

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

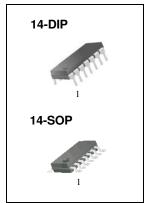
Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Is Now Part of

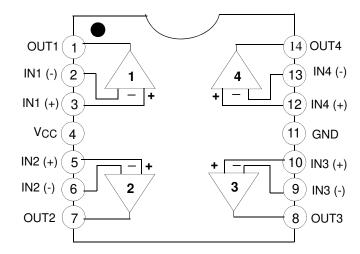
ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, emplo

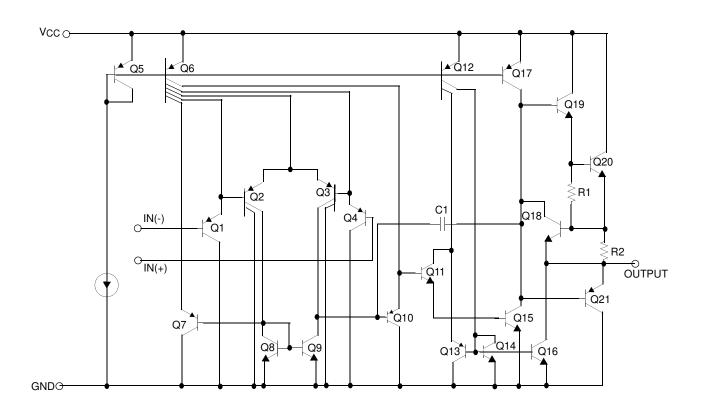

LM324/LM324A, LM2902/LM2902A Quad Operational Amplifier

Features


- · Internally Frequency Compensated for Unity Gain
- Large DC Voltage Gain: 100dB
- Wide Power Supply Range: LM324/LM324A: 3V~32V (or ±1.5 ~ 16V) LM2902/LM2902A: 3V~26V (or ±1.5V ~ 13V)
- Input Common Mode Voltage Range Includes Ground
- Large Output Voltage Swing: 0V to VCC -1.5V
- Power Drain Suitable for Battery Operation

Description

The LM324/LM324A, LM2902/LM2902A consist of four independent, high gain, internally frequency compensated operational amplifiers which were designed specifically to operate from a single power supply over a wide voltage range. operation from split power supplies is also possible so long as the difference between the two supplies is 3 volts to 32 volts. Application areas include transducer amplifier, DC gain blocks and all the conventional OP Amp circuits which now can be easily implemented in single power supply systems.



Internal Block Diagram

Schematic Diagram

(One Section Only)

Absolute Maximum Ratings

Parameter	Symbol	LM324/LM324A	LM2902/LM2902A	Unit
Power Supply Voltage	Vcc	±16 or 32	±13 or 26	V
Differential Input Voltage	V _I (DIFF)	32	26	V
Input Voltage	VI	-0.3 to +32	-0.3 to +26	V
Output Short Circuit to GND Vcc≤15V, TA=25°C(one Amp)	-	Continuous	Continuous	-
Power Dissipation, T _A =25°C 14-DIP 14-SOP	PD	1310 640	1310 640	mW
Operating Temperature Range	TOPR	0 ~ +70	-40 ~ +85	°C
Storage Temperature Range	TSTG	-65 ~ +150	-65 ~ +150	°C

Thermal Data

Parameter	Symbol	Value	Unit
Thermal Resistance Junction-Ambient Max. 14-DIP 14-SOP	Rθja	95 195	°C/W

Electrical Characteristics

(VCC = 5.0V, VEE = GND, TA = 25°C, unless otherwise specified)

Doromotor	Cymbal	Conditions			LM324	ļ.	l	_M290	2	Unit
Parameter	Symbol	Co	Conditions		Тур.	Max.	Min.	Тур.	Max.	Unit
Input Offset Voltage	VIO		V to V _{CC} -1.5V 1.4V, R _S = 0Ω	-	1.5	7.0	-	1.5	7.0	mV
Input Offset Current	lio	VCM = 0	V	-	3.0	50	-	3.0	50	nA
Input Bias Current	IBIAS	VCM = 0	V	-	40	250	-	40	250	nA
Input Common-Mode Voltage Range	VI(R)	Note1		0	-	VCC -1.5	0	-	VCC -1.5	V
Supply Current	Icc		/ _{CC} = 30V 2,V _{CC} =26V)	-	1.0	3	-	1.0	3	mA
		RL = ∞,\	/cc = 5V	-	0.7	1.2	-	0.7	1.2	mA
Large Signal Voltage Gain	Gv		5V,RL=2kΩ 1V to 11V	25	100	-	25	100	-	V/mV
	Vous	VO(H) Note1	$R_L = 2k\Omega$	26	-	-	22	-	-	V
Output Voltage Swing	VO(H)		R _L =10kΩ	27	28	-	23	24	-	V
	VO(L)	VCC = 5	V, RL=10kΩ	-	5	20	-	5	100	mV
Common-Mode Rejection Ratio	CMRR		-		75	-	50	75	-	dB
Power Supply Rejection Ratio	PSRR		-		100	-	50	100	-	dB
Channel Separation	CS	f = 1kHz (Note2)	to 20kHz	-	120	-	-	120	-	dB
Short Circuit to GND	Isc	VCC = 1	5V	-	40	60	-	40	60	mA
	ISOURCE	V _{I(+)} = 1V, V _{I(-)} = 0V V _{CC} = 15V, V _{O(P)} = 2V		20	40	-	20	40	-	mA
Output Current	Isink	VI(+) = 0 VCC = 1 VO(P) =	*	10	13	-	10	13	-	mA
	ISHAK	VI(+) = 0V, VI(-) = 1V VCC = 15V, VO(R) = 200mV		12	45	-	-	-	-	μΑ
Differential Input Voltage	VI(DIFF)		-	ı	-	Vcc	-	-	Vcc	٧

^{1.} VCC=30V for LM324 , VCC=26V for LM2902

^{2.} This parameter, although guaranteed, is not 100% tested in production.

Electrical Characteristics (Continued)

(VCC = 5.0V, VEE = GND, unless otherwise specified)

The following specification apply over the range of $0^{\circ}C \le T_A \le +70^{\circ}C$ for the LM324; and the -40°C $\le T_A \le +85^{\circ}C$ for the LM2902

Devementer	Cymahal	l Conditions			LM324	ļ	I	11		
Parameter	Symbol	Co	Conditions		Тур.	Max.	Min.	Тур.	Max.	Unit
Input Offset Voltage	VIO		$V_{ICM} = 0V \text{ to } V_{CC} -1.5V$ $V_{O(P)} = 1.4V, R_S = 0\Omega$ (Note1)		-	9.0	-	-	10.0	mV
Input Offset Voltage Drift	ΔVΙΟ/ΔΤ	$Rs = 0\Omega$	(Note2)	-	7.0	-	-	7.0	-	μV/°C
Input Offset Current	lio	VCM = 0	V	-	-	150	-	-	200	nA
Input Offset Current Drift	ΔΙΙΟ/ΔΤ	$Rs = 0\Omega$	(Note2)	-	10	-	-	10	-	pA/°C
Input Bias Current	IBIAS	VCM = 0	VCM = 0V		-	500	-	-	500	nA
Input Common-Mode Voltage Range	VI(R)	Note1		0	-	VCC -2.0	0	-	VCC -2.0	٧
Large Signal Voltage Gain	Gv	$V_{CC} = 15V, R_L = 2.0kΩ$ $V_{O(P)} = 1V \text{ to } 11V$		15	-	-	15	-	-	V/mV
	Vous	Note1	RL=2kΩ	26	-	-	22	-	-	V
Output Voltage Swing	VO(H)	Note	R _L =10kΩ	27	28	-	23	24	-	V
	V _{O(L)}	VCC = 5'	V, RL=10kΩ	-	5	20	-	5	100	mV
Output Current	ISOURCE	$V_{I(+)} = 1V, V_{I(-)} = 0V$ $V_{CC} = 15V, V_{O}(P) = 2V$		10	20	-	10	20	-	mA
Output Ourient	ISINK	$V_{I(+)} = 0V, V_{I(-)} = 1V$ $V_{CC} = 15V, V_{O(P)} = 2V$		5	8	-	5	8	-	mA
Differential Input Voltage	VI(DIFF)		-	-	-	Vcc	-		Vcc	V

- 1. VCC=30V for LM324 , VCC=26V for LM2902
- 2. These parameters, although guaranteed, are not 100% tested in production.

Electrical Characteristics (Continued)

 $(V_{CC} = 5.0V, V_{EE} = GND, T_A = 25^{\circ}C, unless otherwise specified)$

Davamatav	Cumbal	0-	Conditions -		LM324A			LM2902A			
Parameter	Symbol	Co			Тур.	Max.	Min.	Тур.	Max.	Unit	
Input Offset Voltage	Vio	_	OV to VCC -1.5V 1.4V, Rs = 0Ω	-	1.5	3.0	-	1.5	2.0	mV	
Input Offset Current	lio	VCM = C)V	-	3.0	30	-	3.0	50	nA	
Input Bias Current	IBIAS	VCW = C)V	-	40	100	-	40	250	nA	
Input Common-Mode Voltage Range	VI(R)	VCC = 3	60V	0	-	VCC -1.5	0	-	VCC -1.5	V	
Supply Current	Icc		0V, RL = ∞ 2,VCC=26V)	-	1.5	3	-	1.0	3	mA	
		Vcc = 5	$V, RL = \infty$	1	0.7	1.2	ı	0.7	1.2	mA	
Large Signal Voltage Gain	Gv		5V, R _L = 2kΩ 1V to 11V	25	100	-	25	100	-	V/mV	
	V _{O(H)}	Note1	$RL = 2k\Omega$	26	-	-	22	-	-	V	
Output Voltage Swing			$R_L = 10k\Omega$	27	28	-	23	24	-	V	
	V _{O(L)}	Vcc = 5	V, RL=10kΩ	-	5	20	-	5	100	mV	
Common-Mode Rejection Ratio	CMRR		-		85	-	50	75	-	dB	
Power Supply Rejection Ratio	PSRR		-	65	100	-	50	100	-	dB	
Channel Separation	CS	f = 1kHz (Note2)	to 20kHz	-	120	-	-	120	-	dB	
Short Circuit to GND	Isc	VCC = 1	5V	-	40	60	-	40	60	mA	
	ISOURCE	V _{I(+)} = 1V, V _{I(-)} = 0V V _{CC} =15V, V _{O(P)} = 2V		20	40	-	20	40	-	mA	
Output Current			$V_{I(+)} = 0V, V_{I(-)} = 1V$ $V_{CC} = 15V, V_{O(P)} = 2V$		20	-	10	13	-	mA	
	ISINK	V _{I(+)} = 0V, V _{I(-)} = 1V V _{CC} = 15V, V _{O(P)} = 200mV		12	50	-	ı	-	-	μΑ	
Differential Input Voltage	VI(DIFF)		-	-	-	Vcc	-	-	Vcc	V	

^{1.} VCC=30V for LM324A; VCC=26V for LM2902A

^{2.} This parameter, although guaranteed, is not 100% tested in production.

Electrical Characteristics (Continued)

 $(V_{CC} = 5.0V, V_{EE} = GND, unless otherwise specified)$

The following specification apply over the range of $0^{\circ}C \le T_A \le +70^{\circ}C$ for the LM324A ; and the -40°C $\le T_A \le +85^{\circ}C$ for the LM2902A

Parameter	Cymbol	Conditions		l	_M324	A	LM2902A			
Parameter	Symbol			Min.	Тур.	Max.	Min.	Тур.	Max.	Unit
Input Offset Voltage	Vio		$V_{CM} = 0V$ to V_{CC} -1.5V $V_{O(P)} = 1.4V$, $R_S = 0\Omega$ (Note1)		-	5.0	-	-	6.0	mV
Input Offset Voltage Drift	ΔV10/ΔΤ	$Rs = 0\Omega$	(Note2)	-	7.0	30	-	7.0	-	μV/°C
Input Offset Current	lio	VCM = 0	V	-	-	75	-	-	200	nA
Input Offset Current Drift	ΔΙΙΟ/ΔΤ	$Rs = 0\Omega$	(Note2)	-	10	300	-	10	-	pA/°C
Input Bias Current	IBIAS		-	-	40	200	-	-	500	nA
Input Common-Mode Voltage Range	VI(R)	Note1		0	-	VCC -2.0	0	-	VCC -2.0	V
Large Signal Voltage Gain	Gy	VCC = 1	5V, R _L = 2.0kΩ	15	-	-	15	-	-	V/mV
	Vous	Note1	$R_L = 2k\Omega$	26	-	-	22	-	-	V
Output Voltage Swing	V _{O(H)}	noter	$R_L = 10k\Omega$	27	28	-	23	24	-	V
	V _{O(L)}	$VCC = 5V$, $RL = 10k\Omega$		-	5	20	-	5	100	mV
Output Current	ISOURCE	$V_{I(+)} = 1V, V_{I(-)} = 0V$ $V_{CC} = 15V, V_{O(P)} = 2V$		10	20	-	10	20	-	mA
Output Current	ISINK	VI(+) = 0V, VI(-) = 1V VCC = 15V, VO(P) = 2V		5	8	-	5	8	-	mA
Differential Input Voltage	V _I (DIFF)		-	-	-	Vcc	-	•	Vcc	٧

- 1. VCC=30V for LM324A; VCC=26V for LM2902A.
- 2. These parameters, although guaranteed, are not 100% tested in production.

Typical Performance Characteristics

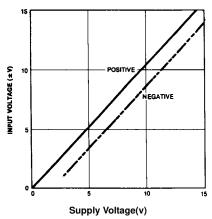


Figure 1. Input Voltage Range vs Supply Voltage

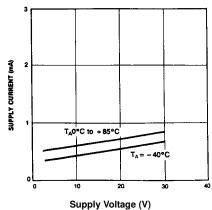


Figure 3. Supply Current vs Supply Voltage

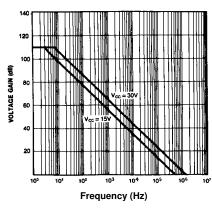


Figure 5. Open Loop Frequency Response

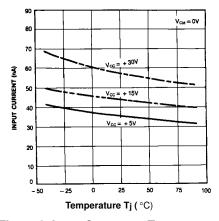


Figure 2. Input Current vs Temperature

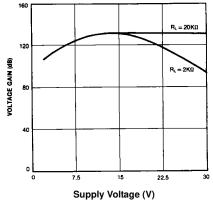


Figure 4. Voltage Gain vs Supply Voltage

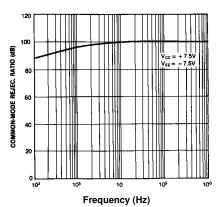


Figure 6. Common mode Rejection Ratio

Typical Performance Characteristics (Continued)

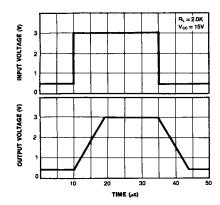


Figure 7. Voltage Follower Pulse Response

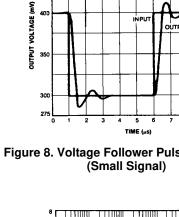


Figure 8. Voltage Follower Pulse Response

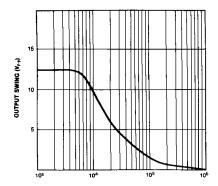


Figure 9. Large Signal Frequency Response

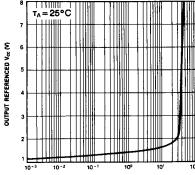


Figure 10. Output Characteristics vs Current Sourcing

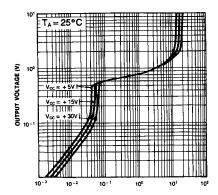


Figure 11. Output Characteristics vs Current Sinking

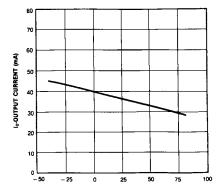
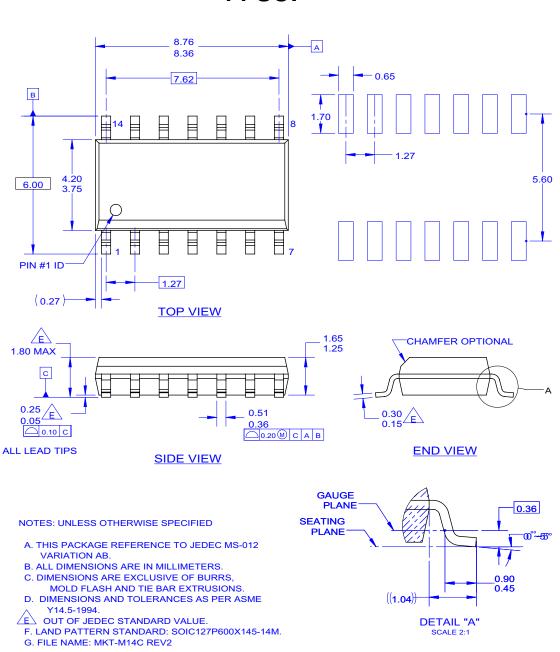


Figure 12. Current Limiting vs Temperature

Mechanical Dimensions

Package

Dimensions in millimeters


14-DIP $6.40~{\pm}0.20$ 0.252 ±0.008 0.46 ±0.10 0.018 ±0.004 1.50 ±0.10 0.059 ±0.004 19.40 ±0.20 0.764 ±0.008 2.54 #8 7.62 3.25 ± 0.20 0.300 $\frac{0.20}{0.008}$ MIN $\overline{0.128 \pm 0.008}$ 3.30 ± 0.30 $\frac{5.08}{0.200}$ MAX 0.130 ±0.012 $\frac{0.25^{\,+0.10}_{\,-0.05}}{0.010^{\,+0.004}_{\,-0.002}}$ 0~15°

Mechanical Dimensions (Continued)

Package

Dimensions in millimeters

14-SOP

Ordering Information

Product Number	Package	Operating Temperature
LM324N	14-DIP	
LM324AN	14-011	0 ~ +70°C
LM324M	14-SOP	0 470 0
LM324AM	14-301	
LM2902N	14-DIP	
LM2902M	14-SOP	-40 ~ +85°C
LM2902AM	14-301	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www fairchildsemi com

ON Semiconductor and III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.

Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center

Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative