

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

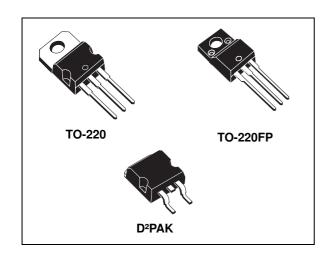
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



LM217, LM317

1.2 V to 37 V adjustable voltage regulators

Datasheet - production data

Description

The LM217, LM317 are monolithic integrated circuits in TO-220, TO-220FP and D²PAK packages intended for use as positive adjustable voltage regulators. They are designed to supply more than 1.5 A of load current with an output voltage adjustable over a 1.2 to 37 V range. The nominal output voltage is selected by means of a resistive divider, making the device exceptionally easy to use and eliminating the stocking of many fixed regulators.

Features

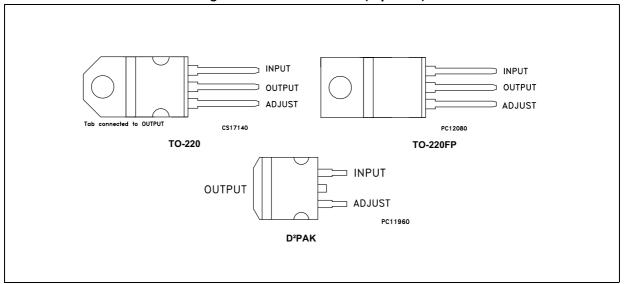
- Output voltage range: 1.2 to 37 V
- Output current in excess of 1.5 A
- 0.1 % line and load regulation
- · Floating operation for high voltages
- Complete series of protections: current limiting, thermal shutdown and SOA control

Table 1. Device summary

Order codes					
TO-220 (single gauge) TO-220 (double gauge) D2PAK (tape and reel) TO-220F					
LM217T	LM217T-DG	LM217D2T-TR			
LM317T	LM317T-DG	LM317D2T-TR	LM317P		
LM317BT					

Contents LM217, LM317

Contents


1	Pin configuration3
2	Maximum ratings
3	Diagram 5
4	Electrical characteristics 6
5	Typical characteristics9
6	Application information
7	Package mechanical data
8	Packaging mechanical data
9	Revision history

LM217, LM317 Pin configuration

1 Pin configuration

Figure 1. Pin connections (top view)

Maximum ratings LM217, LM317

2 Maximum ratings

Table 2. Absolute maximum ratings

Symbol	Parameter		Value	Unit
V _I - V _O	Input-reference differential voltage		40	٧
Io	Output current		Internally limited	Α
		LM217	- 25 to 150	°C
T _{OP}	Operating junction temperature for:	LM317	0 to 125	10
		LM317B	-40 to 125	
P _D	Power dissipation	•	Internally limited	
T _{STG}	Storage temperature		- 65 to 150	°C

Note:

Absolute maximum ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied.

Table 3. Thermal data

Symbol	Parameter	D ² PAK	TO-220	TO-220FP	Unit
R _{thJC}	Thermal resistance junction-case	3	5	5	°C/W
R _{thJA}	Thermal resistance junction-ambient	62.5	50	60	°C/W

LM217, LM317 Diagram

3 Diagram

Figure 2. Schematic diagram

Electrical characteristics LM217, LM317

4 Electrical characteristics

 $\rm V_I$ - $\rm V_O$ = 5 V, $\rm I_O$ = 500 mA, $\rm I_{MAX}$ = 1.5 A and $\rm P_{MAX}$ = 20 W, $\rm T_J$ = - 55 to 150 °C, unless otherwise specified.

Table 4. Electrical characteristics for LM217

Symbol	Parameter	Test condition	ıs	Min.	Тур.	Max.	Unit	
4)/	Line regulation	$V_1 - V_0 = 3 \text{ to } 40 \text{ V}$	$T_J = 25^{\circ}C$		0.01	0.02	%/V	
ΔV _O	Line regulation	$V_1 - V_0 = 31040 \text{ V}$			0.02	0.05	70/ V	
		V _O ≤5 V	$T_J = 25^{\circ}C$		5	15	mV	
ΔV _O	Load regulation	$I_O = 10 \text{ mA to } I_{MAX}$			20	50	111 V	
Δν _Ο	Load regulation	V _O ≥5 V,	$T_J = 25^{\circ}C$		0.1	0.3	%	
		$I_O = 10 \text{ mA to } I_{MAX}$			0.3	1	/0	
I _{ADJ}	Adjustment pin current				50	100	μΑ	
ΔI_{ADJ}	Adjustment pin current	$V_1 - V_0 = 2.5 \text{ to } 40V I_0 = 3.5 \text{ to } 40V$	10 mA to I _{MAX}		0.2	5	μΑ	
V _{REF}	Reference voltage	$V_I - V_O = 2.5 \text{ to } 40V I_O = 10 \text{ mA to } I_{MAX}$ $P_D \le P_{MAX}$		1.2	1.25	1.3	V	
$\Delta V_{O}/V_{O}$	Output voltage temperature stability				1		%	
I _{O(min)}	Minimum load current	V _I - V _O = 40 V			3.5	5	mA	
1.	Maximum load current	$V_{I} - V_{O} \le 15 \text{ V}, P_{D} < P_{MAX}$		1.5	2.2		Α	
I _{O(max)}	iviaximum ioau current	$V_{I} - V_{O} = 40 \text{ V}, P_{D} < P_{MAX}, T_{J} = 25^{\circ}\text{C}$		$V_{I} - V_{O} = 40 \text{ V}, P_{D} < P_{MAX}, T_{J} = 25^{\circ}\text{C}$		0.4		^
eN	Output noise voltage (percentage of V _O)	B = 10Hz to 100kHz, T _J = 25°C			0.003		%	
SVR	Supply voltage rejection (1)	T _{.I} = 25°C, f = 120Hz	C _{ADJ} =0		65		- dB	
SVN	Supply voltage rejection (*)	1 = 25 0, 1 = 120112	C _{ADJ} =10μF	66	80			

^{1.} C_{ADJ} is connected between adjust pin and ground.

 V_I - V_O = 5 V, I_O = 500 mA, I_{MAX} = 1.5 A and P_{MAX} = 20 W, T_J = 0 to 125 °C, unless otherwise specified.

Table 5. Electrical characteristics for LM317

Symbol	Parameter	Test condition	ıs	Min.	Тур.	Max.	Unit	
41/	Line regulation	$V_1 - V_0 = 3 \text{ to } 40 \text{ V}$	$T_J = 25^{\circ}C$		0.01	0.04	0/.0/	
ΔV_{O}	Line regulation	$V_1 - V_0 = 31040 \text{ V}$			0.02	0.07	%/V	
		V _O ≤ 5 V	$T_J = 25^{\circ}C$		5	25	mV	
ΔV_{O}	Load regulation	$I_O = 10 \text{ mA to } I_{MAX}$			20	70	111 V	
740	Load regulation	V _O ≥5 V,	$T_J = 25^{\circ}C$		0.1	0.5	%	
		$I_O = 10 \text{ mA to } I_{MAX}$			0.3	1.5	/0	
I _{ADJ}	Adjustment pin current				50	100	μΑ	
ΔI_{ADJ}	Adjustment pin current	$V_I - V_O = 2.5 \text{ to } 40V,$ $I_O = 10 \text{ mA to } 500\text{mA}$		0.2	5	μΑ		
V _{REF}	Reference voltage (between pin 3 and pin 1)	$V_I - V_O = 2.5 \text{ to } 40V I_O = 10 \text{ mA to } 500\text{mA}$ $P_D \le P_{MAX}$		1.2	1.25	1.3	V	
$\Delta V_{O}/V_{O}$	Output voltage temperature stability			1		%		
I _{O(min)}	Minimum load current	V _I - V _O = 40 V			3.5	10	mA	
1.	Maximum load current	$V_{I} - V_{O} \le 15 \text{ V}, P_{D} < P_{MAX}$		1.5	2.2		Α	
I _{O(max)}	I waxiinum load current	$V_{I} - V_{O} = 40 \text{ V}, P_{D} < P_{MAX}, T_{J} = 25^{\circ}\text{C}$			0.4		^	
eN	Output noise voltage (percentage of V _O)	B = 10Hz to 100kHz, T _J = 25°C			0.003		%	
SVR	Supply voltage rejection (1)	T _ 25°C f _ 120Hz	C _{ADJ} =0		65		- dB	
SVN	Supply voltage rejection (**)	1	C _{ADJ} =10μF	66	80			

^{1.} C_{ADJ} is connected between adjust pin and ground.

Electrical characteristics LM217, LM317

 V_I - V_O = 5 V, I_O = 500 mA, I_{MAX} = 1.5 A and P_{MAX} = 20 W, T_J = - 40 to 125 °C, unless otherwise specified.

Table 6. Electrical characteristics for LM317B

Symbol	Parameter	Test con	ditions	Min.	Тур.	Max.	Unit	
41/	Line regulation	$V_1 - V_0 = 3 \text{ to } 40 \text{ V}$	T _J = 25°C		0.01	0.04	%/V	
ΔV_{O}	Line regulation	$V_1 - V_0 = 31040 V$			0.02	0.07	70/ V	
		V _O ≤ 5 V	$T_J = 25^{\circ}C$		5	25	mV	
$\Delta V_{\rm O}$	Load regulation	$I_O = 10 \text{ mA to } I_{MAX}$			20	70	111 V	
Δνο	Load regulation	V _O ≥5 V,	$T_J = 25^{\circ}C$		0.1	0.5	0/_	
		$I_O = 10 \text{ mA to } I_{MAX}$			0.3	1.5	- %	
I _{ADJ}	Adjustment pin current				50	100	μΑ	
ΔI_{ADJ}	Adjustment pin current	$V_I - V_O = 2.5 \text{ to } 40V,$ $I_O = 10 \text{ mA to } 500\text{mA}$			0.2	5	μА	
V _{REF}	Reference voltage (between pin 3 and pin 1)	$V_I - V_O = 2.5 \text{ to } 40V I_O = 10 \text{ mA to } 500\text{mA}$ $P_D \le P_{MAX}$		1.2	1.25	1.3	V	
$\Delta V_{O}/V_{O}$	Output voltage temperature stability				1		%	
I _{O(min)}	Minimum load current	V _I - V _O = 40 V			3.5	10	mA	
1.	Maximum load current	$V_{I} - V_{O} \le 15 \text{ V}, P_{D} < P_{O} \le 15 \text{ V}$	MAX	1.5	2.2		Α	
'O(max)	$I_{O(max)}$ Maximum load current $V_I - V_O = 40 \text{ V}, P_D < P_{MAX}, T_J = 0$		$_{MAX}$, $T_{J} = 25^{\circ}C$		0.4		^	
eN	Output noise voltage (percentage of V _O)	B = 10Hz to 100kHz, T _J = 25°C			0.003		%	
SVR	Supply voltage rejection (1)	T _{.I} = 25°C, f = 120Hz	C _{ADJ} =0		65		٩D	
SVN	Supply voltage rejection (**)	1J = 25 O, 1 = 120 12	C _{ADJ} =10μF	66	80		dB	

^{1.} C_{ADJ} is connected between adjust pin and ground.

5 Typical characteristics

Figure 3. Output current vs. input-output differential voltage

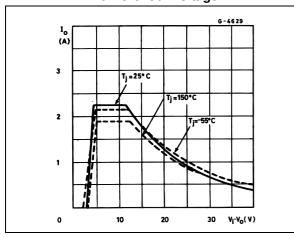


Figure 4. Dropout voltage vs. junction temperature

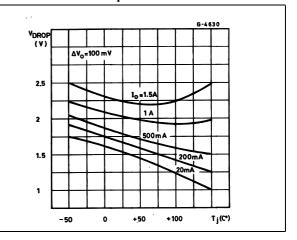


Figure 5. Reference voltage vs. junction

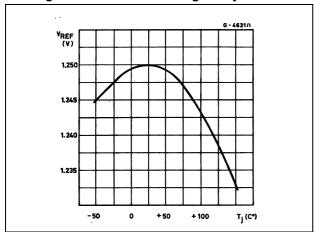
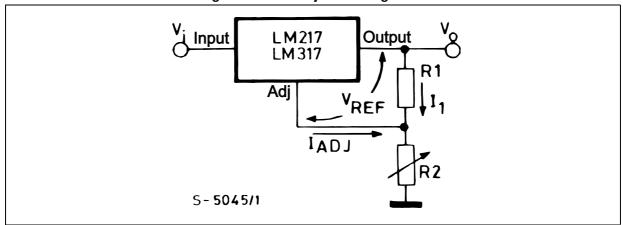



Figure 6. Basic adjustable regulator

6 Application information

The LM217, LM317 provides an internal reference voltage of 1.25 V between the output and adjustments terminals. This is used to set a constant current flow across an external resistor divider (see *Figure 6*), giving an output voltage V_O of:

$$V_O = V_{REF} (1 + R_2/R_1) + I_{ADJ} R_2$$

The device was designed to minimize the term I_{ADJ} (100 µA max) and to maintain it very constant with line and load changes. Usually, the error term $I_{ADJ} \times R_2$ can be neglected. To obtain the previous requirement, all the regulator quiescent current is returned to the output terminal, imposing a minimum load current condition. If the load is insufficient, the output voltage will rise. Since the LM217, LM317 is a floating regulator and "sees" only the input-to-output differential voltage, supplies of very high voltage with respect to ground can be regulated as long as the maximum input-to-output differential is not exceeded. Furthermore, programmable regulators are easily obtainable and, by connecting a fixed resistor between the adjustment and output, the device can be used as a precision current regulator. In order to optimize the load regulation, the current set resistor R_1 (see *Figure 6*) should be tied as close as possible to the regulator, while the ground terminal of R_2 should be near the ground of the load to provide remote ground sensing. Performance may be improved with added capacitance as follow:

- An input bypass capacitor of 0.1 μF
- An adjustment terminal to ground 10 μF capacitor to improve the ripple rejection of about 15 dB (C_{ADJ}).
- An 1 μF tantalum (or 25 μF Aluminium electrolytic) capacitor on the output to improve transient response. In addition to external capacitors, it is good practice to add protection diodes, as shown in *Figure 7* D1 protect the device against input short circuit, while D2 protect against output short circuit for capacitance discharging.

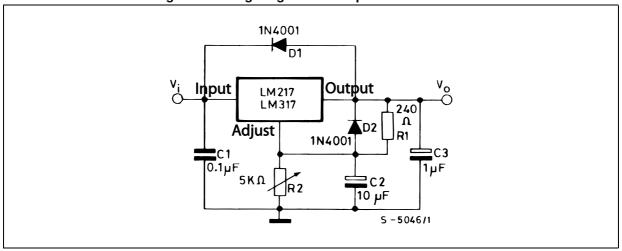
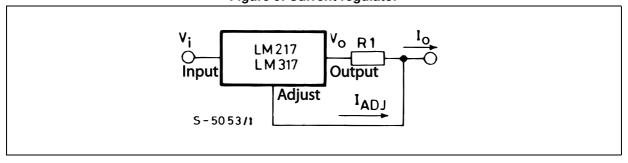


Figure 7. Voltage regulator with protection diodes


Note: D1 protect the device against input short circuit, while D2 protects against output short circuit for capacitors discharging.

10/25 DocID2154 Rev 19

V_i Output V_{i} Output V_{i} $V_{o} = 15V$ $V_{o} =$

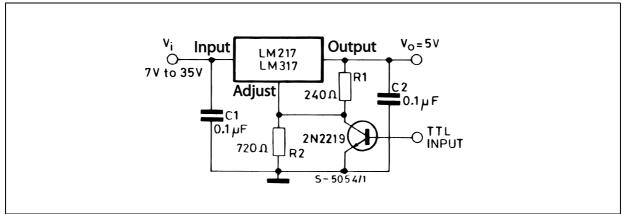

Figure 8. Slow turn-on 15 V regulator

Figure 9. Current regulator

 $I_{O} = (V_{REF} / R_{1}) + I_{ADJ} = 1.25 \text{ V} / R_{1}$

Figure 10. 5 V electronic shut-down regulator

No Input LM 217 Dutput Vo Adjust R1 240 Ω

DIGITAL INPUTS S-5055/1

Figure 11. Digitally selected outputs

(R₂ sets maximum V_O)

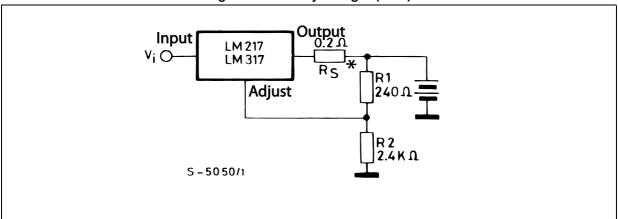


Figure 12. Battery charger (12 V)

^{*} R_S sets output impedance of charger $Z_O = R_S$ (1 + R_2/R_1). Use of R_S allows low charging rates whit fully charged battery.

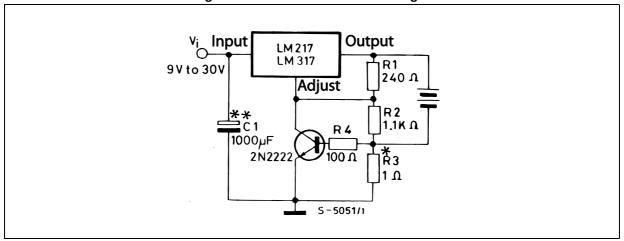


Figure 13. Current limited 6 V charger

^{*} R3 sets peak current (0.6 A for 1 0).

^{**} C1 recommended to filter out input transients.

7 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

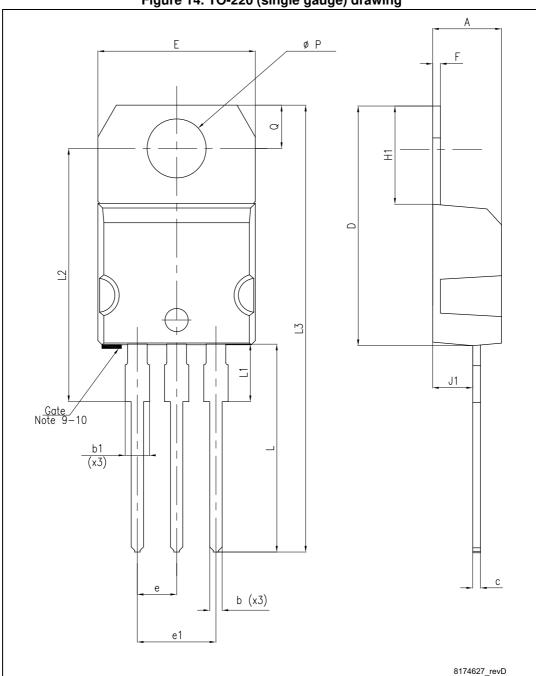


Figure 14. TO-220 (single gauge) drawing

4

Table 7. TO-220 (single gauge) mechanical data

Dim	mm				
Dim.	Min.	Тур.	Max.		
А	4.40		4.60		
b	0.61		0.88		
b1	1.14		1.70		
С	0.48		0.70		
D	15.25		15.75		
Е	10		10.40		
е	2.40		2.70		
e1	4.95		5.15		
F	0.51		0.60		
H1	6.20		6.60		
J1	2.40		2.72		
L	13		14		
L1	3.50		3.93		
L20		16.40			
L30		28.90			
ØP	3.75		3.85		
Q	2.65		2.95		

øΡ Ε D L20 L30 b1(X3) -- *b (Х3)* 0015988_typeA_Rev_T

Figure 15. TO-220 (dual gauge) drawing

Table 8. TO-220 (dual gauge) mechanical data

Dim		mm	
Dim.	Min.	Тур.	Max.
Α	4.40		4.60
b	0.61		0.88
b1	1.14		1.70
С	0.48		0.70
D	15.25		15.75
D1		1.27	
Е	10		10.40
е	2.40		2.70
e1	4.95		5.15
F	1.23		1.32
H1	6.20		6.60
J1	2.40		2.72
L	13		14
L1	3.50		3.93
L20		16.40	
L30		28.90	
ØP	3.75		3.85
Q	2.65		2.95

A B Dia L6 F1 F2 F G1 G1 G1 T012510_Rev_K

Figure 16. TO-220FP drawing

Table 9. TO-220FP mechanical data

	Table 5. 10-22511 internation data					
Dim.		mm				
5	Min.	Тур.	Max.			
А	4.4		4.6			
В	2.5		2.7			
D	2.5		2.75			
E	0.45		0.7			
F	0.75		1			
F1	1.15		1.70			
F2	1.15		1.70			
G	4.95		5.2			
G1	2.4		2.7			
Н	10		10.4			
L2		16				
L3	28.6		30.6			
L4	9.8		10.6			
L5	2.9		3.6			
L6	15.9		16.4			
L7	9		9.3			
Dia	3		3.2			

SEATING PLANE
COPLANARITY A1

R

GAUGE PLANE
V2

0079457_T

Figure 17. D²PAK drawing

Table 10. D²PAK mechanical data

Dim		mm	
Dim. —	Min.	Тур.	Max.
Α	4.40		4.60
A1	0.03		0.23
b	0.70		0.93
b2	1.14		1.70
С	0.45		0.60
c2	1.23		1.36
D	8.95		9.35
D1	7.50		
Е	10		10.40
E1	8.50		
е		2.54	
e1	4.88		5.28
Н	15		15.85
J1	2.49		2.69
L	2.29		2.79
L1	1.27		1.40
L2	1.30		1.75
R		0.4	
V2	0°		8°

8 Packaging mechanical data

Top cover tolerance on tape +/- 0.2 mm

Top cover tolerance on tape +/- 0.2 mm

For machine ref. only including draft and radii concentric around B0

User direction of feed

Bending radius

AM08852v1

Figure 18. Tape for D²PAK

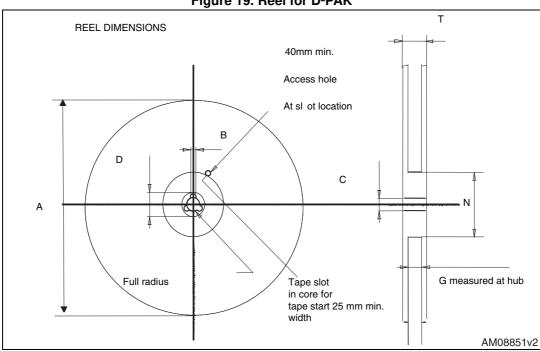


Figure 19. Reel for D²PAK

Table 11. D2PAK tape and reel mechanical data

	Таре			Reel	
Dim.	mm		Dim.	mm	
Dilli.	Min.	Max.		Min.	Max.
A0	10.5	10.7	Α		330
В0	15.7	15.9	В	1.5	
D	1.5	1.6	С	12.8	13.2
D1	1.59	1.61	D	20.2	
Е	1.65	1.85	G	24.4	26.4
F	11.4	11.6	N	100	
K0	4.8	5.0	Т		30.4
P0	3.9	4.1			
P1	11.9	12.1		Base qty	1000
P2	1.9	2.1		Bulk qty	1000
R	50				
Т	0.25	0.35			
W	23.7	24.3			

Revision history LM217, LM317

9 Revision history

Table 12. Document revision history

Date	Revision	Changes
01-Sep-2004	10	Mistake V _{REF} ==> V _O , tables 1, 4 and 5.
19-Jan-2007	11	D²PAK mechanical data has been updated, add footprint data and the document has been reformatted.
13-Jun-2007	12	Change values ΔI_{ADJ} and V_{REF} test condition of I_O = 10 mA to I_{MAX} ==> I_O = 10 mA to 500 mA on <i>Table 5</i> .
23-Nov-2007	13	Added Table 1.
06-Feb-2008	14	Added: TO-220 mechanical data Figure 14 on page 14 and Table 6 on page 13.
02-Mar-2010	15	Added: notes Figure 14 on page 14, Figure 15 on page 15, Figure 16 and Figure 17 on page 16.
17-Nov-2010	16	Modified: R _{thJC} value for TO-220 <i>Table 3 on page 4</i> .
18-Nov-2011	17	Added: order code LM317T-DG Table 1 on page 1.
13-Feb-2012	18	Added: order code LM217T-DG Table 1 on page 1.
12-Mar-2014	19	The part number LM117 has been moved to a separate datasheet. Removed TO-3 package. Updated the description in cover page Modified Table 1: Device summary, Table 3: Thermal data, Figure 1: Pin connections (top view), Section 4: Electrical characteristics, Section 5: Typical characteristics, Section 6: Application information, Section 7: Package mechanical data. Added Section 8: Packaging mechanical data. Minor text changes.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2014 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

DocID2154 Rev 19