imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

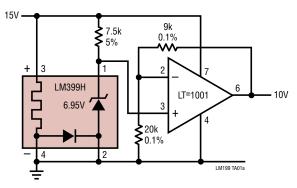
LM199/LM399 LM199A/LM399A Precision Reference

FEATURES

- 6.95V Shunt Reference
- Guaranteed 0.5ppm/°C Temperature Coefficient
- Guaranteed 1Ω Maximum Dynamic Impedance
- Guaranteed 20µV_{RMS} Maximum Noise
- Guaranteed Initial Tolerance of 2%
- Wide Operating Current Range
- Available in 4-Lead TO-46 Metal Can

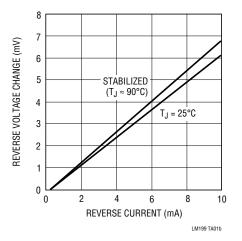
APPLICATIONS

- Precision Voltage Reference for Multimeters
- Calibration Equipment Voltage Standards
- Laboratory Measurement Equipment
- Industrial Monitor/Control Instruments
- High Accuracy Data Converters


DESCRIPTION

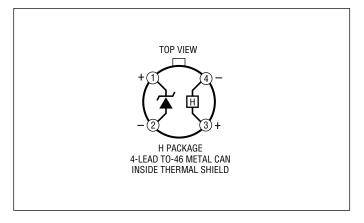
The LM199/LM399 precision shunt reference features excellent temperature stability over a wide range of voltage, temperature and operating current conditions. A stabilizing heater is incorporated with the active Zener on a monolithic substrate which nearly eliminates changes in voltage with temperature. The subsurface Zener operates over a current range of 0.5mA to 10mA, and offers minimal noise and excellent long-term stability.

Ideal applications for the LM199/LM399 include digital voltmeters, precision calibration equipment, current sources and a variety of other precision low cost references. A 10V buffered reference application is shown below.


Δ7, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners.

TYPICAL APPLICATION

10V Buffered Reference


Reverse Voltage Change

ABSOLUTE MAXIMUM RATINGS

(Note 1)
Temperature Stabilizer40V
Reverse Breakdown Current
Forward Current1mA
Reference to Substrate Voltage, V _{RS} (Note 2)0.1V
Operating Temperature Range
LM199/LM199A (OBSOLETE)55°C to 125°C
LM399/LM399A0°C to 70°C
Storage Temperature Range
LM199/LM199A (OBSOLETE)65°C to 150°C
LM399/LM399A65°C to 150°C
Lead Temperature (Soldering, 10 sec)

PIN CONFIGURATION

ORDER INFORMATION

LEAD FREE FINISH	TAPE AND REEL	PART MARKING	PACKAGE DESCRIPTION	TEMPERATURE RANGE
LM399H	LM399H#TRPBF	LM399H	4-Lead TO-46 Metal Can	0°C to 70°C
LM399AH	LM399AH#TRPBF	LM399AH	4-Lead TO-46 Metal Can	0°C to 70°C
		OBSOLETE F	ACKAGE	
LM199H	LM199H#TRPBF		4-Lead TO-46 Metal Can	-55°C to 125°C
LM199AH	LM199AH#TRPBF		4-Lead TO-46 Metal Can	-55°C to 125°C
LM199AH-20	LM199AH-20#TRPBF		4-Lead TO-46 Metal Can	-55°C to 125°C
LM399AH-20	LM399AH-20#TRPBF		4-Lead TO-46 Metal Can	0°C to 70°C
LM399AH-50	LM399AH-50#TRPBF		4-Lead TO-46 Metal Can	0°C to 70°C

Consult LTC Marketing for parts specified with wider operating temperature ranges. Consult LTC Marketing for information on nonstandard lead based finish parts.

For more information on lead free part marking, go to: http://www.linear.com/leadfree/ For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/

ELECTRICAL CHARACTERISTICS The \bullet denotes the specifications which apply over the full operating temperature range, otherwise specifications are at T_A = 25°C. (Note 3)

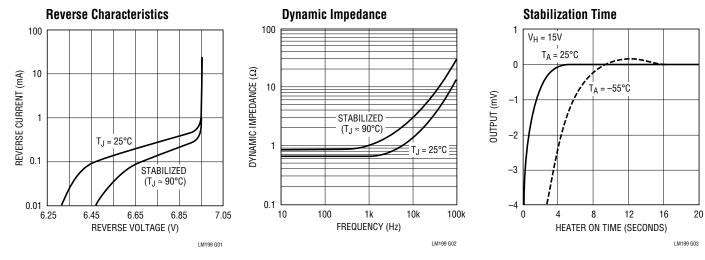
				LM	199/LM1	99A	LM	399/LM3	99A	
SYMBOL	PARAMETER	CONDITIONS		MIN	ТҮР	MAX	MIN	TYP	MAX	UNITS
VZ	Reverse Breakdown Voltage	$0.5mA \le I_R \le 10mA$	•	6.8	6.95	7.1	6.75	6.95	7.3	V
ΔV_Z	Reverse Breakdown Voltage Change with Current	$0.5\text{mA} \le I_{\text{R}} \le 10\text{mA}$	•		6	9		6	12	mV
r _Z	Reverse Dynamic Impedance	$I_R = 1mA$ (Note 6) (10Hz $\le f \le 100Hz$)	•		0.5	1		0.5	1.5	Ω
$\frac{\Delta V_Z}{\Delta Temp}$	Temperature Coefficient LM199/LM399	$\begin{array}{l} -55^{\circ}C \leq T_{A} \leq 85^{\circ}C \\ 85^{\circ}C \leq T_{A} \leq 125^{\circ}C \\ 0^{\circ}C \leq T_{A} \leq 70^{\circ}C \end{array}$			0.3 5	1 15		0.3	2	ppm/°C ppm/°C ppm/°C
	LM199A/LM399A	$\begin{array}{l} -55^{\circ}C \leq T_{A} \leq 85^{\circ}C \\ 85^{\circ}C \leq T_{A} \leq 125^{\circ}C \\ 0^{\circ}C \leq T_{A} \leq 70^{\circ}C \end{array}$			0.2 5	0.5 10		0.3	1	ppm/°C ppm/°C ppm/°C
e _n	RMS Noise	10Hz ≤ f ≤ 10kHz	•		7	20		7	50	μV

ELECTRICAL CHARACTERISTICS The \bullet denotes the specifications which apply over the full operating temperature range, otherwise specifications are at T_A = 25°C. (Note 3)

			LM199/LM19		199A	LM399/LM399A				
SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	MIN	ТҮР	MAX	UNITS
$\frac{\Delta V_Z}{\Delta Time}$	Long-Term Stability	Stabilized, $22^{\circ}C \le T_A \le 28^{\circ}C$, 1000 Hours, $I_R = 1mA \pm 0.1\%$			8	(Note 4)		8	(Note 4)	ppm/√kH
I _H	Temperature Stabilizer Supply Current	$T_A = 25^{\circ}$ C, Still Air, $V_H = 30V$ $T_A = -55^{\circ}$ C (Note 5)			8.5 22	14 28		8.5	15	mA
V _H	Temperature Stabilizer Supply Voltage		•	9		40	9		40	V
	Warm-Up Time to ±0.05% V _Z	V _H = 30V			3			3		Seconds
	Initial Turn-On Current	$9V \le V_H \le 40V$ (Note 5)			140	200		140	200	mA

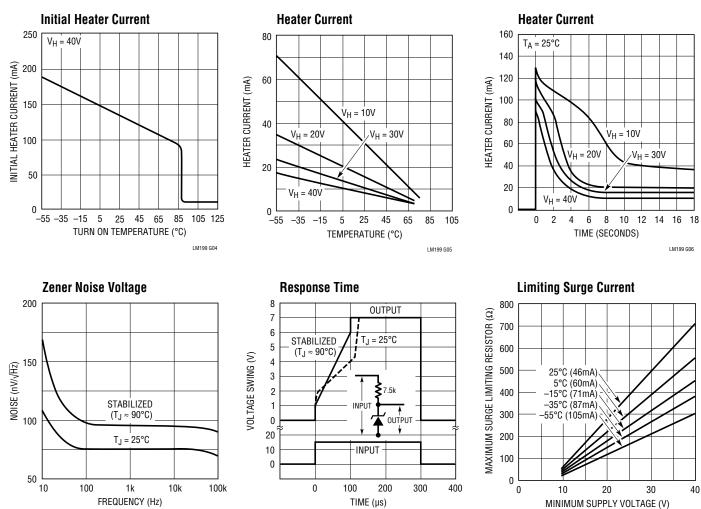
Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.

Note 2: The substrate is electrically connected to the negative terminal of the temperature stabilizer. The voltage that can be applied to either terminal of the reference is 40V more positive or 0.1V more negative than the substrate.

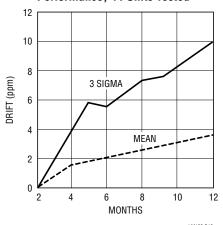

Note 3: These specifications apply for 30V applied to the temperature stabilizer and $-55^{\circ}C \le T_A \le 125^{\circ}C$ for the LM199; and $0^{\circ}C \le T_A \le 70^{\circ}C$ for the I M399.

Note 4: Devices with maximum guaranteed long-term stability of 20 ppm/ \sqrt{kH} are available. Drift decreases with time.

Note 5: This initial current can be reduced by adding an appropriate resistor and capacitor to the heater circuit. See the Typical Performance Characteristics graphs to determine values.

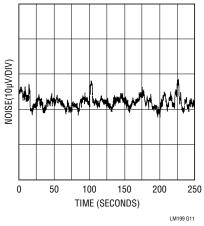

Note 6: Guaranteed by "Reverse Breakdown Change with Current."

TYPICAL PERFORMANCE CHARACTERISTICS

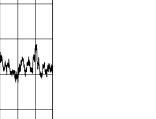


TYPICAL PERFORMANCE CHARACTERISTICS

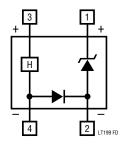
Long-Term Reference Performance, 44 Units Tested


LM199 G07

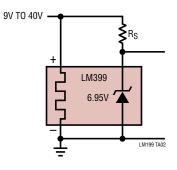
LM199 G10


Low Frequency Noise Voltage

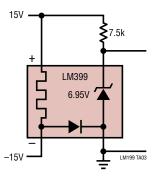
LM199 G08



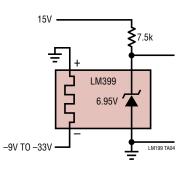
LM199 G09

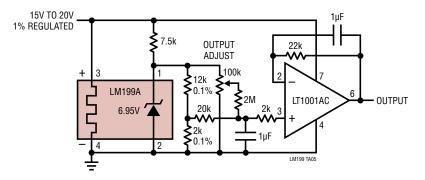

HEATER MUST BE BYPASSED WITH A 2µF OR LARGER TANTALUM CAPACITOR IF RESISTORS ARE USED

FUNCTIONAL BLOCK DIAGRAM

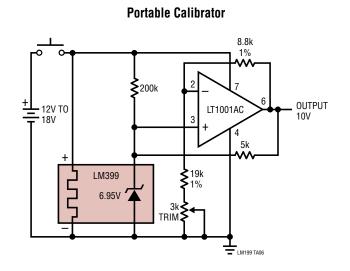


TYPICAL APPLICATIONS

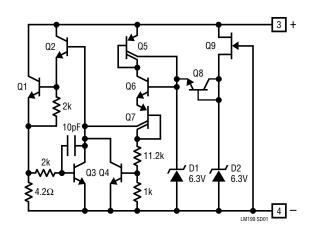

Single Supply Operation


Split Supply Operation

Negative Heater Supply with Positive Reference



Standard Cell Replacement

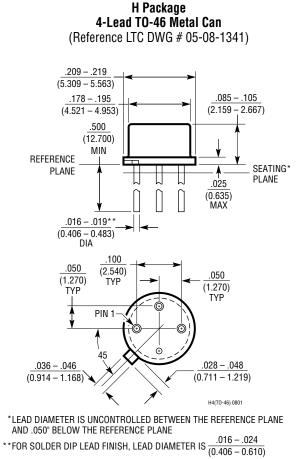


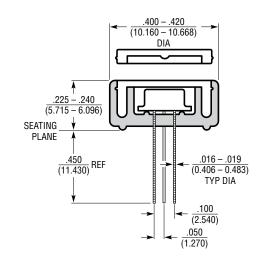
TYPICAL APPLICATIONS

SCHEMATIC DIAGRAMS

Temperature Stabilizer

Reference


199399fc


6

PACKAGE DESCRIPTION

Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.

Thermal Shield* for TO-46, H Package

*THERMAL SHIELD MATERIAL IS VALOX

REVISION HISTORY (Revision history begins at Rev C)

REV	DATE	DESCRIPTION	PAGE NUMBER
С	12/14	Package/Order Information updated	2
		Thermal shield dimensions corrected	7

RELATED PARTS

PART NUMBER DESCRIPTION		COMMENTS				
LT®1021	Precision References for Series or Shunt Operation	Industry Standard Pinout, -40°C to 125°C				
LT1389	1.25V, 2.5V, 4V and 5V Nanopower Shunt Reference	800nA, 0.05% Accuracy, 10ppm/°C Drift				
LT1634	1.25 and 2.5V Micropower Shunt Reference	0.05%, 10ppm/°C, 10µA Current				
LTZ1000	7V Ultra Precision, Stable Shunt Reference	0.05ppm/°C, 1.2mV _{P-P} Noise				

8

199399fc