imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

HIGH PRECISION VOLTAGE REGULATOR

- INPUT VOLTAGE UP TO 40V
- **OUTPUT VOLTAGE ADJUSTABLE FROM 2** TO 37V
- POSITIVE OR NEGATIVE SUPPLY **OPERATION**
- SERIES, SHUNT, SWITCHING OR FLOATING OPERATION
- OUTPUT CURRENT TO 150mA WITHOUT EXTERNAL PASS TRANSISTOR
- ADJUSTABLE CURRENT LIMITING

DESCRIPTION

The LM723 is a monolithic integrated programmable voltage regulator, assembled in 14-lead dual in-line plastic and SO-14 micro package. The circuit provides internal current limiting. When the output current exceeds 150mA an external NPN or PNP pass element may be used. Provisions are made for adjustable current limiting and remote shut-down.

SCHEMATIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Devementer	Value				
	Parameter	LM723	LM723C	Unit		
VI	DC Input Voltage	40	40	V		
ΔV_{I-O}	Dropout Voltage	40	40	V		
Ι _Ο	Output Current	150	150	mA		
I _{REF}	Current from V _{REF}	15	25	mA		
T _{op}	Operating Temperature	-55 to 125	0 to 70	°C		
T _{stg}	Storage Temperature	-65 to 150	-65 to 150	°C		
Т _Ј	Junction Temperature	150	125	°C		

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied.

THERMAL DATA

Symbol	Parameter	DIP14	SO-14	Unit	
R _{thj-amb}	Thermal Resistance Junction-Ambient	Max	200	160	°C/W

PIN CONNECTION (top view)

ORDERING CODES

ТҮРЕ	DIP-14	SO-14
LM723	LM723N	
LM723C	LM723CN	LM723CD

TEST CIRCUITS (pin configuration relative to the plastic package)

 $V_I = 12V; \, V_O = 5V {:} \, I_O = 1mA; \, R_1/R_2 \leq 10K\Omega$

57

ELECTRICAL CHARACTERISTICS FOR LM723 (refer to the test circuits, $T_{amb} = 25^{\circ}C$, unless otherwise specified.)

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit	
$\Delta V_{O} / \Delta V_{I}$	Line Regulation	V _I = 12 to 15 V		0.01	0.1	%	
		V _I = 12 to 40 V			0.02	0.2	
		$V_{\rm I} = 12$ to 15 V, $T_{\rm a} = -55$	5 to 125°C			0.3	
$\Delta V_{O}/V_{O}$	Load Regulation	l _O = 1 to 50 mA			0.03	0.15	%
		$I_0 = 1 \text{ to } 10 \text{ mA}$ $T_a = -55$	5 to 125°C			0.6	
V _{REF}	Reference Voltage	I _{REF} = 160 μA		6.95	7.15	7.35	V
SVR	Supply Voltage Rejection	f = 100 Hz to 10KHz	$C_{REF} = 0$		74		dB
			$C_{REF} = 5\mu F$		86		
$\Delta V_O / \Delta T$	Output Voltage Drift				150	ppm/°C	
I _{SC}	Output Current Limit	$R_{SC} = 10\Omega$ $V_O = 0$	V		65		mA
VI	Input Voltage Range			9.5		40	V
V _O	Output Voltage Range			2		37	V
V _O -V _I				3		38	V
۱ _d	Quiescent Current	$V_{I} = 30V, \qquad I_{O} = 0 \text{ mA}$		2.3	5	mA	
K _{VH}	Long Term Stability				0.1		%/1000 hrs
eN	Output Noise Voltage	BW = 100 Hz to 10 KHz $C_{REF} = 0$			20		μV
			$C_{REF} = 5\mu F$		2.5		

ELECTRICAL CHARACTERISTICS FOR LM723C (refer to the test circuits, $T_{amb} = 25^{\circ}C$, unless otherwise specified.)

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit	
$\Delta V_{O} / \Delta V_{I}$	Line Regulation	V _I = 12 to 15 V			0.01	0.1	%
		V _I = 12 to 40 V			0.1	0.5	
		$V_{I} = 12 \text{ to } 15 \text{ V}, \qquad T_{a} = 0 \text{ t}$	o 70°C			0.3	
$\Delta V_{O}/V_{O}$	Load Regulation	I _O = 1 to 50 mA			0.03	0.2	%
		$I_0 = 1 \text{ to } 10 \text{ mA}$ $T_a = 0 \text{ t}$	o 70°C			0.6	
V _{REF}	Reference Voltage	I _{REF} = 160 μA	I _{REF} = 160 μA			7.5	V
SVR	Supply Voltage Rejection	f = 100 Hz to 10KHz	C _{REF} = 0		74		dB
			$C_{REF} = 5\mu F$		86		
$\Delta V_O / \Delta T$	Output Voltage Drift					150	ppm/°C
I _{SC}	Output Current Limit	$R_{SC} = 10\Omega$ $V_O = 0$	V		65		mA
VI	Input Voltage Range			9.5		40	V
V _O	Output Voltage Range			2		37	V
V _O -V _I				3		38	V
۱ _d	Quiescent Current	$V_I = 30V, \qquad I_O = 0 \text{ mA}$		2.3	4	mA	
K _{VH}	Long Term Stability				0.1		%/1000 hrs
eN	Output Noise Voltage	BW = 100 Hz to 10 KHz	$C_{REF} = 0$		20		μV
			C _{REF} = 5μF		2.5]

TYPICAL PERFORMANCE CHARACTERISTICS (unless otherwise specified V_{O(NOM)} = 3.3 V)

Figure 1 : Maximum Output Current vs Voltage Drop

Figure 2 : Current Limiting Characteristics

Figure 3 : Current Limiting Characteristics vs Junction Temperature

Figure 4 : Load Regulation Characteristics without Current Limiting

Figure 5 : Load Regulation Characteristics with Current Limiting

Figure 6 : Load Regulation Characteristics with Current Limiting

Figure 7 : Line Regulation vs Voltage Drop

Figure 8 : Load Regulation vs Voltage Drop

Figure 9 : Quiescent Drain Current vs Input Voltage

Figure 10 : Line Transient Response

Figure 11 : Load Transient Response

Figure 12 : Output Impedance vs Frequency

57

Output	Applicable Figures	Fixed Output ± 5%		Output Adjustable ± 10% *			
Voltage	Applicable Figures	R1	R2	R1	P1	R2	
+3	13, 16, 17, 18, 21, 23	4.12	3.01	1.8	0.5	1.2	
+5	13, 16, 17, 18, 21, 23	2.15	4.99	0.75	0.5	2.2	
+6	13, 16, 17, 18, 21, 23	1.15	6.04	0.5	0.5	2.7	
+9	14, 16, 17, 18, 21, 23	1.87	7.15	0.75	1	2.7	
+12	14, 16, 17, 18, 21, 23	4.87	7.15	2	1	3	
+15	14, 16, 17, 18, 21, 23	7.87	7.15	3.3	1	3	
+28	14, 16, 17, 18, 21, 23	21	7.15	5.6	1	2	
+45	19	3.57	48.7	2.2	10	39	
+75	19	3.57	78.7	2.2	10	68	
+100	19	3.57	102	2.2	10	91	
+250	19	3.57	255	2.2	10	240	
-6**	15	3.57	2.43	1.2	0.5	0.75	
-9	15	3.48	5.36	1.2	0.5	2	
-12	15	3.57	8.45	1.2	0.5	3.3	
-15	15	3.65	11.5	1.2	0.5	4.3	
-28	15	3.57	24.3	1.2	0.5	10	
-45	20	3.57	21.2	2.2	10	33	
-100	20	3.57	97.6	2.2	10	91	
-250	20	3.57	249	2.2	10	240	

TABLE 1: Resistor Values (KΩ) for standard Output Voltages

* Replace R1/R2 divider with the circuit of fig. 24. ** V+ must be connected to a +3V or greater supply.

TABLE 2: Formula for Intermediate Output Voltages

Outputs from 2 to 7V Fig. 13, 16, 17, 18, 21, 23	Outputs from 4 to 250V Fig. 19	Current Limit
$V_{O}=(V_{REF}xR_{2})/(R_{1}+R_{2})$	$V_{O}=(V_{REF}/2)x[(R_{2}-R_{1})/R_{1}]; R_{3}=R_{4}$	·LIMIT - · SENSE/ ···SC
Outputs from 7 to 37V	Outputs from -6 to -250V	Foldback Current Limiting
Fig. 14, 16, 17, 18, 21, 23 $V_{-} = V_{-} = x[(B_{-} + B_{-})/B_{-}]$	Fig. 15, 20 $V_{-} = (V_{-} = -(2) \times [(P_{-} + P_{-})/P_{-}] + P_{-} = P_{-}$	$I_{\text{KNEE}} = [(V_{\text{O}} \times R_3)/(R_{\text{SC}} \times R_4)] \times [V_{\text{SENSE}} \times (R_3 + R_4)]/$
VO=VREFX[(n1+n2)/n2]	$VO=(VREF/2)X[(n_1+n_2)/n_1], n_3=n_4$	(H _{SC} XH ₄)
		$I_{SHORTCKT} = (V_{SENSE}/R_{SC})x[(R_3+R_4)/R_4]$

APPLICATIONS INFORMATION

Figure 13 : Basic Low Voltage Regulator ($V_O = 2$ to 7V).

 $\begin{array}{l} \text{NOTE: } R_3 = (R_1 x R_2) / (R_1 + R_2) \text{ for minimum temperature drift.} \\ R_3 \text{ may be eliminated for minimum component count.} \\ \text{Typical performance} \\ \text{Regulated Output Voltage......5V} \\ \text{Line Regulation } (\Delta V_I = 3V)0.5mV \\ \text{Load Regulation } (\Delta I_O = 50 \text{mA}) ... 1.5mV \end{array}$

Figure 14 : Basic High Voltage Regulator ($V_0 = 7$ to 37V)

 $\begin{array}{l} \text{NOTE: } R_3 = (R_1 x R_2) / (R_1 + R_2) \text{ for minimum temperature drift.} \\ R_3 \text{ may be eliminated for minimum component count.} \\ \text{Typical performance} \\ \text{Regulated Output Voltage......15V} \\ \text{Line Regulation } (\Delta V_I = 3V)1.5mV \\ \text{Load Regulation } (\Delta I_O = 50 \text{mA})4.5mV \end{array}$

A7

Figure 15 : Negative Voltage Regulator

 $\begin{array}{l} Typical performance \\ Regulated Output Voltage.....15V \\ Line Regulation (\Delta V_I = 3V).....1mV \\ Load Regulation (\Delta I_O = 100mA).....2mV \end{array}$

Figure 16 : Positive Voltage Regulator (External NPN Pass Transistor)

 $\begin{array}{l} Typical performance \\ Regulated Output Voltage......15V \\ Line Regulation (\Delta V_I = 3V)......1.5mV \\ Load Regulation (\Delta I_O = 1A)......15mV \end{array}$

Figure 17 : Positive Voltage Regulator (External PNP Pass Transistor)

 $\begin{array}{l} Typical performance \\ Regulated Output Voltage.....5V \\ Line Regulation (\Delta V_I = 3V).....0.5mV \\ Load Regulation (\Delta I_O = 1A).....1.5mV \end{array}$

Figure 18 : Foldback current limiting

 $\begin{array}{l} \mbox{Typical performance} \\ \mbox{Regulated Output Voltage}......5V \\ \mbox{Line Regulation } (\Delta V_I = 3V)......0.5mV \\ \mbox{Load Regulation } (\Delta I_O = 10mA)......1mV \\ \mbox{Current Limit Knee}......20mA \end{array}$

 $\begin{array}{l} Typical performance \\ Regulated Output Voltage.....-100V \\ Line Regulation (\Delta V_I = 20V)......30mV \\ Load Regulation (\Delta I_O = 100mA)......20mV \end{array}$

Figure 21 : Positive Switching Regulator

Typical performance Regulated Output Voltage......5V Line Regulation ($\Delta V_I = 30V$).......10mV Load Regulation ($\Delta I_O = 2A$)......80mV

Figure 22 : Remote Shutdown Regulator with Current Limiting

Note: current limit transistor may be used for shutdown if current limiting is not required. Typical performance

 $\begin{array}{l} \mbox{Typical performance} \\ \mbox{Regulated Output Voltage}......5V \\ \mbox{Line Regulation } (\Delta V_I = 10V).....2mV \\ \mbox{Load Regulation } (\Delta I_O = 100mA)......5mV \end{array}$

Figure 24 : Output Voltage Adjust

DIM	mm.			inch			
DIM.	MIN.	ТҮР	MAX.	MIN.	TYP.	MAX.	
a1	0.51			0.020			
В	1.39		1.65	0.055		0.065	
b		0.5			0.020		
b1		0.25			0.010		
D			20			0.787	
E		8.5			0.335		
е		2.54			0.100		
e3		15.24			0.600		
F			7.1			0.280	
I			5.1			0.201	
L		3.3			0.130		
Z	1.27		2.54	0.050		0.100	

SO-14 MECHANICAL DATA

DIM	mm.			inch				
DIN.	MIN.	ТҮР	MAX.	MIN.	TYP.	MAX.		
A			1.75			0.068		
a1	0.1		0.2	0.003		0.007		
a2			1.65			0.064		
b	0.35		0.46	0.013		0.018		
b1	0.19		0.25	0.007		0.010		
С		0.5			0.019			
c1			45°	(typ.)	•	•		
D	8.55		8.75	0.336		0.344		
E	5.8		6.2	0.228		0.244		
е		1.27			0.050			
e3		7.62			0.300			
F	3.8		4.0	0.149		0.157		
G	4.6		5.3	0.181		0.208		
L	0.5		1.27	0.019		0.050		
М			0.68			0.026		
S	8° (max.)							

14/16

•								
mm.								
MIN.	ТҮР	MAX.	MIN.	TYP.	MAX.			
		330			12.992			
12.8		13.2	0.504		0.519			
20.2			0.795					
60			2.362					
		22.4			0.882			
6.4		6.6	0.252		0.260			
9		9.2	0.354		0.362			
2.1		2.3	0.082		0.090			
3.9		4.1	0.153		0.161			
7.9		8.1	0.311		0.319			
	MIN. 12.8 20.2 60 6.4 9 2.1 3.9 7.9	mm. MIN. TYP 12.8	mm. MIN. TYP MAX. 12.8 330 12.8 13.2 20.2 13.2 60 22.4 6.4 6.6 9 9.2 2.1 2.3 3.9 4.1 7.9 8.1	mm. MIN. TYP MAX. MIN. 12.8 330 13.2 0.504 20.2 13.2 0.795 60 2.362 2.362 6.4 6.6 0.252 9 9.2 0.354 2.1 2.3 0.082 3.9 4.1 0.153 7.9 8.1 0.311	mm. inch MIN. TYP MAX. MIN. TYP. 12.8 330			

Tape & Reel SO-14 MECHANICAL DATA

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics All other names are the property of their respective owners

© 2003 STMicroelectronics - All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States. http://www.st.com

57