------------	---------	---------------------------

Desire of Chair		Current Sta	ite		Result after WP#/ACC	Transition (Next State)
Previous State	State	WP#/ACC	DQ_1	DQ_0	WP#/ACC= $0 \rightarrow 1^{(1)}$	WP#/ACC= $1\rightarrow0^{(1)}$
-	[000]	0	0	0	[100]	-
-	[001]	0	0	1	[101]	-
[110] ⁽²⁾	[011]	0	1	1	[110]	-
Other than [110] ⁽²⁾					[111]	-
-	[100]	1	0	0	-	[000]
-	[101]	1	0	1	-	[001]
-	[110]	1	1	0	-	[011] ⁽³⁾
-	[111]	1	1	1	-	[011]

- 1. "WP#/ACC=0 \rightarrow 1" means that WP#/ACC is driven to V_{IH} and "WP#/ACC=1 \rightarrow 0" means that
- WP#/ACC is driven to V_{IL}.

 2. State transition from the current state [011] to the next state depends on the previous state.

 3. When WP#/ACC is driven to V_{IL} in [110] state, the state changes to [011] and the blocks are automatically locked.
- 4. In this state transitions table, assumes that lock configuration commands are not written in previous, current and next state.

LHF00L15 13

Table 8. Status Register Definition	Table 8.	Status	Register	Definition
-------------------------------------	----------	--------	----------	------------

R	R	R	R	R	R	R	R
15	14	13	12	11	10	9	8
WSMS	BESS	EPS	EPS	WPACCS	PSS	DPS	R
7	6	5	4	3	2	1	0

SR.15 - SR.8 = RESERVED FOR FUTURE ENHANCEMENTS (R)

- SR.7 = WRITE STATE MACHINE STATUS (WSMS) 1 = Ready
 - 0 = Busy
- SR.6 = BLOCK ERASE SUSPEND STATUS (BESS)
 - 1 = Block Erase Suspended
 - 0 = Block Erase in Progress/Completed

SR.5, SR.4 = ERASE, PROGRAM STATUS (EPS)

SR.5=1 and SR.4=1: Command Sequence Error

SR.5=1 or SR.4=1: Error in Block Erase, Full Chip Erase, Program or OTP Program

Erase, Program or OTP Program

SR.3 = WP#/ACC STATUS (WPACCS)

 $1 = V_{CC} + 0.4V < WP\#/ACC < 11.7V$ Detect, **Operation Abort**

0 = WP#/ACCOK

SR.2 = PROGRAM SUSPEND STATUS (PSS)

- 1 = Program Suspended
- 0 = Program in Progress/Completed

SR.1 = DEVICE PROTECT STATUS (DPS)

- 1 = Erase or Program Attempted on a Locked Block, Operation Abort
- 0 = Unlocked

Status Register indicates the status of the WSM (Write State Machine).

NOTES:

Check SR.7 or RY/BY# to determine block erase, full chip erase, program or OTP program completion. SR.6 - SR.1 are invalid while SR.7="0".

If both SR.5 and SR.4 are "1"s after a block erase, full chip erase, program, set/clear block lock bit, set block lock-down bit attempt, an improper command sequence was entered.

SR.5=0 and SR.4=0: Successful Block Erase, Full Chip For the period of time required to check the status register in erase and program operation, refer to the specifications of block erase, full chip erase, program and OTP Program time.

> SR.3 does not provide a continuous indication of WP#/ACC level. The WSM interrogates and indicates the WP#/ACC level only after Block Erase, Full Chip Erase, Program or OTP Program command sequences. SR.3 is not guaranteed to report accurate feedback when WP#/ACC≠V_{ACCH}.

> SR.1 does not provide a continuous indication of block lock bit. The WSM interrogates the block lock bit only after Block Erase, Full Chip Erase, Program or OTP Program command sequences. It informs the system, depending on the attempted operation, if the block lock bit is set. Reading the block lock configuration codes after writing the Read Identifier Codes/ OTP command indicates block lock bit status.

> SR.15 - SR.8 and SR.0 are reserved for future use and should be masked out when polling the status register.

SR.0 = RESERVED FOR FUTURE ENHANCEMENTS (R)

LHF00L15 14

1 Electrical Specifications

1.1 Absolute Maximum Ratings

Operating Temperature

HARP

During Read, Erase and Program ...-40°C to +85°C (1)

Storage Temperature

During under Bias.....-40°C to +85°C During non Bias.....-65°C to +125°C

Voltage On Any Pin (except V_{CC} and WP#/ACC)

..... -0.5V to $V_{\rm CC}$ +0.5V $^{(2)}$

V_{CC} Supply Voltage--0.2V to +3.9V ⁽²⁾

WP#/ACC Supply Voltage -0.2V to +12.6V (2, 3, 4)

Output Short Circuit Current......100mA (5)

*WARNING: Stressing the device beyond the "Absolute Maximum Ratings" may cause permanent damage. These are stress ratings only. Operation beyond the "Operating Conditions" is not recommended and extended exposure beyond the "Operating Conditions" may affect device reliability.

NOTES:

- 1. Operating temperature is for extended temperature product defined by this specification.
- 2. All specified voltages are with respect to GND. Minimum DC voltage is -0.5V on input/output pins and -0.2V on V_{CC} and WP#/ACC pins. During transitions, this level may undershoot to -2.0V for periods <20ns. Maximum DC voltage on input/output pins is V_{CC}+0.5V which, during transitions, may overshoot to V_{CC} +2.0V for periods <20ns.
- 3. Maximum DC voltage on WP#/ACC may overshoot to +13.0V for periods <20ns.
- 4. WP#/ACC erase/program voltage is normally 2.7V-3.6V. Applying 11.7V-12.3V to WP#/ACC during erase/program can be done for a maximum of 1,000 cycles on each block. WP#/ACC may be connected to 11.7V-12.3V for a total of 80 hours maximum.
- 5. Output shorted for no more than one second. No more than one output shorted at a time.

1.2 Operating Conditions

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Operating Temperature	T_{A}	-40	+25	+85	°C	
V _{CC} Supply Voltage	V_{CC}	2.7	3.0	3.6	V	1
WDWAGGVI I I I I I I I I I I I	V _{IL}	-0.2		0.4	V	
WP#/ACC Voltage when Used as a Logic Control	V _{IH}	2.4		V _{CC} + 0.4	V	1
WP#/ACC Supply Voltage	V _{ACCH}	11.7	12.0	12.3	V	1, 2
Block Erase Cycling: WP#/ACC=V _{IL} or V _{IH}		100,000			Cycles	
Block Erase Cycling: WP#/ACC=V _{ACCH} , 80 hrs.				1,000	Cycles	
Maximum WP#/ACC hours at V _{ACCH}				80	Hours	

- 1. See DC Characteristics tables for voltage range-specific specification.
- 2. Applying WP#/ACC=11.7V-12.3V during a erase or program can be done for a maximum of 1,000 cycles on each block. A permanent connection to WP#/ACC=11.7V-12.3V is not allowed and can cause damage to the device.

LHF00L15 15

1.2.1 Capacitance $^{(1)}$ (T_A=+25°C, f=1MHz)

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Input Capacitance	C_{IN}	V _{IN} =0.0V		4	7	pF
WP#/ACC Input Capacitance	C _{IN}	V _{IN} =0.0V		18	22	pF
Output Capacitance	C_{OUT}	V _{OUT} =0.0V		6	10	pF

NOTE:

HARP

1. Sampled, not 100% tested.

1.2.2 AC Input/Output Test Conditions

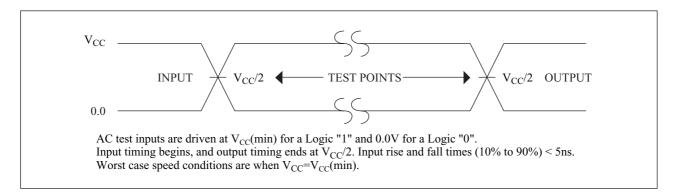


Figure 4. Transient Input/Output Reference Waveform for V_{CC} =2.7V-3.6V

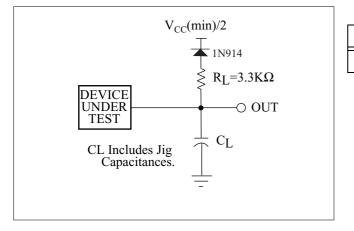


Figure 5. Transient Equivalent Testing Load Circuit

Table 9. Test Configuration Capacitance Loading Value

Test Configuration	C _L (pF)
V _{CC} =2.7V-3.6V	50

1.2.3 DC Characteristics

$V_{CC} = 2.7 V - 3.6 V$

Symbol	Parameter	Notes	Min.	Тур.	Max.	Unit	Test Conditions
I_{LI}	Input Load Current	1	-1.0		+1.0	μΑ	V _{CC} =V _{CC} Max.,
I_{LO}	Output Leakage Current	1	-1.0		+1.0	μΑ	$V_{\rm IN}/V_{\rm OUT} = V_{\rm CC}$ or GND
I_{CCS}	V _{CC} Standby Current	1,6,7		4	10	μА	$V_{CC}=V_{CC}Max.,$ $CE\#=RST\#=$ $V_{CC}\pm0.2V,$ $WP\#/ACC=V_{CC}$ or GND
I _{CCAS}	V _{CC} Automatic Power Savings Current	1,3,6		4	10	μΑ	V _{CC} =V _{CC} Max., CE#=GND±0.2V, WP#/ACC=V _{CC} or GND
I_{CCD}	V _{CC} Reset Current	1,6		4	10	μA	RST#=GND±0.2V
I _{CCR}	V _{CC} Read Current	1,6			17	mA	$V_{CC}=V_{CC}Max.,$ $CE\#=V_{IL},$ $OE\#=V_{IH},$ $f=5MHz$
т	V _{CC} Program Current	1,4,6		20	60	mA	WP#/ACC=V _{IL} or V _{IH}
I_{CCW}	V _{CC} Flogram Current	1,4,6		10	20	mA	WP#/ACC=V _{ACCH}
Τ	V _{CC} Block Erase,	1,4,6		10	30	mA	WP#/ACC=V _{IL} or V _{IH}
I_{CCE}	Full Chip Erase Current	1,4,6		4	10	mA	WP#/ACC=V _{ACCH}
I _{CCWS} I _{CCES}	V _{CC} Program or Block Erase Suspend Current	1,2,6		10	200	μА	CE#=V _{IH}
I _{ACCS} I _{ACCR}	WP#/ACC Standby or Read Current	1,5,6		2	5	μА	WP#/ACC≤V _{CC}
Lagre	WP#/ACC Program Current	1,4,5,6		2	5	μΑ	WP#/ACC=V _{IL} or V _{IH}
I _{ACCW}	W1#/ACC Program Current	1,4,5,6		10	30	mA	WP#/ACC=V _{ACCH}
Legg	WP#/ACC Block Erase,	1,4,5,6		2	5	μA	WP#/ACC=V _{IL} or V _{IH}
I _{ACCE}	Full Chip Erase Current	1,4,5,6		5	15	mA	WP#/ACC=V _{ACCH}
Legue	WP#/ACC Program	1,5,6		2	5	μΑ	WP#/ACC=V _{IL} or V _{IH}
I _{ACCWS}	Suspend Current	1,5,6		10	200	μΑ	WP#/ACC=V _{ACCH}
Lagra	WP#/ACC Block Erase Suspend	1,5,6		2	5	μΑ	WP#/ACC=V _{IL} or V _{IH}
I _{ACCES}	Current	1,5,6		10	200	μΑ	WP#/ACC=V _{ACCH}

LHF00L15 17

DC Characteristics (Continued)

$V_{CC} = 2.7V - 3.6V$

Symbol	Parameter	Notes	Min.	Тур.	Max.	Unit	Test Conditions
V_{IL}	Input Low Voltage	5	-0.4		0.4	V	
V_{IH}	Input High Voltage	4	2.4		V _{CC} + 0.4	V	
V _{OL}	Output Low Voltage	4,7			0.2	V	V _{CC} =V _{CC} Min., I _{OL} =100μA
V _{OH}	Output High Voltage	4	V _{CC} -0.2			V	V _{CC} =V _{CC} Min., I _{OH} =-100μA
V _{ACCH}	WP#/ACC during Block Erase, Full Chip Erase, Program or OTP Program Operations		11.7	12.0	12.3	V	
V_{LKO}	V _{CC} Lockout Voltage		1.5			V	

- 1. All currents are in RMS unless otherwise noted. Typical values are the reference values at V_{CC} =3.0V and T_A =+25°C unless V_{CC} is specified.
- I_{CCWS} and I_{CCES} are specified with the device de-selected. If read or program is executed while in block erase suspend mode, the device's current draw is the sum of I_{CCES} and I_{CCR} or I_{CCW}. If read is executed while in program suspend mode, the device's current draw is the sum of I_{CCWS} and I_{CCR}.
 The Automatic Power Savings (APS) feature automatically places the device in power save mode after read cycle
- 3. The Automatic Power Savings (APS) feature automatically places the device in power save mode after read cycle completion. Standard address access timings (t_{AVOV}) provide new data when addresses are changed.
- 4. Sampled, not 100% tested.
- 5. Applying 12.0V±0.3V to WP#/ACC provides fast erasing or fast programming mode. In this mode, WP#/ACC is power supply pin and supplies the memory cell current for block erasing and programming. Use similar power supply trace widths and layout considerations given to the V_{CC} power bus.
 - Applying 12.0V±0.3V to WP#/ACC during erase/program can only be done for a maximum of 1,000 cycles on each block. WP#/ACC may be connected to 12.0V±0.3V for a total of 80 hours maximum.
- 6. For all pins other than those shown in test conditions, input level is V_{CC} or GND.
- 7. Includes RY/BY#.

18

SHARP

1.2.4 AC Characteristics - Read-Only Operations $^{(1)}$

$$V_{CC}$$
=2.7V-3.6V, T_A =-40°C to +85°C

Symbol	Parameter	Notes	Min.	Max.	Unit
t _{AVAV}	Read Cycle Time		90		ns
t _{AVQV}	Address to Output Delay			90	ns
$t_{\rm ELQV}$	CE# to Output Delay	3		90	ns
$t_{ m GLQV}$	OE# to Output Delay	3		20	ns
t_{PHQV}	RST# High to Output Delay			150	ns
$t_{\rm EHQZ},t_{\rm GHQZ}$	CE# or OE# to Output in High Z, Whichever Occurs First	2		20	ns
$t_{\rm ELQX}$	CE# to Output in Low Z	2	0		ns
t_{GLQX}	OE# to Output in Low Z	2	0		ns
t _{OH}	Output Hold from First Occurring Address, CE# or OE# change	2	0		ns

- 1. See AC input/output reference waveform for timing measurements and maximum allowable input slew rate.
- 2. Sampled, not 100% tested.
- 3. OE# may be delayed up to t_{ELQV} — t_{GLQV} after the falling edge of CE# without impact to t_{ELQV}

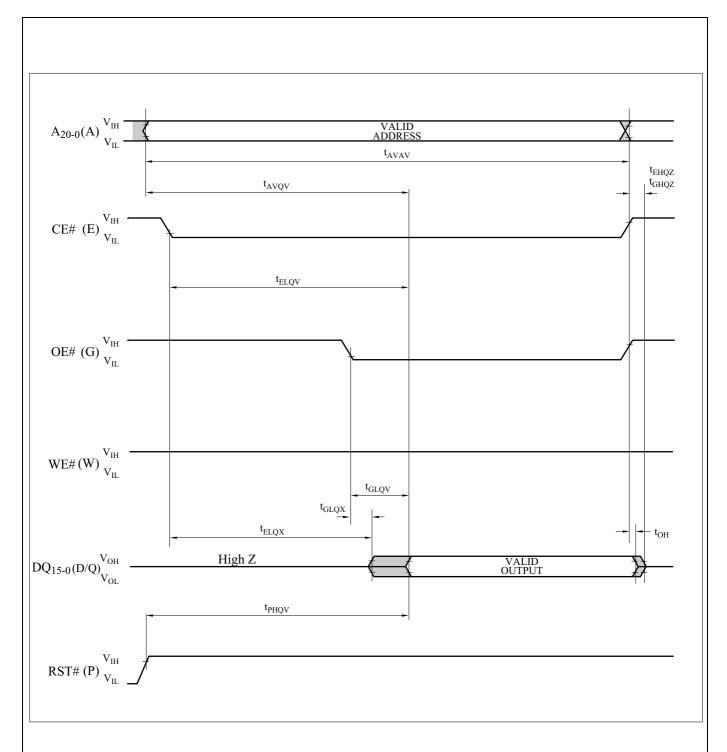


Figure 6. AC Waveform for Read Operations

1.2.5 AC Characteristics - Write Operations^{(1), (2)}

V_{CC} =2.7V-3.6V, T_A =-40°C to +85°C

Symbol	Parameter	Notes	Min.	Max.	Unit
t _{AVAV}	Write Cycle Time		90		ns
t _{PHWL} (t _{PHEL})	RST# High Recovery to WE# (CE#) Going Low	3	150		ns
t _{ELWL} (t _{WLEL})	CE# (WE#) Setup to WE# (CE#) Going Low		0		ns
$t_{WLWH}(t_{ELEH})$	WE# (CE#) Pulse Width	4	60		ns
t _{DVWH} (t _{DVEH})	Data Setup to WE# (CE#) Going High	7	40		ns
t _{AVWH} (t _{AVEH})	Address Setup to WE# (CE#) Going High	7	50		ns
t _{WHEH} (t _{EHWH})	CE# (WE#) Hold from WE# (CE#) High		0		ns
$t_{WHDX} (t_{EHDX})$	Data Hold from WE# (CE#) High		0		ns
$t_{WHAX} (t_{EHAX})$	Address Hold from WE# (CE#) High		0		ns
$t_{WHWL} (t_{EHEL})$	WE# (CE#) Pulse Width High	5	30		ns
t (t)	WP#/ACC High Setup to WE# (CE#) WP#/ACC=VIH	3	0		
$t_{SHWH} (t_{SHEH})$	Going High WP#/ACC=V _{ACCH}	3	200		ns
$t_{\mathrm{WHGL}} \left(t_{\mathrm{EHGL}} \right)$	Write Recovery before Read		30		ns
t _{QVSL}	WP#/ACC High Hold from Valid SRD, RY/BY# High Z	3	0		ns
t _{WHR0} (t _{EHR0})	WE# (CE#) High to SR.7 Going "0"	3, 6		t _{AVQV} +50	ns
$t_{WHRL} (t_{EHRL})$	WE# (CE#) High to RY/BY# Going Low	3		100	ns

NOTES:

HARP

- 1. The timing characteristics for reading the status register during block erase, full chip erase, program and OTP program operations are the same as during read-only operations. Refer to AC Characteristics for read-only operations.
- 2. A write operation can be initiated and terminated with either CE# or WE#.
- 3. Sampled, not 100% tested.
- 4. Write pulse width (t_{WP}) is defined from the falling edge of CE# or WE# (whichever goes low last) to the rising edge of CE# or WE# (whichever goes high first). Hence, t_{WP}=t_{WLWH}=t_{ELEH}=t_{WLEH}=t_{ELWH}.

 5. Write pulse width high (t_{WPH}) is defined from the rising edge of CE# or WE# (whichever goes high first) to the falling
- edge of CE# or WE# (whichever goes low last). Hence, $t_{WPH} = t_{WHWL} = t_{EHEL} = t_{WHEL} = t_{EHWL}$. 6. t_{WHR0} (t_{EHR0}) after the Read Query or Read Identifier Codes/OTP command= $t_{AVQV} + 100$ ns.
- 7. Refer to Table 4 for valid address and data for block erase, full chip erase, program, OTP program or lock bit configuration.

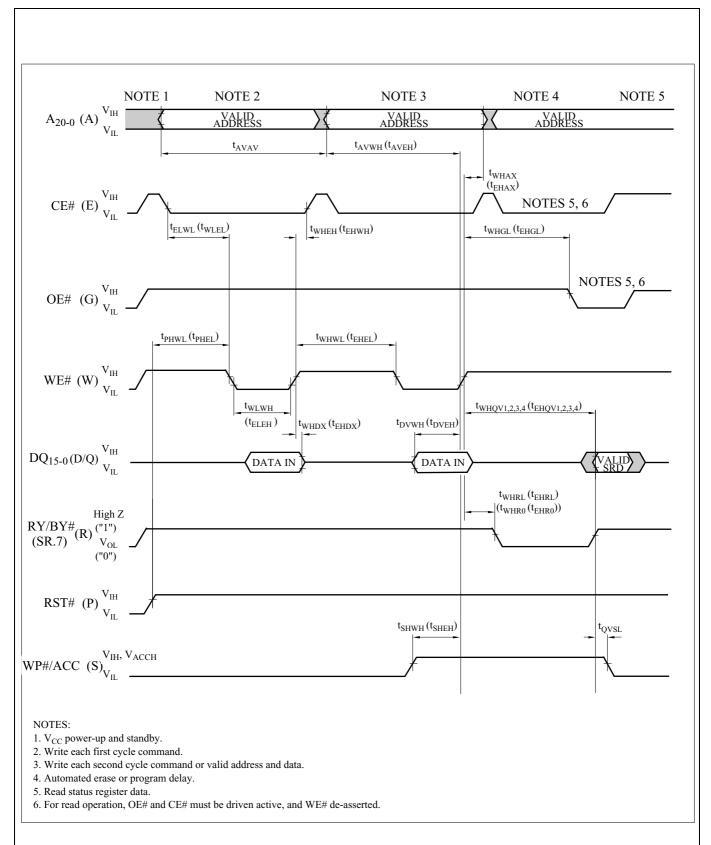


Figure 7. AC Waveform for Write Operations

1.2.6 Reset Operations

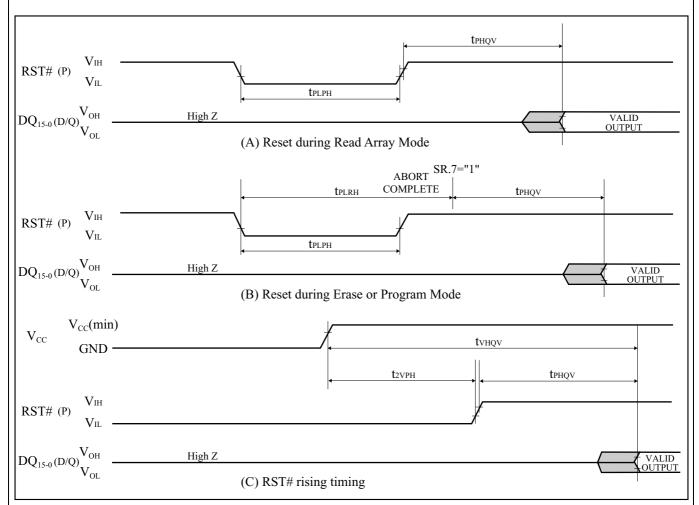


Figure 8. AC Waveform for Reset Operations

Reset AC Specifications (V_{CC} =2.7V-3.6V, T_A =-40°C to +85°C)

Symbol	Parameter	Notes	Min.	Max.	Unit
t_{PLPH}	RST# Low to Reset during Read (RST# should be low during power-up.)	1, 2, 3	100		ns
t_{PLRH}	RST# Low to Reset during Erase or Program	1, 3, 4		22	μs
t _{2VPH}	V _{CC} 2.7V to RST# High	1, 3, 5	100		ns
t_{VHQV}	V _{CC} 2.7V to Output Delay	3		1	ms

- 1. A reset time, t_{PHQV} , is required from the later of SR.7 (RY/BY#) going "1" (High Z) or RST# going high until outputs are valid. Refer to AC Characteristics Read-Only Operations for t_{PHQV} .
- 2. t_{PLPH} is <100ns the device may still reset but this is not guaranteed.
- 3. Sampled, not 100% tested.
- 4. If RST# asserted while a block erase, full chip erase, program or OTP program operation is not executing, the reset will complete within 100ns.
- 5. When the device power-up, holding RST# low minimum 100ns is required after V_{CC} has been in predefined range and also has been in stable there.