imall

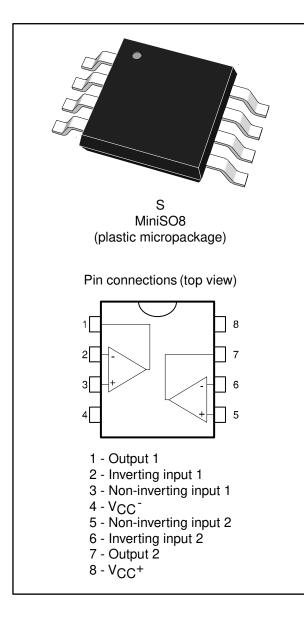
Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



LM2903WH

Low-power, dual-voltage comparator

Datasheet - production data

Features

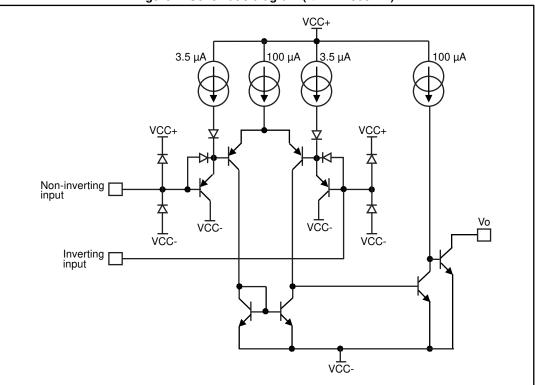
- Wide, single supply voltage range or dual supplies, 2 V to 36 V or ±1 V to ±18 V
- Very low supply current (0.4 mA) independent of supply voltage (1 mW/comparator at 5 V)
- Low input bias current: 25 nA typ.
- Low input offset current: ±5 nA typ.
- Input common-mode voltage range includes negative rail
- Low output saturation voltage: 250 mV typ. (I₀ = 4 mA)
- Differential input voltage range equal to the supply voltage
- TTL, DTL, ECL, MOS, CMOS compatible outputs
- ESD internal protection: 2 kV
- Wide operating temperature range: -40 to 150 °C

Description

This device consists of two independent low-power voltage comparators designed specifically to operate from a single supply over a wide range of voltages. Operation from split power supplies is also possible.

The input common-mode voltage range includes negative rail even though operated from a single power supply voltage.

All pins are protected against electrostatic discharge up to 2 kV. Consequently, the input voltages must not exceed the V_{CC}^+ or V_{CC}^- magnitudes.


This is information on a product in full production.

Contents

1	Schema	atic diagram	3
2	Absolut	e maximum ratings and operating conditions	4
3	Electric	al characteristics	5
4	Typical	application schematics	7
5	Package information		10
	5.1	MiniSO8 package information	11
6	Orderin	g information	12
7	Revisio	n history	13

1 Schematic diagram

Figure 1: Schematic diagram (1/2 LM2903WH)

2

Absolute maximum ratings and operating conditions

Table 1: Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{CC}	Supply voltage	±18 or 36	
V_{id}	Differential input voltage	$(V_{cc}) - 0.3 \text{ to } (V_{cc}) + 0.3$	v
V _{in}	Input voltage	$(v_{CC}) = 0.3 \ 10 \ (v_{CC}) = 0.3$	v
V _{out}	Output voltage	36	
	Output short-circuit to ground ⁽¹⁾	Infinite	
R _{thja}	Thermal resistance junction to ambient ⁽²⁾	190	°C/W
R _{thjc}	Thermal resistance junction to case ⁽²⁾	39	C/VV
Tj	Maximum junction temperature	160	°C
T _{stg}	Storage temperature range	-65 to 160	
	Human body model (HBM) ⁽³⁾	2000	
ESD	Machine model (MM) (4)	200	V
	CDM: charged device model ⁽⁵⁾	1500	

Notes:

⁽¹⁾Short-circuits from the output to V_{CC}^+ can cause excessive heating and possible destruction. The maximum output current is approximately 20 mA and is independent of the V_{CC}^+ magnitude.

⁽²⁾Short-circuits can cause excessive heating and destructive dissipation. Values are typical and for a four-layer PCB.

 $^{(3)}$ Human body model: a 100 pF capacitor is charged to the specified voltage, then discharged through a 1.5 k Ω resistor between two pins of the device. This is done for all couples of connected pin combinations while the other pins are floating.

⁽⁴⁾Machine model: a 200 pF capacitor is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5 Ω). This is done for all couples of connected pin combinations while the other pins are floating.

⁽⁵⁾Charged device model: all pins and the package are charged together to the specified voltage and then discharged directly to the ground through only one pin. This is done for all pins.

Symbol	Parameter	Value	Unit	
Common mode input voltage range		0 to (V _{CC} ⁺) - 1.5	V	
V _{icm}	-40 °C ≤ T _{amb} ≤ 150 °C	0 to (V _{CC} ⁺) - 2	v	
T _{oper}	Operating free-air temperature range	-40 to 150	°C	

Table 2: Operating conditions

3 Electrical characteristics

Table 3: VCC+ = 5 V, VCC- = GND, Tamb = 25 °C (unless otherwise specified)

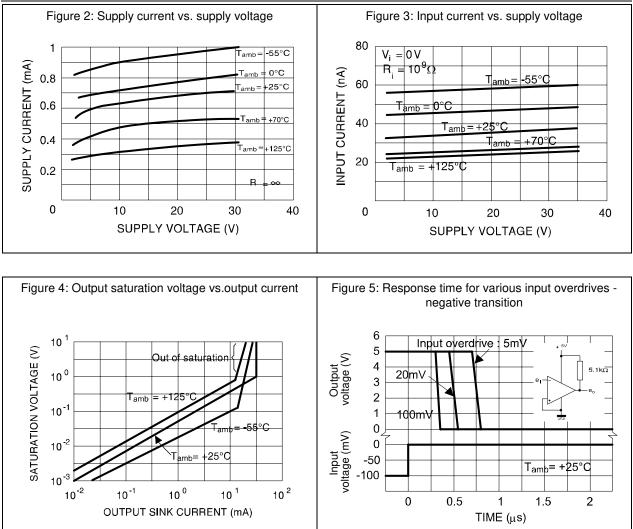
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit		
V	Input offset voltage ⁽¹⁾			1	7	mV		
V _{io}		$-40 \text{ °C} \le T_{amb} \le 150 \text{ °C}$			15	mv		
	Input offect ourrent			5	50			
l _{io}	Input offset current	$-40 \text{ °C} \le T_{amb} \le 150 \text{ °C}$			150	nA		
L.	Input bias current ⁽²⁾			25	250			
l _{ib}	input bias current	-40 °C \leq T _{amb} \leq 150 °C			400	400		
A _{vd}	Large signal voltage gain	V_{CC} = 15 V, R_L = 15 k Ω , V_o = 1 to 11 V	25	200		V/mV		
	Supply current (all comparators)	$V_{CC} = 5 V$, no load		0.4	1	mA		
lcc		$V_{CC} = 30 V$, no load		1	2.5			
V _{id}	Differential input voltage ⁽³⁾				V_{CC^+}	V		
Vol	Low level output voltage	$V_{id} = -1 \ V, \ I_{sink} = 4 \ mA$		250	400	mV		
VOL		-40 °C \leq T _{amb} \leq 150 °C			700			
I _{ОН}	High level output current	$V_{CC} \ = \ V_o = \ 30 \ V, \ V_{id} = \ 1 \ V$		0.1		nA		
ЧОН		$-40 \text{ °C} \le T_{amb} \le 150 \text{ °C}$			1	μA		
I _{sink}	Output sink current	V_{id} = -1 V, V $_{o}$ = 1.5 V	6	16		mA		
t _{res}	Small signal response time ⁽⁴⁾	R_L = 5.1 k Ω to V _{CC+}		1.3		μs		
+	Large signal response time, TTL	$\label{eq:Vref} V_{ref} = 1.4 \ V, \ R_L = 5.1 \ k\Omega \ to \ V_{CC+}, \\ output \ signal \ at \ 50 \ \% \ of \ final \ value$			500	ns		
t _{rel}	input ⁽⁵⁾	$V_{ref} = 1.4 \text{ V}, \text{R}_{\text{L}} = 5.1 \text{k} \Omega \text{ to } \text{V}_{\text{CC+}},$ output signal at 95 % of final value			1	μs		

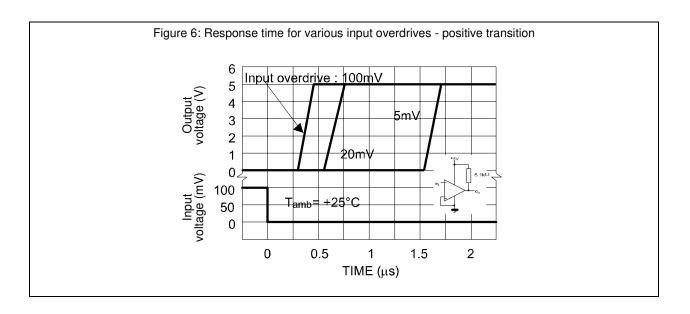
Notes:

⁽¹⁾At output switch point, $V_0 \approx 1.4$ V, $R_S = 0 \Omega$ with V_{CC}^+ from 5 V to 30 V, and over the full input common-mode range (0 V to $V_{CC}^+ - 1.5$ V).

⁽²⁾The direction of the input current is from the IC due to the PNP input stage. This current is essentially constant, independent of the state of the output, so no loading charge exists on the reference of input lines.

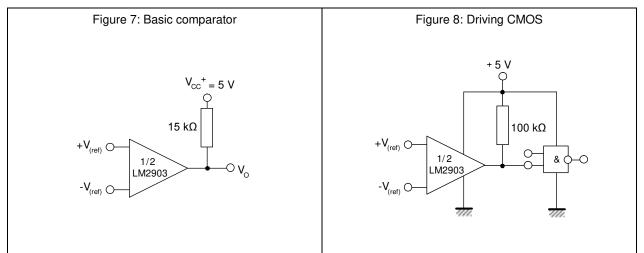
 $^{(3)}$ Positive excursions of input voltage may exceed the power supply level. As long as the other voltage remains within the common-mode range, the comparator provides a proper output state. The low input voltage state must not be less than -0.3 V (or 0.3 V below the negative power supply, if used).

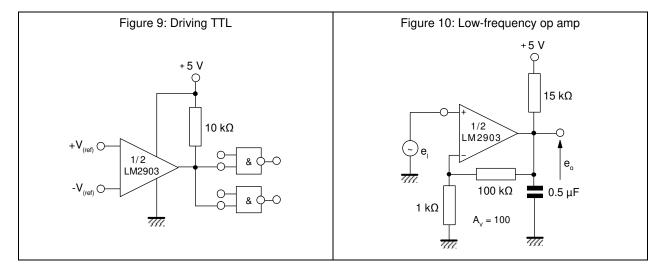

 $^{(4)}$ The response time specified is for a 100 mV input step with 5 mV overdrive.

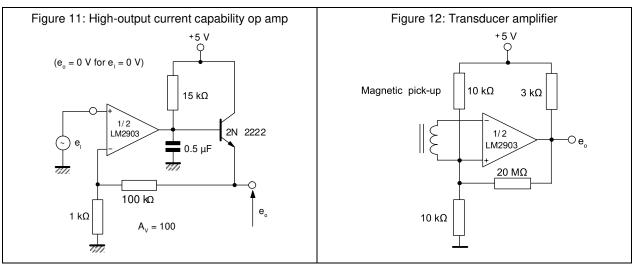

⁽⁵⁾Maximum values are guaranteed by design and evaluation.

Electrical characteristics

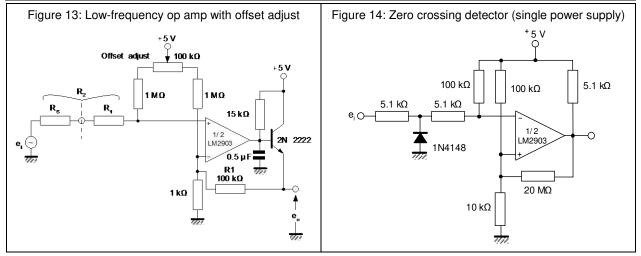
LM2903WH

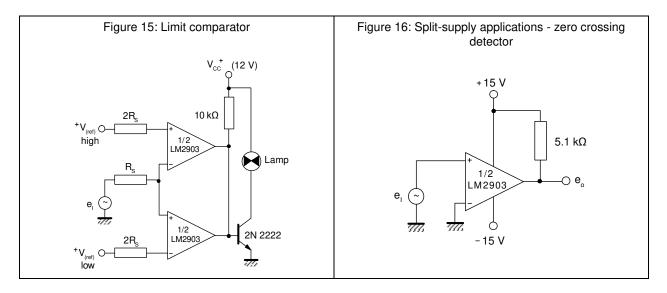


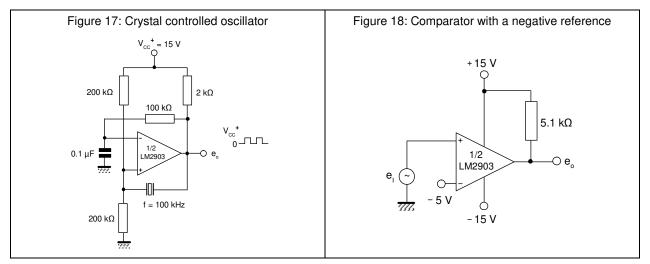



DocID028311 Rev 1

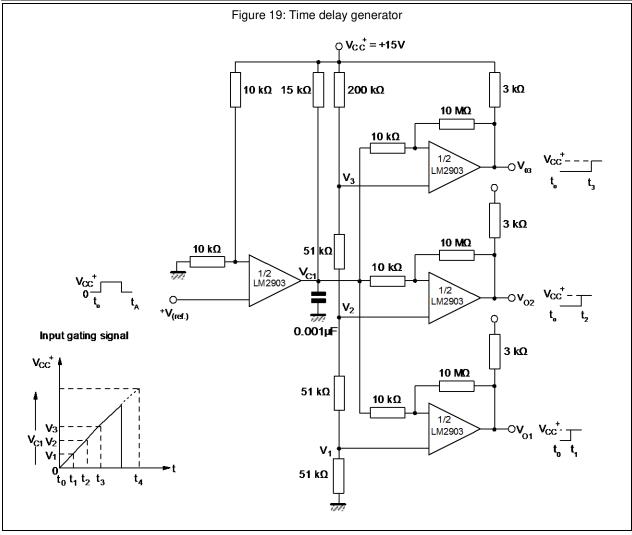
4 Typical application schematics

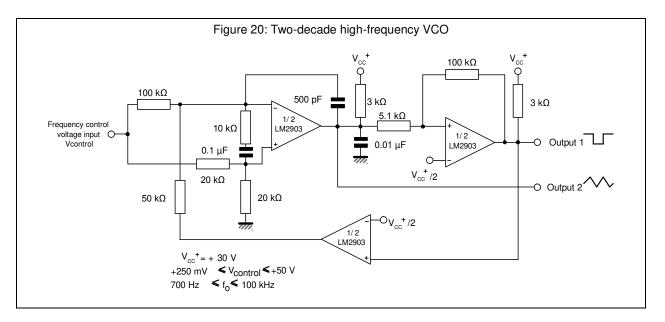

57

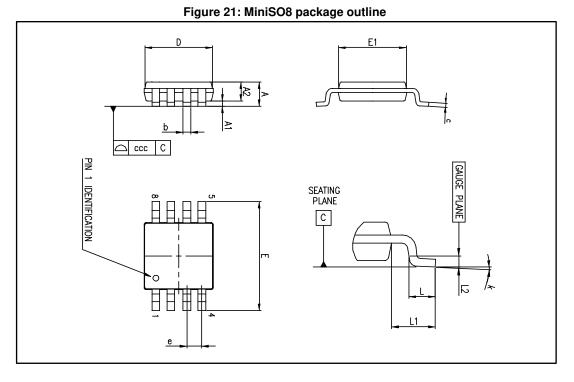

DocID028311 Rev 1


7/14

Typical application schematics


LM2903WH




57

5 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

5.1 MiniSO8 package information

Table 4: MiniSO8 mechanical data

			Dime	nsions			
Ref.		Millimeters			Inches		
	Min.	Тур.	Max.	Min.	Тур.	Max.	
А			1.1			0.043	
A1	0		0.15	0		0.006	
A2	0.75	0.85	0.95	0.030	0.033	0.037	
b	0.22		0.40	0.009		0.016	
С	0.08		0.23	0.003		0.009	
D	2.80	3.00	3.20	0.11	0.118	0.126	
E	4.65	4.90	5.15	0.183	0.193	0.203	
E1	2.80	3.00	3.10	0.11	0.118	0.122	
е		0.65			0.026		
L	0.40	0.60	0.80	0.016	0.024	0.031	
L1		0.95			0.037		
L2		0.25			0.010		
k	0°		8°	0°		8°	
CCC			0.10			0.004	

DocID028311 Rev 1

11/14

6 Ordering information

Table 5: Order codes						
Order code	Temperature range	Package	Packing	Marking		
LM2903WHYST (1)	-40 °C to +150 °C	MiniSO8 (automotive grade)	Tape and reel	K421		

Notes:

 $^{(1)}$ Qualification and characterization according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 and Q 002 or equivalent.

7 Revision history

Table 6: Document revision history

Date	Version	Changes
07-Oct-2015	1	Initial release

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics - All rights reserved

