: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

N-Channel Depletion-Mode DMOS FET

Features

- Free from secondary breakdown
- Low power drive requirement
- Ease of paralleling
- Excellent thermal stability
- Integral source-drain diode
- High input impedance and low $\mathrm{C}_{\text {iss }}$
- ESD gate protection

Applications

- Solid state relays
- Normally-on switches
- Converters
- Power supply circuits
- Constant current sources
- Input protection circuits

Ordering Information

Part Number	Package Options	Packing
LND150K1-G	TO-236AB (SOT-23)	$3000 /$ Reel
LND150N3-G	TO-92	$1000 /$ Bag
LND150N3-G P002	TO-92	2000/Reel
LND150N3-G P003	TO-92	2000/Reel
LND150N3-G P005	TO-92	$2000 /$ Reel
LND150N3-G P013	TO-92	2000/Reel
LND150N3-G P014	TO-92	2000/Reel
LND150N8-G	TO-243AA (SOT-89)	2000/Reel
-Gdenotes a lead (Pb)-free/ROHS compliantpackage		

G denotes a lead (Pb)-free / RoHS compliant package

Absolute Maximum Ratings

Parameter	Value
Drain-to-source	$\mathrm{BV}_{\text {DSX }}$
Drain-to-gate	$\mathrm{BV}_{\text {DGX }}$
Gate-to-source	$\pm 20 \mathrm{~V}$
Operating and storage temperature	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied. Continuous operation of the device at the absolute rating level may affect device reliability. All voltages are referenced to device ground.

General Description

The LND150 is a high voltage N-channel depletion mode (normally-on) transistor utilizing Supertex's lateral DMOS technology. The gate is ESD protected.

The LND150 is ideal for high voltage applications in the areas of normally-on switches, precision constant current sources, voltage ramp generation and amplification.

Product Summary

$B V_{\text {DSx }} / \mathbf{B V}_{\text {DGX }}$ (\mathbf{V})	$\mathbf{R}_{\mathrm{DS}(0 \mathrm{~N})}$ (\max)	$\mathbf{I}_{\mathrm{DSS}}$ $(\mathbf{m i n})$
500	$1.0 \mathrm{k} \Omega$	1.0 mA

Pin Configuration

TO-92

TO-236AB (SOT-23)

TO-243AA (SOT-89)

Product Marking

TO-236AB (SOT-23)

$Y Y=$ Year Sealed
WW = Week Sealed = "Green" Packaging
TO-92

\qquad = "Green" Packaging
TO-243AA (SOT-89)

Packages may or may not include the following marks: Si or 47

Thermal Characteristics

Package	$\underset{\left(\mathrm{I}_{\mathrm{D}}\right.}{(\mathrm{mA})} \underset{\left(\mathrm{m}^{2}\right)}{ }$	$\underset{\text { (pulsed) }}{\mathrm{I}_{\mathrm{D}}}$ (mA)	Power Dissipation $@ T_{A}=25^{\circ} \mathrm{C}$ (W)	$\begin{gathered} \boldsymbol{\theta}_{j a} \\ \left({ }^{\circ} \mathrm{C} / \mathrm{W}\right) \end{gathered}$	$\begin{gathered} \mathrm{I}_{\mathrm{DR}} \\ (\mathrm{~mA}) \end{gathered}$	$\begin{aligned} & \mathrm{I}_{\mathrm{DRM}}{ }^{\dagger} \\ & (\mathrm{mA}) \end{aligned}$
TO-236AB (SOT-23)	13	30	0.36	203	13	30
TO-92	30	30	0.74	132	30	30
TO-243AA (SOT-89)	30	30	$1.6{ }^{\ddagger}$	133	30	30

Notes:

$\dagger I_{D}$ (continuous) is limited by max rated T_{j}
Electrical Characteristics $\left(T_{A}=25^{\circ} \mathrm{Cunless}\right.$ otherwise specified $)$

Sym	Parameter	Min	Typ	Max	Units	Conditions
BV ${ }_{\text {DSX }}$	Drain-to-source breakdown voltage	500	-	-	V	$\mathrm{V}_{\text {GS }}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1.0 \mathrm{~mA}$
$\mathrm{V}_{\text {GS(OFF) }}$	Gate-to-source off voltage	-1.0	-	-3.0	V	$V_{G S}=25 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=100 \mathrm{nA}$
$\Delta \mathrm{V}_{\text {GS(OFF) }}$	Change in $\mathrm{V}_{\text {GS(OFF) }}$ with temperature	-	-	5.0	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	$\mathrm{V}_{\text {GS }}=25 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=100 \mathrm{nA}$
$\mathrm{l}_{\text {GSS }}$	Gate body leakage current	-	-	100	nA	$\mathrm{V}_{\mathrm{GS}}= \pm 20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$
		-	-	100	nA	$\mathrm{V}_{\text {GS }}=-10 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=450 \mathrm{~V}$
$\mathrm{I}_{\text {(OFF) }}$	Drain-to-source leakage current	-	-	100	$\mu \mathrm{A}$	$\begin{aligned} & V_{\text {DS }}=0.8 \mathrm{~V} \text { Max Rating, } \\ & \mathrm{V}_{\mathrm{GS}}=-10 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C} \end{aligned}$
$\mathrm{I}_{\text {Dss }}$	Saturated drain-to-source current	1.0	-	3.0	mA	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=25 \mathrm{~V}$
$\mathrm{R}_{\text {DS(ON) }}$	Static drain-to-source on-state resistance	-	850	1000	Ω	$V_{G S}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.5 \mathrm{~mA}$
$\Delta \mathrm{R}_{\text {DS(ON) }}$	Change in $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ with temperature	-	-	1.2	\%/ ${ }^{\circ} \mathrm{C}$	$V_{G S}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.5 \mathrm{~mA}$
$\mathrm{G}_{\text {FS }}$	Forward transductance	1.0	2.0	-	mU	$\mathrm{V}_{\text {DS }}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1.0 \mathrm{~mA}$
$\mathrm{C}_{\text {ISS }}$	Input capacitance	-	7.5	10	pF	$\begin{aligned} & V_{G S}=-10 \mathrm{~V}, \\ & V_{D S}=25 \mathrm{~V}, \\ & f=1.0 \mathrm{MHz} \end{aligned}$
$\mathrm{C}_{\text {oss }}$	Common source output capacitance	-	2.0	3.5		
$\mathrm{C}_{\text {RSS }}$	Reverse transfer capacitance	-	0.5	1.0		
$\mathrm{t}_{\text {(OON) }}$	Turn-on delay time	-	0.09	-	$\mu \mathrm{s}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=25 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{D}}=1.0 \mathrm{~mA}, \\ & \mathrm{R}_{\mathrm{GEN}}=25 \Omega \end{aligned}$
t_{r}	Rise time	-	0.45	-		
$\mathrm{t}_{\text {d(IOFF) }}$	Turn-off delay time	-	0.1	-		
t_{f}	Fall time	-	1.3	-		
$\mathrm{V}_{\text {SD }}$	Diode forward voltage drop	-	-	0.9	V	$\mathrm{V}_{\text {GS }}=-10 \mathrm{~V}, \mathrm{I}_{\text {SD }}=1.0 \mathrm{~mA}$
$\mathrm{t}_{\text {tr }}$	Reverse recovery time	-	200	-	ns	$\mathrm{V}_{\text {GS }}=-10 \mathrm{~V}, \mathrm{I}_{\text {SD }}=1.0 \mathrm{~mA}$

Notes:

1. All D.C. parameters 100% tested at $25^{\circ} \mathrm{C}$ unless otherwise stated. (Pulse test: $300 \mu \mathrm{~s}$ pulse, 2% duty cycle.)
2. All A.C. parameters sample tested.

Switching Waveforms and Test Circuit

Typical Performance Curves

Power Dissipation vs. Ambient Temperature

Typical Performance Curves (cont.)

Capacitance vs. Drain-to-Source Voltage

Gate Drive Dynamic Characteristics

3-Lead TO-236AB (SOT-23) Package Outline (K1)

$2.90 \times 1.30 \mathrm{~mm}$ body, 1.12 mm height (max), 1.90mm pitch

Symbol		A	A1	A2	b	D	E	E1	e	e1	L	L1	$\boldsymbol{\theta}$
Dimension (mm)	MIN	0.89	0.01	0.88	0.30	2.80	2.10	1.20	$\begin{aligned} & 0.95 \\ & \text { BSC } \end{aligned}$	$\begin{aligned} & 1.90 \\ & \text { BSC } \end{aligned}$	0.20^{+}	$\begin{aligned} & 0.54 \\ & \text { REF } \end{aligned}$	0°
	NOM	-	-	0.95	-	2.90	-	1.30			0.50		-
	MAX	1.12	0.10	1.02	0.50	3.04	2.64	1.40			0.60		8°

JEDEC Registration TO-236, Variation AB, Issue H, Jan. 1999.
\dagger This dimension differs from the JEDEC drawing.
Drawings not to scale.
Supertex Doc.\#: DSPD-3TO236ABK1, Version C041309.

3-Lead TO-92 Package Outline (N3)

Front View

Side View

Bottom View

Symbol		A	b	c	D	E	E1	e	e1	L
Dimensions (inches)	MIN	. 170	. $014{ }^{+}$. $014{ }^{+}$. 175	. 125	. 080	. 095	. 045	. 500
	NOM	-	-	-	-	-	-	-	-	-
	MAX	. 210	. 022^{\dagger}	. $022{ }^{+}$. 205	. 165	. 105	. 105	. 055	.610*

JEDEC Registration TO-92.

* This dimension is not specified in the JEDEC drawing.
\dagger This dimension differs from the JEDEC drawing.
Drawings not to scale.
Supertex Doc.\#: DSPD-3TO92N3, Version E041009.

3-Lead TO-243AA (SOT-89) Package Outline (N8)

Top View

Side View

Symbol		A	b	b1	C	D	D1	E	E1	e	e1	H	L
Dimensions (mm)	MIN	1.40	0.44	0.36	0.35	4.40	1.62	2.29	2.00^{+}	$\begin{aligned} & 1.50 \\ & \text { BSC } \end{aligned}$	$\begin{aligned} & 3.00 \\ & \text { BSC } \end{aligned}$	3.94	$0.73{ }^{+}$
	NOM	-	-	-	-	-	-	-	-			-	-
	MAX	1.60	0.56	0.48	0.44	4.60	1.83	2.60	2.29			4.25	1.20

JEDEC Registration TO-243, Variation AA, Issue C, July 1986.
t This dimension differs from the JEDEC drawing
Drawings not to scale.
Supertex Doc. \#: DSPD-3TO243AAN8, Version F111010.
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to http://www.supertex.com/packaging.html.)

[^0]
[^0]: Supertex inc. does not recommend the use of its products in life support applications, and will not knowingly sell them for use in such applications unless it receives an adequate "product liability indemnification insurance agreement." Supertex inc. does not assume responsibility for use of devices described, and limits its liability to the replacement of the devices determined defective due to workmanship. No responsibility is assumed for possible omissions and inaccuracies. Circuitry and specifications are subject to change without notice. For the latest product specifications refer to the Supertex inc. (website: http//www.supertex.com)

