imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

LM2576

52kHz Simple 3A Buck Regulator

General Description

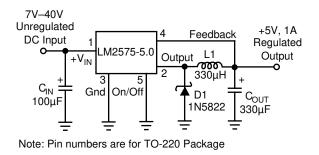
The LM2576 series of monolithic integrated circuits provide all the active functions for a step-down (buck) switching regulator. Fixed versions are available with a 3.3V, 5V, or 12V fixed output. Adjustable versions have an output voltage range from 1.23V to 37V. Both versions are capable of driving a 3A load with excellent line and load regulation.

These regulators are simple to use because they require a minimum number of external components and include internal frequency compensation and a fixed-frequency oscillator.

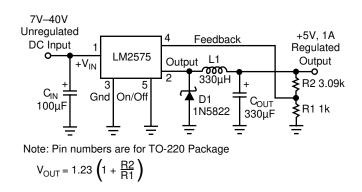
The LM2576 series offers a high efficiency replacement for popular three-terminal adjustable linear regulators. It substantially reduces the size of the heat sink, and in many cases no heat sink is required.

A standard series of inductors available from several different manufacturers are ideal for use with the LM2576 series. This feature greatly simplifies the design of switch-mode power supplies.

The feedback voltage is guaranteed to $\pm 2\%$ tolerance for adjustable versions, and the output voltage is guaranteed to $\pm 3\%$ for fixed versions, within specified input voltages and output load conditions. The oscillator frequency is guaranteed to $\pm 10\%$. External shutdown is included, featuring less than 200μ A standby current. The output switch includes cycle-by-cycle current limiting and thermal shutdown for full protection under fault conditions.


Features

- 3.3V, 5V, 12V, and adjustable output versions
- Voltage over specified line and load conditions: Fixed version: ±3% max. output voltage Adjustable version: ±2% max. feedback voltage
- · Guaranteed 3A output current
- Wide input voltage range: 4V to 40V
- Wide output voltage range
 1.23V to 37V
- · Requires only 4 external components
- · 52kHz fixed frequency internal oscillator
- Low power standby mode I_Ω typically < 200μA
- 80% efficiency (adjustable version typically > 80%)
- · Uses readily available standard inductors
- Thermal shutdown and current limit protection
- 100% electrical thermal limit burn-in


Applications

- · Simple high-efficiency step-down (buck) regulator
- Efficient pre-regulator for linear regulators
- · On-card switching regulators
- Positive to negative converter (inverting Buck-Boost)
- Isolated Flyback Converter using minimum number of external components
- Negative Boost Converter

Typical Applications

Fixed Regulator in Typical Application

Adjustable Regulator in Fixed Output Application

Ordering Information

Part Number [‡]			Temperature	
Standard	RoHS Compliant**	Range	Package	
LM2576BT*†	LM2576WT*†	–40°C to +85°C	TO-220-5	
LM2576-3.3BT ⁺	LM2576-3.3WT [†]	-40°C to +85°C	TO-220-5	
LM2576-5.0BT ⁺	LM2576-5.0WT [†]	–40°C to +85°C	TO-220-5	
LM2576-12BT [†]	LM2576-12WT [†]	–40°C to +85°C	TO-220-5	
LM2576BU*	LM2576WU*	–40°C to +85°C	TO-263-5	
LM2576-3.3BU	LM2576-3.3WU	–40°C to +85°C	TO-263-5	
LM2576-5.0BU	LM2576-5.0WU	-40°C to +85°C	TO-263-5	
LM2576-12BU	LM2576-12WU	-40°C to +85°C	TO-263-5	

* Adjustable output regulators. **RoHS compliant with "hot-melting solder" exemption.

[†] Contact factory for bent or staggered leads option.

Pin Configurations

5-LEAD TO-263 (U)

GND 5- ON/OFF 4- FEEDBACK 3- GROUND 2- OUTPUT 1- VIN 0 ш

Absolute Maximum Ratings (Note 1)

Operating	Ratings
-----------	---------

Temperature Range Supply Voltage $-40^{\circ}C \leq T_{_J} \leq +125^{\circ}C \\ 40V$

Maximum Supply Voltage ON/OFF Pin Input Voltage	$45V - 0.3V \le V \le +40V - 1V$
Output Voltage to Ground (Steady State) Power Dissipation	Internally Limited
Storage Temperature Range	-65°C to +150°C
Minimum ESD Rating	<u></u>
$C = 100 pF, R = 1.5 k\Omega$	2 kV
FB Pin	1 kV
Lead Temperature (soldering, 10 sec.)	260°C
Maximum Junction Temperature	150°C

Electrical Characteristics Specifications with standard typeface are for $T_J = 25^{\circ}C$, and those with **boldface type** apply over **full Operating Temperature Range**. Unless otherwise specified, $V_{IN} = 12V$, and $I_{LOAD} = 500$ mA.

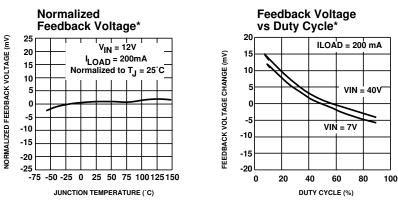
Symbol	Parameter	Conditions		LM2576	Units (Limits)
			Тур	Limit (Note 2)	
SYSTEM	PARAMETERS, ADJUS	STABLE REGULATORS (Note 3) Test Circ	uit <i>Figure 1</i>		
V _{OUT}	Feedback Voltage	$V_{IN} = 12V$, $I_{LOAD} = 0.5A$ $V_{OUT} = 5V$	1.230	1.217 1.243	V V(min) V(max)
V _{OUT}	Feedback Voltage LM2576	$\begin{array}{l} 0.5A \leq I_{LOAD} \leq 3A, \ 8V \leq V_{IN} \leq 40V \\ V_{OUT} = 5V \end{array}$	1.230	1.193/ 1.180 1.267/ 1.280	V V(min) V(max)
η	Efficiency	$V_{IN} = 12V, I_{LOAD} = 3A, V_{OUT} = 5V$	82		%
SYSTEM	PARAMETERS, 3.3V R	EGULATORS (Note 3) Test Circuit Figure	1		
V _{OUT}	Output Voltage	$V_{IN} = 12V$, $I_{LOAD} = 0.5A$ $V_{OUT} = 3.3V$	3.3	3.234 3.366	V V(min) V(max)
V _{OUT}	Output Voltage LM2576-3.3	$\begin{array}{l} 0.5\text{A} \leq \text{I}_{LOAD} \leq 3\text{A}, \ \text{6V} \leq \text{V}_{\text{IN}} \leq 40\text{V} \\ \text{V}_{OUT} = 3.3\text{V} \end{array}$	3.3	3.168/ 3.135 3.432/ 3.465	V V(min) V(max)
η	Efficiency	$V_{IN} = 12V, I_{LOAD} = 3A$	75		%
SYSTEM	PARAMETERS, 5V REG	GULATORS (Note 3) Test Circuit Figure 1			
V _{OUT}	Output Voltage	$V_{IN} = 12V$, $I_{LOAD} = 0.5A$ $V_{OUT} = 5V$	5.0	4.900 5.100	V V(min) V(max)
V _{OUT}	Output Voltage LM2576-5.0	$\begin{array}{l} 0.5A \leq I_{LOAD} \leq 3A, \ 8V \leq V_{IN} \leq 40V \\ V_{OUT} = 5V \end{array}$	5.0	4.800/ 4.750 5.200/ 5.250	V V(min) V(max)
η	Efficiency	$V_{IN} = 12V, I_{LOAD} = 3A$	82		%
SYSTEM	PARAMETERS, 12V RE	EGULATORS (Note 3) Test Circuit Figure 1			
V _{OUT}	Output Voltage	$V_{IN} = 25V$, $I_{LOAD} = 0.5A$ $V_{OUT} = 12V$	12	11.760 12.240	V V(min) V(max)
V _{OUT}	Output Voltage LMLM2576-12	$\begin{array}{l} 0.5A \leq I_{LOAD} \leq 3A, \ 15V \leq V_{IN} \leq 40V \\ V_{OUT} = 12V \end{array}$	12	11.520/ 11.400 12.480/ 12.600	V V(min) V(max)
η	Efficiency	V _{IN} = 25V, I _{LOAD} = 3A	88		%

Electrical Characteristics (continued)

Symbol	Parameter	Conditions	Тур	LM2576	Units
				Limit (Note 2)	(Limits)
DEVICE I	PARAMETERS, ADJUSTA	BLE REGULATOR			·
I _B	Feedback Bias Current	$V_{OUT} = 5V$	50	100/ 500	nA
DEVICE I	PARAMETERS, FIXED and	ADJUSTABLE REGULATORS			·
f _O	Oscillator Frequency		52	47/ 42 58/ 63	kHz kHz (min) kHz (max)
V _{SAT}	Saturation Voltage	I _{OUT} = 3A (Note 4)	1.4	1.8/ 2.0	V V(max)
DC	Max Duty Cycle (ON)	(Note 5)	98	93	% %(min)
I _{CL}	Current Limit	Peak Current, $t_{ON} \le 3\mu s$ (Note 4)	5.8	4.2/ 3.5 6.9/ 7.5	A A(min) A(max)
I _L	Output Leakage Current	$V_{IN} = 40V$, (Note 6), Output = $0V$ Output = $-1V$ (Note 6) Output = $-1V$	7.5	2 30	mA(max) mA mA(max)
Ι _Q	Quiescent Current	(Note 6)	5	10	mA mA(max)
I _{STBY}	Standby Quiescent Current	ON/OFF Pin = 5V (OFF)	50	200	μA μA(max)
$egin{array}{c} \theta_{JA} \\ \theta_{JA} \\ \theta_{JC} \end{array}$	Thermal Resistance	T,U Package, Junction to Ambient (Note 7) T,U Package, Junction to Ambient (Note 8) T,U Package, Junction to Case	65 45 2		°C/W

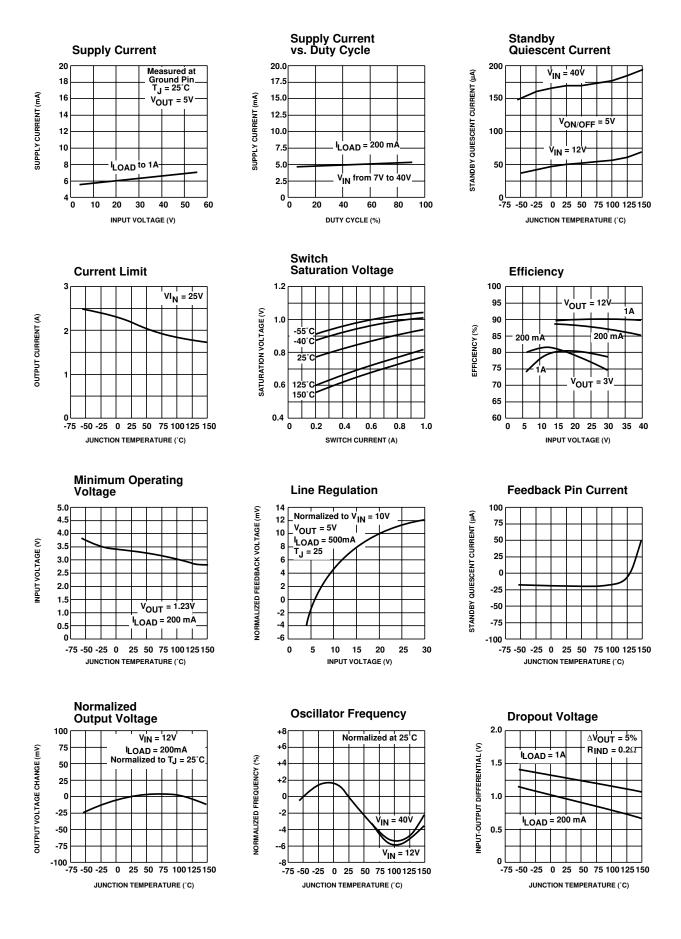
Electrical Characteristics (continued)

Symbol	Parameter	Conditions		LM2576	Units
			Тур	Limit (Note 2)	(Limits)
ON/OFF	CONTROL, FIXED and AD	JUSTABLE REGULATORS Test Cir	cuit Figure 1		
V _{IH} V _{IL}	ON/OFF Pin Logic Input Level	$V_{OUT} = 0V$ $V_{OUT} = 5V$	1.4 1.2	2.2/ 2.4 1.0/ 0.8	V(min) V(max)
I _{IH}	ON /OFF Pin Logic Current	ON /OFF Pin = 5V (OFF)	4	30	μΑ μA(max)
I _{IL}		ON/OFF Pin = 0V (ON)	0.01	10	μA μA(max)
Note 1:		ate limits beyond which damage to the devi do not guarantee specific performance lim			
Note 2:	All limits guaranteed at room temperature (standard type face) and at temperature extremes (bold type face) . All room temperature limits ar 100% production tested. All limits at temperature extreme are guaranteed via testing.				
Note 3:	External components such as the catch diode, inductor, input and output capacitors can affect switching regulator system performance. When the LM2576/LM1576 is used as shown in <i>Figure 1</i> test circuit, system performance will be shown in system parameters section of Electrical Characteristics.				
Note 4:	Output (pin 2) sourcing current. No diode, inductor or capacitor connected to output.				
Note 5:	Feedback (pin 4) removed from output and connected to 0V.				

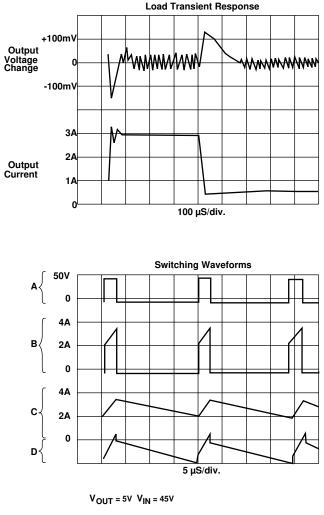

Note 6: Feedback (pin 4) removed from output and connected to 12V to force the output transistor OFF.

Note 7: Junction to ambient thermal resistance (no external heat sink) for the 5-lead TO-220 package mounted vertically, with 1/2" leads in a socket, or on PC board with minimum copper area.

Note 8: Junction to ambient thermal resistance (no external heat sink) for the 5-lead TO-220 package mounted vertically, with 1/4" leads soldered to PC board containing approximately 4 square inches of copper area surrounding the leads.


Note 9: Junction to ambient thermal resistance with approximately 1 square inch of pc board copper surrounding the leads. Additional copper will lower thermal resistance further.

Typical Performance Characteristics



* Adjustable version only

Typical Performance Characteristics (continued) (Circuit of Figure 1)

Typical Performance Characteristics (Circuit of Figure 1)

A: Output pin voltage 50V/div B: Output pin current 2A/div C: Inductor current 2A/div D: Output ripple voltage 50 mV/div., AC coupled

Horizontal Time Base: 5µS/div

Test Circuits and Layout Guidelines

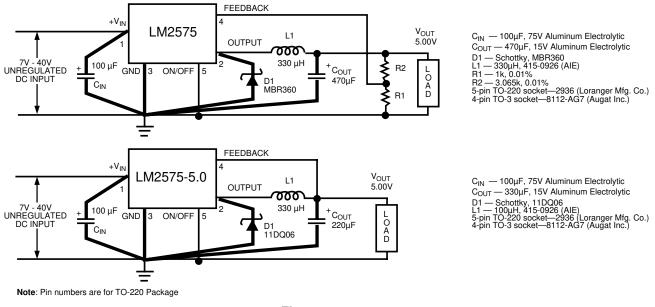
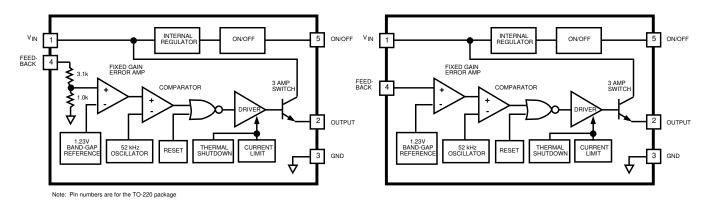
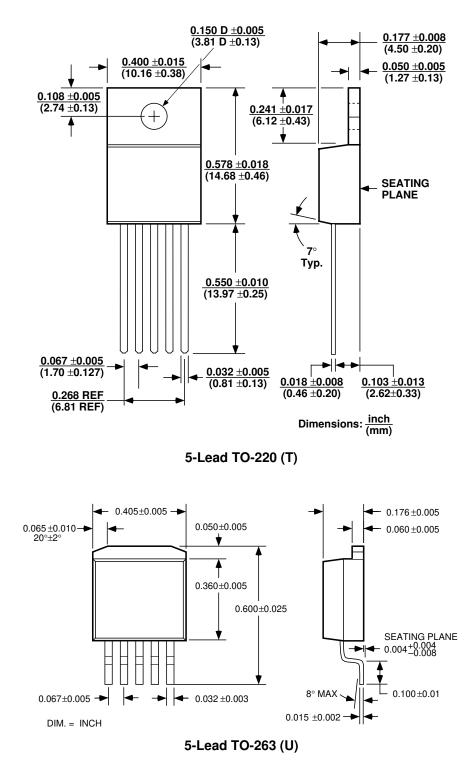



Figure 1.

As in any switching regulator, layout is very important. Rapidly switching currents associated with wiring inductance generate voltage transients which can cause problems. For minimal stray inductance and ground loops, the length of the leads indicated by heavy lines should be kept as short as possible. Single-point grounding (as indicated) or ground plane construction should be used for best results.


Block Diagrams

Adjustable Regulator

Package Information

MICREL INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA TEL + 1 (408) 944-0800 FAX + 1 (408) 474-1000 WEB http://www.micrel.com

This information furnished by Micrel in this data sheet is believed to be accurate and reliable. However no responsibility is assumed by Micrel for its use. Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.

© 2005 Micrel, Incorporated.