imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

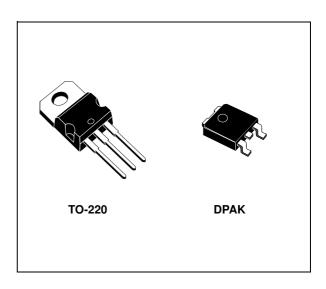
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

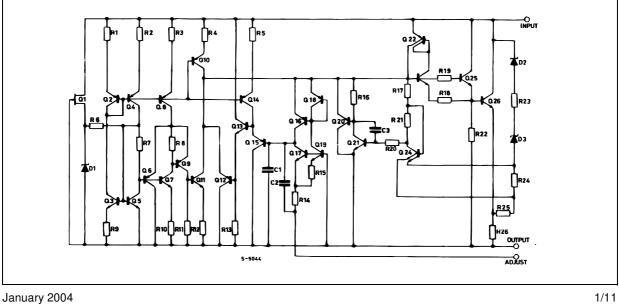
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

LM217M LM317M

MEDIUM CURRENT 1.2 TO 37V ADJUSTABLE VOLTAGE REGULATOR


- OUTPUT VOLTAGE RANGE: 1.2 TO 37V
- OUTPUT CURRENT IN EXCESS OF 500 mA
- LINE REGULATION TYP. 0.01%
- LOAD REGULATION TYP. 0.1%
- THERMAL OVERLOAD PROTECTION
- SHORT CIRCUIT PROTECTION
- OUTPUT TRANSITION SAFE AREA COMPENSATION
- FLOATING OPERATION FOR HIGH VOLTAGE APPLICATIONS

DESCRIPTION


The LM217M/LM317M are monolithic integrated circuits in TO-220 and DPAK packages intended for use as positive adjustable voltage regulators.

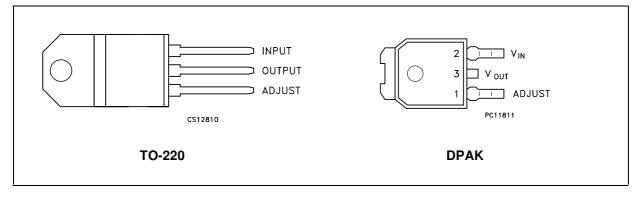
They are designed to supply until 500 mA of load current with an output voltage adjustable over a 1.2 to 37V range.

The nominal output voltage is selected by means of only a resistive divider, making the device exceptionally easy to use and eliminating the stocking of many fixed regulators.

SCHEMATIC DIAGRAM

LM217M/LM317M

ABSOLUTE MAXIMUM RATINGS


Symbol	Parameter		Value	Unit
V _{I-} V _O	Input-Output Differential Voltage	40	V	
Pd	Power Dissipation		Internally Limited	
т	Operating Junction Temperature	for LM217M	-40 to 125	°C
T _{opr}	Range (*)	for LM317M	0 to 125	
T _{stg}	Storage Temperature Range		-55 to 150	°C

(*) Re-Boot is not guaranteed for $T_J \ge 85^{\circ}C$.

THERMAL DATA

Symbol	Parameter	SOT-82 SOT-194 DPAK	TO-220	Unit	
R _{thj-case}	Thermal Resistance Junction-case Max	8	3	°C/W	
R _{thj-amb}	Thermal Resistance Junction-ambient Max	100	50	°C/W	

CONNECTION DIAGRAM (top view)

ORDERING CODES

TO-220	DPAK (*)
LM217MT	LM217MDT
LM317MT	LM317MDT
	LM217MT

(*) Available in Tape & Reel with the suffix "-TR".

TEST CIRCUIT

Symbol	Parameter	Test Conditions			Тур.	Max.	Unit
ΔV_O	Line Regulation	V _I - V _O = 3 to 40 V	T _J = 25°C		0.01	0.02	%/V
					0.02	0.05	
ΔV _O Load Reg	Load Regulation	$V_{O} \le 5 V$	T _J = 25°C		5	15	mV
		I _O = 10 to 500mA			20	50	
		$V_{O} \ge 5 V$	T _J = 25°C		0.1	0.3	%/V _O
		I _O = 10 to 500mA			0.3	1	
I _{ADJ}	Adjustment Pin Current				50	100	μA
ΔI_{ADJ}	Adjustment Pin Current	$V_1 - V_0 = 3$ to 40 V $I_0 = 10$ to 500 mA			0.2	5	μA
V_{REF}	Reference Voltage	$V_{I} - V_{O} = 3 \text{ to } 40 \text{ V}$ $I_{O} = 10 \text{ to } 500 \text{ mA}$		1.2	1.25	1.3	V
$\Delta V_{O}/V_{O}$	Output Voltage Temperature Stability				0.7		%
I _{O(min)}	Minimum Load Current	V _I - V _O = 40 V			3.5	5	mA
I _{O(max)}	Maximum Output Current	$V_{\rm I} - V_{\rm O} \le 15 {\rm V}$		500	1000		mA
		$V_{I} - V_{O} = 40 V, P_{d}$	< P _{dMAX} , T _J = 25°C		200		
eN	Output Noise Voltage (percentage of V_O)	B = 10 Hz to 100 KHz $T_J = 25^{\circ}C$			0.003		%
SVR	Supply Voltage Rejection (*)	$T_J = 25^{\circ}C$	$C_{ADJ} = 0$		65		dB
		f = 120 Hz	C _{ADJ} = 10 μF	66	80		1

ELECTRICAL CHARACTERISTICS OF LM217M (refer to the test circuits, T_J = - 40 to 125°C, V_I - V_O = 5 V, I_O = 100 mA, $P_d \le 7.5$ W, unless otherwise specified).

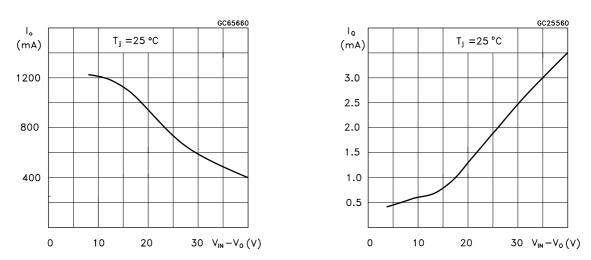
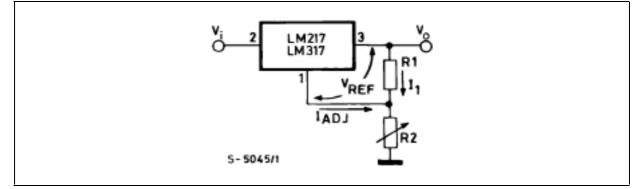
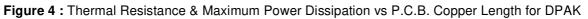
(*) CADJ is connected between Adjust pin and Ground.

ELECTRICAL CHARACTERISTICS OF LM317M (refer to the test circuits, $T_J = 0$ to 125°C, $V_I - V_O = 5 V$, $I_O = 100 mA$, $P_d \le 7.5 W$, unless otherwise specified).

Symbol	Parameter	Test Co	Min.	Тур.	Max.	Unit	
ΔV_O	Line Regulation	$V_{I} - V_{O} = 3 \text{ to } 40 \text{ V}$	T _J = 25°C		0.01	0.04	%/V
					0.02	0.07	
ΔV _O Load Regulation	Load Regulation	$V_{O} \le 5 V$	$T_J = 25^{\circ}C$		5	25	mV
		I _O = 10 to 500mA			20	70	
		$V_{O} \ge 5 V$	T _J = 25°C		0.1	0.5	%/V _O
		I _O = 10 to 500mA			0.3	1.5	
I _{ADJ}	Adjustment Pin Current				50	100	μΑ
ΔI_{ADJ}	Adjustment Pin Current	$V_1 - V_0 = 3$ to 40 V $I_0 = 10$ to 500 mA			0.2	5	μA
V_{REF}	Reference Voltage	$V_{I} - V_{O} = 3 \text{ to } 40 \text{ V}$ $I_{O} = 10 \text{ to } 500 \text{ mA}$		1.2	1.25	1.3	V
$\Delta V_{O}/V_{O}$	Output Voltage Temperature Stability				0.7		%
I _{O(min)}	Minimum Load Current	V _I - V _O = 40 V			3.5	10	mA
I _{O(max)}	Maximun Output Current	$V_{\rm I} - V_{\rm O} \le 15 {\rm V}$		500	1000		mA
		$V_{I} - V_{O} = 40 V$, $P_{d} < P_{dMAX}$, $T_{J} = 25^{\circ}C$			200		
eN	Output Noise Voltage (percentage of V_O)	B = 10 Hz to 100 KHz $T_{J} = 25^{\circ}C$			0.003		%
SVR	Supply Voltage Rejection (*)	$T_J = 25^{\circ}C$	$C_{ADJ} = 0$		65		dB
		f = 120 Hz	C _{ADJ} = 10 μF	66	80		1

(*) CADJ is connected between Adjust pin and Ground.

57

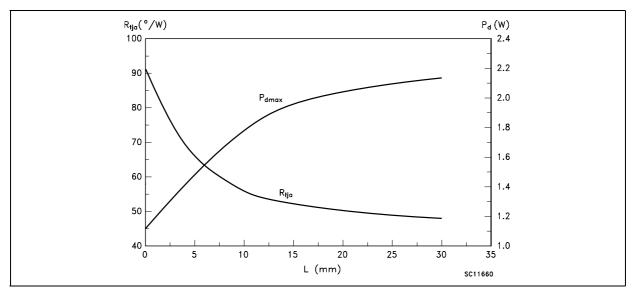

Figure 1 : Current Limit

Figure 2 : Minimum Operating Current

Figure 3 : Basic Adjustable Regulator

57

 P_{dmax} calculated for $T_a = 50$ °C.

APPLICATION INFORMATION

The LM217M/LM317M provide an internal reference voltage of 1.25V between the output and adjustment terminals. These devices are used to set a constant current flow across an external resistor divider (see fig. 3), giving an output voltage V_O of: $V_O = V_{REF} (1 + R_2 / R_1) + I_{ADJ} R_2$

The devices were designed to minimize the term I_{ADJ} (100µA max) and to maintain it very constant in line and load changes. Usually, the error term $I_{ADJ} \times R_2$ can be neglected. To obtain the previous requirement, all the regulator quiescent current is returned to the output terminal, imposing a minimum load current condition. If the load is insufficient, the output voltage will rise.

Since the LM217M/LM317M devices are floating regulators and "see" only the input-to-output differential voltage, supplies of very high voltage with respect to ground can be regulated as long as the maximum input-to-output differential is not exceeded. Furthermore, programmable regulators are easily obtained and, by connecting a fixed resistor between the adjustment and output, the devices can be used as a precision current regulator. In order to optimize the load regulation, the current set resistor R_1 (see fig. 3) should be tied as close as possible to the regulator, while the ground terminal of R_2 should be near the ground of the load to provide remote ground sensing.

EXTERNAL CAPACITORS (Fig.5)

Normally no capacitors are needed unless the devices are situated far from the input filter capacitors; in which case an input bypass is needed.

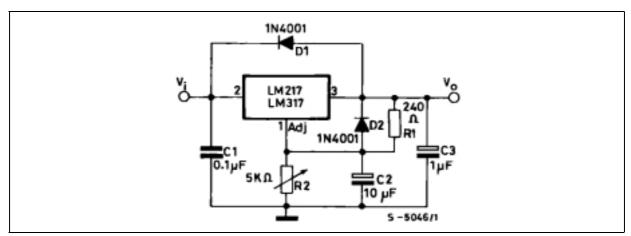
A 0.1μ F disc or 1μ F tantalum input bypass capacitor (C_I) is recommended to reduce the sensitivity to input line impedance.

The adjustment terminal may be bypassed to ground to improve ripple rejection. This capacitor (Cadj) prevents ripple from being amplified as the output voltage is increased. A 10μ F capacitor should improve ripple rejection of about 80dB at 120Hz in a 10V application.

Although the LM217M/LM317M devices are stable with no output capacitance like any feedback circuit, certain values of external capacitance can cause excessive ringing. An output capacitance (C_0) in the form of a 1µF tantalum or 25µF aluminium electrolytic capacitor on the output swamps this effect and insures stability.

PROTECTION DIODES (Fig.5)

When external capacitors are used with any IC regulator it is sometimes necessary to add protection diodes to prevent the capacitors from discharging through low current points into the regulator.


Figure 5 shows the LM217M/LM317M with the recommended protection diodes for output voltages in excess of 25V or high capacitance values ($C_3 > 25\mu$ F, $C_2 > 10\mu$ F). Diode D1 prevents C_3 from discharging through the IC during an input short-circuit. The combination of diodes D1 and D2 prevents C_2 from discharging through the regulator during an input or output short-circuit.

START-UP BLOCK

It's not guaranteed the Re-Boot of the device when the junction temperature is over 85°C.

57

LM217M/LM317M

Figure 6 : Slow Turn-on 15V Regulator

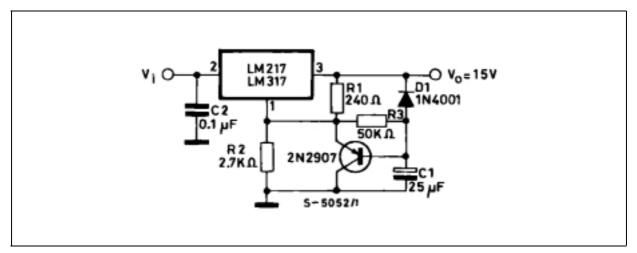
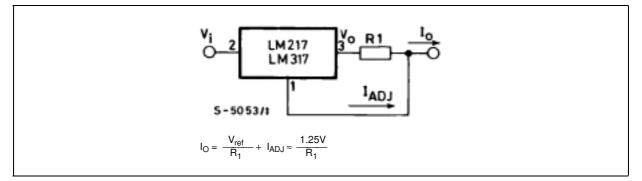



Figure 7 : Current Regulator

57

Figure 8:5V Electronic Shut-down Regulator

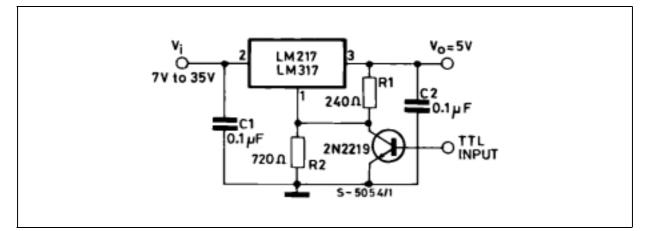
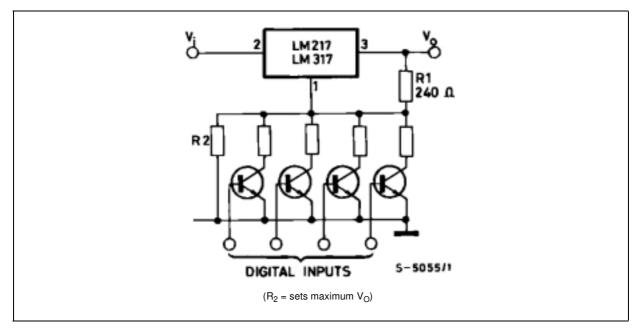
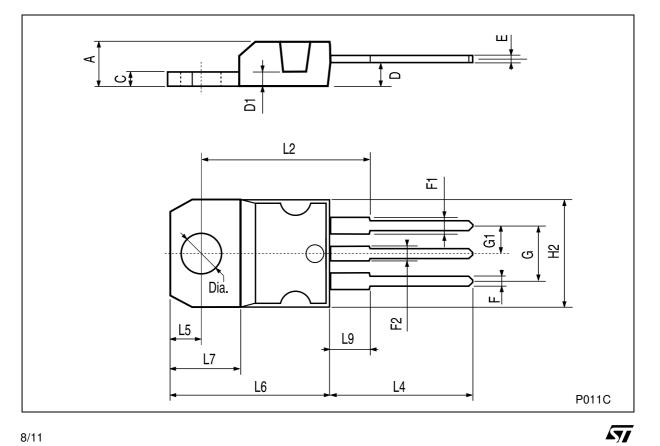
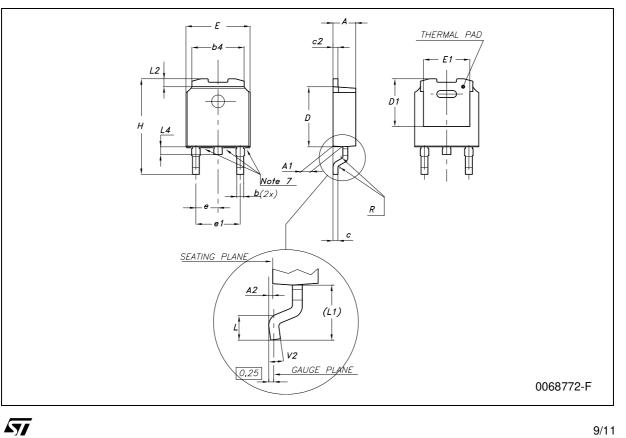




Figure 9 : Digitally Selected Outputs

LM217M/LM317M

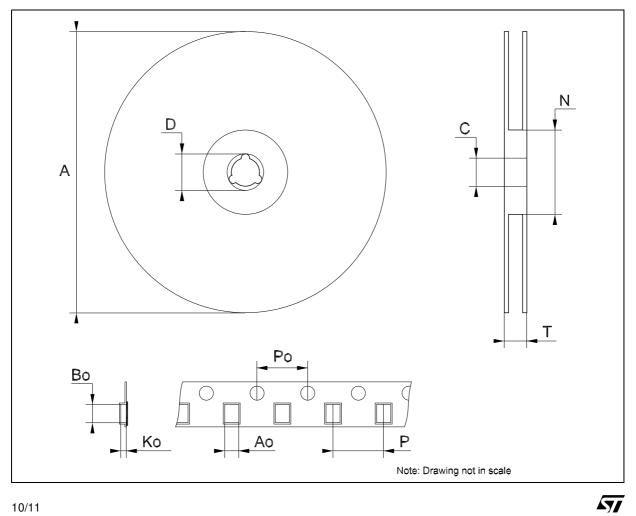
DIM.		mm.		inch			
DIN.	MIN.	ТҮР	MAX.	MIN.	TYP.	MAX.	
А	4.40		4.60	0.173		0.181	
С	1.23		1.32	0.048		0.051	
D	2.40		2.72	0.094		0.107	
D1		1.27			0.050		
Е	0.49		0.70	0.019		0.027	
F	0.61		0.88	0.024		0.034	
F1	1.14		1.70	0.044		0.067	
F2	1.14		1.70	0.044		0.067	
G	4.95		5.15	0.194		0.203	
G1	2.4		2.7	0.094		0.106	
H2	10.0		10.40	0.393		0.409	
L2		16.4			0.645		
L4	13.0		14.0	0.511		0.551	
L5	2.65		2.95	0.104		0.116	
L6	15.25		15.75	0.600		0.620	
L7	6.2		6.6	0.244		0.260	
L9	3.5		3.93	0.137		0.154	
DIA.	3.75		3.85	0.147		0.151	



TO-220 MECHANICAL DATA

8/11

DIM		mm.			inch			
DIM.	MIN.	ТҮР	MAX.	MIN.	TYP.	MAX.		
А	2.2		2.4	0.086		0.094		
A1	0.9		1.1	0.035		0.043		
A2	0.03		0.23	0.001		0.009		
В	0.64		0.9	0.025		0.035		
B2	5.2		5.4	0.204		0.212		
С	0.45		0.6	0.017		0.023		
C2	0.48		0.6	0.019		0.023		
D	6		6.2	0.236		0.244		
D1		5.1			0.200			
Е	6.4		6.6	0.252		0.260		
E1		4.7			0.185			
е		2.28			0.090			
e1	4.4		4.6	0.173		0.181		
Н	9.35		10.1	0.368		0.397		
L		1			0.039			
(L1)		2.8			0.110			
L2		0.8			0.031			
L4	0.6		1	0.023		0.039		



9/11

DIM.		mm.			inch			
	MIN.	ТҮР	MAX.	MIN.	TYP.	MAX.		
А			330			12.992		
С	12.8	13.0	13.2	0.504	0.512	0.519		
D	20.2			0.795				
Ν	60			2.362				
Т			22.4			0.882		
Ao	6.80	6.90	7.00	0.268	0.272	0.2.76		
Во	10.40	10.50	10.60	0.409	0.413	0.417		
Ko	2.55	2.65	2.75	0.100	0.104	0.105		
Po	3.9	4.0	4.1	0.153	0.157	0.161		
Р	7.9	8.0	8.1	0.311	0.315	0.319		

Tape & Reel DPAK-PPAK MECHANICAL DATA

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics All other names are the property of their respective owners

© 2004 STMicroelectronics - All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States. http://www.st.com

