

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Vishay Semiconductors

Small Signal Schottky Diode

MECHANICAL DATA

Case: MiniMELF SOD-80
Weight: approx. 31 mg
Cathode band color: black
Packaging codes/options:

GS18/10K per 13" reel (8 mm tape), 10K/box GS08/2.5K per 7" reel (8 mm tape), 12.5K/box

FEATURES

 The LL101 series is a metal-on-silicon Schottky barrier device which is protected by a PN junction guard ring

 The low forward voltage drop and fast switching make it ideal for protection of MOS devices, steering, biasing and coupling diodes for fast switching and low logic level applications

- Integrated protection ring against static discharge
- Low capacitance
- · Low leakage current
- This diode is also available in the DO-35 case with type designation SD101A, B, C and in the SOD-123 case with type designation SD101AW-V, SD101BW-V, SD101CW-V
- AEC-Q101 qualified
- Material categorization: For definitions of compliance please see <u>www.vishav.com/doc?99912</u>

APPLICATIONS

- HF-detector
- Protection circuit
- Diode for low currents wits a low supply voltage
- · Small battery charger
- Power supplies
- DC/DC converter for notebooks

PARTS TABLE					
PART	TYPE DIFFERENTATION	ORDERING CODE	INTERNAL CONSTRUCTION	REMARKS	
LL101A	$V_R = 60 \text{ V}, V_F \text{ at } I_F = 1 \text{ mA max. } 410 \text{ mV}$	LL101A-GS18 or LL101A-GS08	Single diode	Tape and reel	
LL101B	$V_R = 50 \text{ V}, V_F \text{ at } I_F = 1 \text{ mA max. } 400 \text{ mV}$	LL101B-GS18 or LL101B-GS08	Single diode	Tape and reel	
LL101C	$V_R = 40 \text{ V}, V_F \text{ at } I_F = 1 \text{ mA max. } 390 \text{ mV}$	LL101C-GS18 or LL101C-GS08	Single diode	Tape and reel	

ABSOLUTE MAXIMUM RATINGS (T _{amb} = 25 °C, unless otherwise specified)						
PARAMETER	TEST CONDITION	PART	SYMBOL	VALUE	UNIT	
		LL101A	V_{RRM}	60	V	
Reverse voltage		LL101B	V_{RRM}	50	V	
		LL101C	V_{RRM}	40	V	
Power dissipation (infinite heatsink) (1)			P _{tot}	400	mW	
Forward continuous courrent			I _F	30	mA	
Maximum single cycle surge 10 µs square wave			I _{FSM}	2	Α	

Note

⁽¹⁾ Valid provided that electrodes are kept at ambient temperature

Vishay Semiconductors

THERMAL CHARACTERISTICS (T _{amb} = 25 °C, unless otherwise specified)						
PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT		
Junction temperature		Tj	125	°C		
Storage temperature range		T _{stg}	- 65 to + 150	°C		
Thermal resistance junction to ambient air	On PC board 50 mm x 50 mm x 1.6 mm	R _{thJA}	320	K/W		

ELECTRICAL CHARACTERISTICS (T _{amb} = 25 °C, unless otherwise specified)							
PARAMETER	TEST CONDITION	PART	SYMBOL	MIN.	TYP.	MAX.	UNIT
Reverse Breakdown Voltage	I _R = 10 μA	LL101A	V _(BR)	60			V
		LL101B	V _(BR)	50			V
		LL101C	V _(BR)	40			V
Leakage current	V _R = 50 V	LL101A	I _R			200	nA
	V _R = 40 V	LL101B	I _R			200	nA
	V _R = 30 V	LL101C	I _R			200	nA
	I _F = 1 mA	LL101A	V _F			0.410	V
	I _F = 1 mA	LL101B	V _F			0.400	V
Farmer describer and describer	I _F = 1 mA	LL101C	V _F			0.390	V
Forward voltage drop	I _F = 15 mA	LL101A	V _F			1000	mV
		LL101B	V _F			950	mV
		LL101C	V _F			900	mV
Diode capacitance	V _R = 0 V, f = 1 MHz	LL101A	C _D			2.0	pF
	V _R = 0 V, f = 1 MHz	LL101B	C _D			2.1	pF
		LL101C	C _D			2.2	pF
Reverse recovery time	$I_F = I_R = 5$ mA, recover to 0.1 I_R		t _{rr}			1	ns

TYPICAL CHARACTERISTICS (T_{amb} = 25 °C, unless otherwise specified)

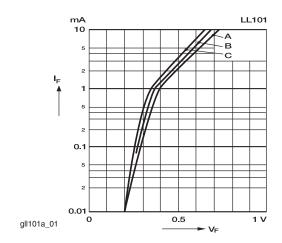


Fig. 1 - Typ. I_F vs. V_F for Primary Conduction through the Schottky Barrier

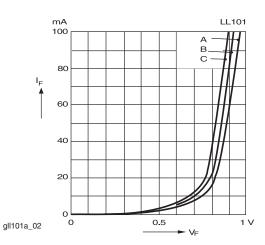


Fig. 2 - Typ. I_{F} of Combination Schottky Barrier and PN Junction Guard Ring

Vishay Semiconductors

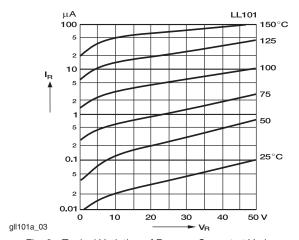
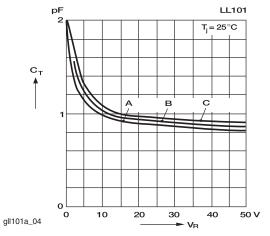
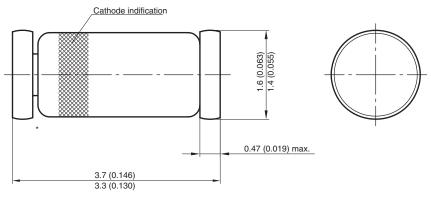
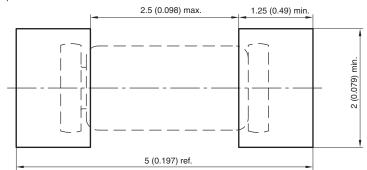


Fig. 3 - Typical Variation of Reverse Current at Various Temperatures


Fig. 4 - Typical Capacitance Curve as a Function of Reverse Voltage

PACKAGE DIMENSIONS in millimeters (inches): MiniMELF SOD-80

* The gap between plug and glass can be either on cathode or anode side

Foot print recommendation:

Document no.:6.560-5005.01-4 Rev. 8 - Date: 07.June.2006 96 12070

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.