

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

P-Channel Enhancement-Mode Lateral MOSFET

Features

- ▶ Ultra-low threshold
- ▶ High input impedance
- ▶ Low input capacitance
- ▶ Fast switching speeds
- ▶ Low on-resistance
- ▶ Freedom from secondary breakdown
- ▶ Low input and output leakage

Applications

- ▶ Logic level interfaces
- ▶ Solid state relays
- ▶ Battery operated systems
- ▶ Photo voltaic drives
- ▶ Analog switches
- ▶ General purpose line drivers

Ordering Information

Part Number	Package Options	Packing
LP0701LG-G	8-Lead SOIC	2500/Reel
LP0701N3-G	TO-92	1000/Bag
LP0701N3-G P002	TO-92	2000/Reel
LP0701N3-G P003	TO-92	2000/Reel
LP0701N3-G P005	TO-92	2000/Reel
LP0701N3-G P013	TO-92	2000/Reel
LP0701N3-G P014	TO-92	2000/Reel

-G denotes a lead (Pb)-free / RoHS compliant package

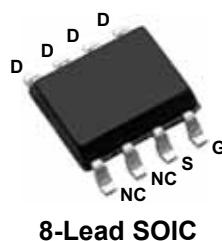
Refer to 'P0xx' Tape & Reel Specs for P002, P003, P005, P013, and P014
TO-92 Taping Specifications and Winding Styles

Absolute Maximum Ratings

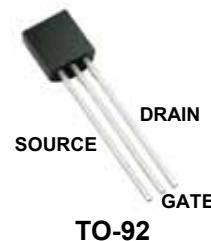
Parameter	Value
Drain-to-source voltage	BV_{DSS}
Drain-to-gate voltage	BV_{DGS}
Gate-to-source voltage	$\pm 10V$
Operating and storage temperature	-55°C to +150°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied. Continuous operation of the device at the absolute rating level may affect device reliability. All voltages are referenced to device ground.

General Description


These enhancement-mode (normally-off) transistors utilize a lateral MOS structure and Supertex's well-proven silicon-gate manufacturing process. This combination produces devices with the power handling capabilities of bipolar transistors and with the high input impedance and negative temperature coefficient inherent in MOS devices.

Characteristic of all MOS structures, these devices are free from thermal runaway and thermally induced secondary breakdown. The low threshold voltage and low on-resistance characteristics are ideally suited for hand held, battery operated applications.


Product Summary

BV_{DSS}/BV_{DGS}	$R_{DS(ON)}$	$V_{GS(TH)}$	$I_{D(ON)}$
-16.5V	3.0k Ω	-1.0V (max)	3.0mA (min)

Pin Configuration

8-Lead SOIC

TO-92

Product Marking

YY = Year Sealed
WW = Week Sealed
L = Lot Number
_____ = "Green" Packaging

Package may or may not include the following marks: Si or

8-Lead SOIC

YY = Year Sealed
WW = Week Sealed
_____ = "Green" Packaging

Package may or may not include the following marks: Si or

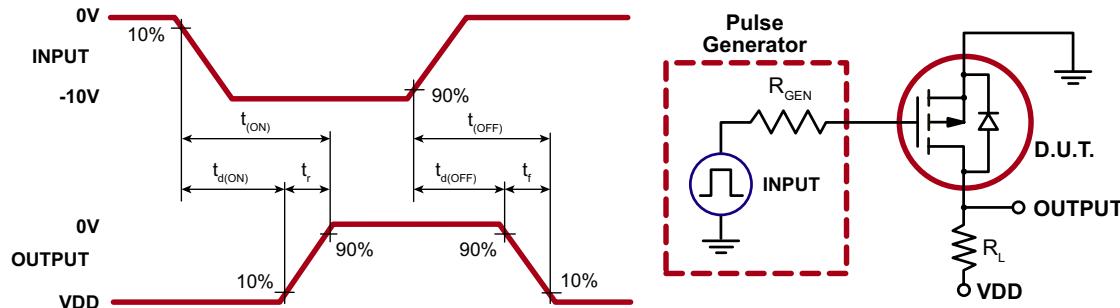
TO-92

Thermal Characteristics

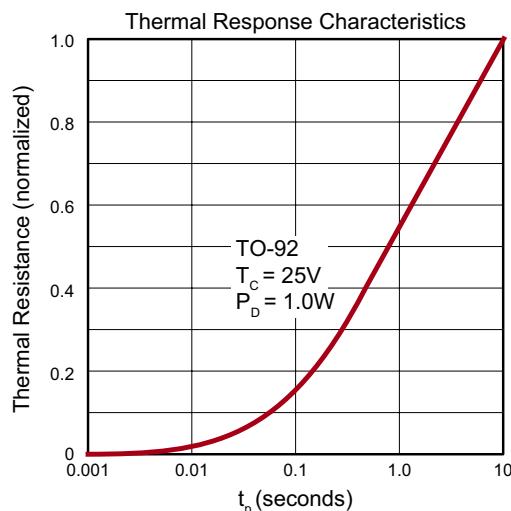
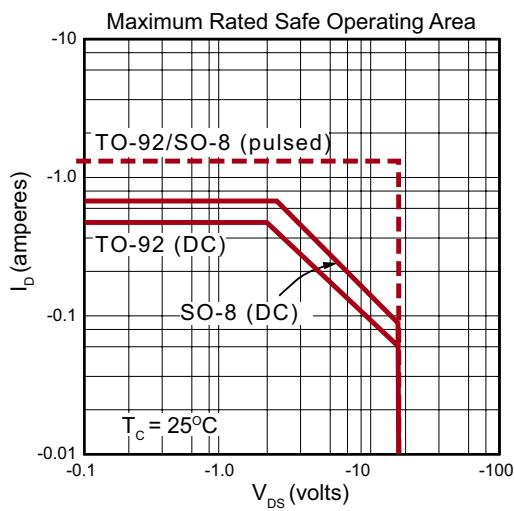
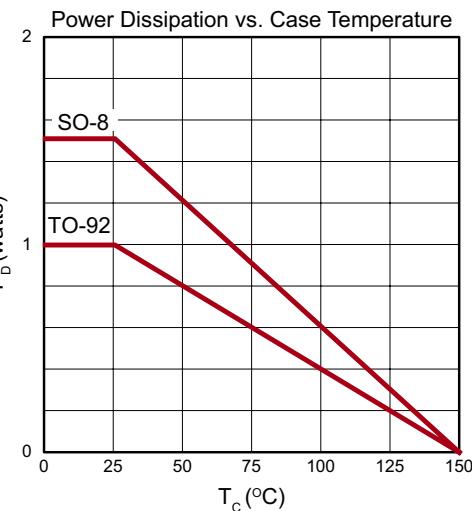
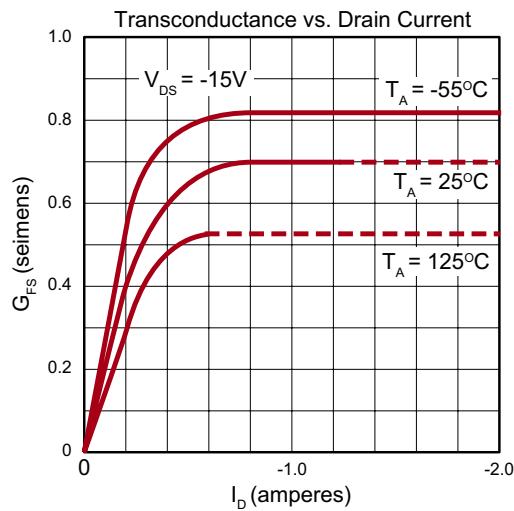
Package	I_D (continuous) [†] (mA)	I_D (pulsed) [†] (A)	Power Dissipation @ $T_c = 25^\circ\text{C}$ (W)	θ_{ja} (°C/W)	I_{DR} (mA)	I_{DRM} (A)
8-Lead SOIC	-700	-1.25	1.5 [‡]	101 [‡]	-700	-1.25
TO-92	-500	-1.25	1.0	132	-500	-1.25

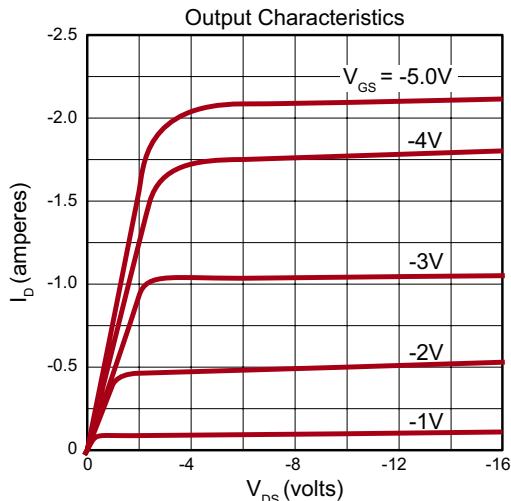
Notes:

[†] I_D (continuous) is limited by max rated T_j .
[‡] Mounted on FR4 board, 25mm x 25mm x 1.57mm

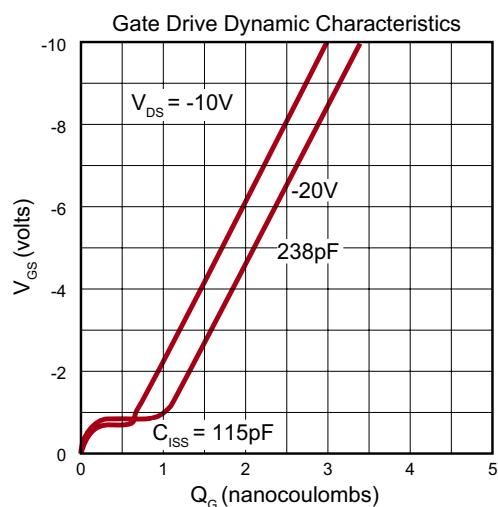
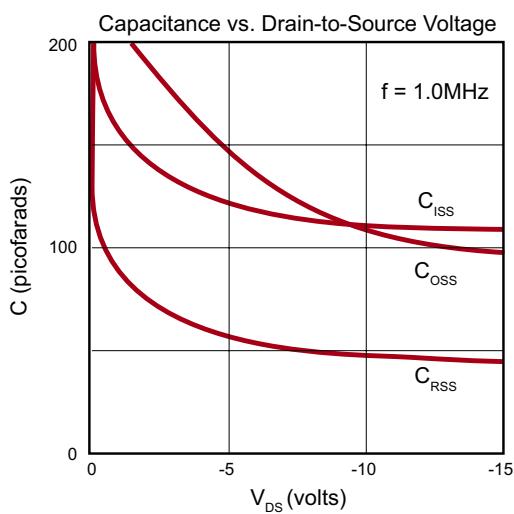
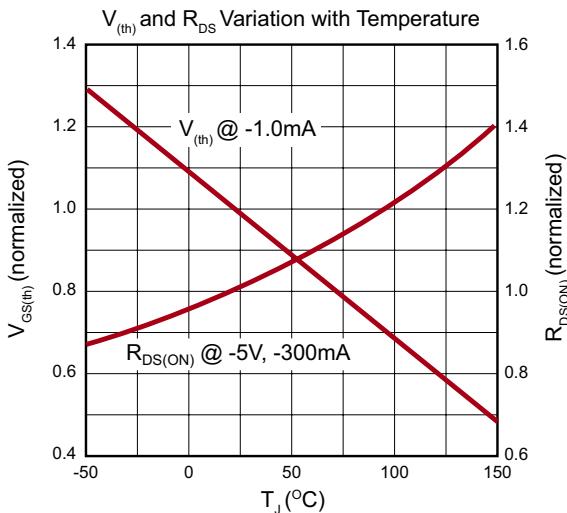
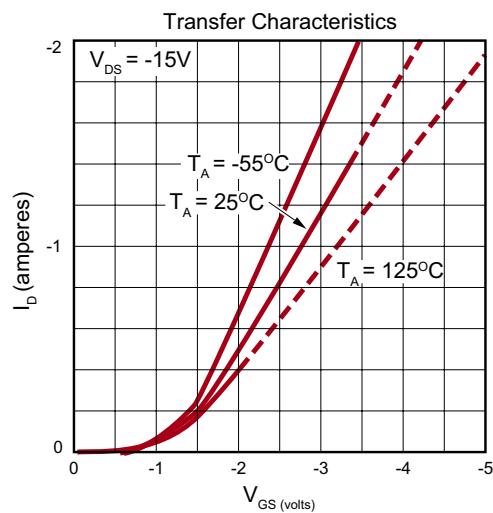
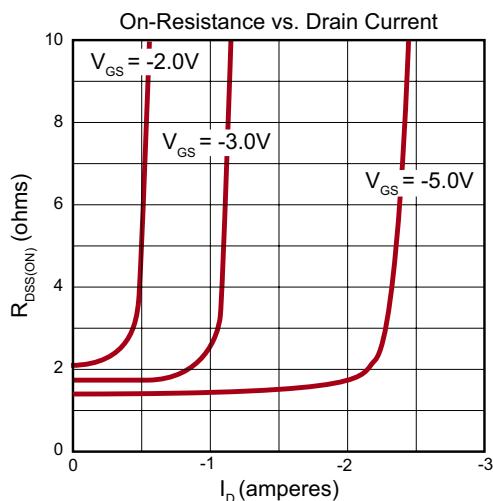
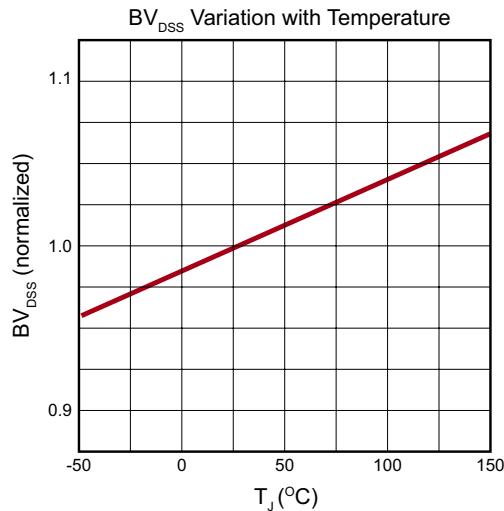

Electrical Characteristics ($T_A = 25^\circ\text{C}$ unless otherwise specified)

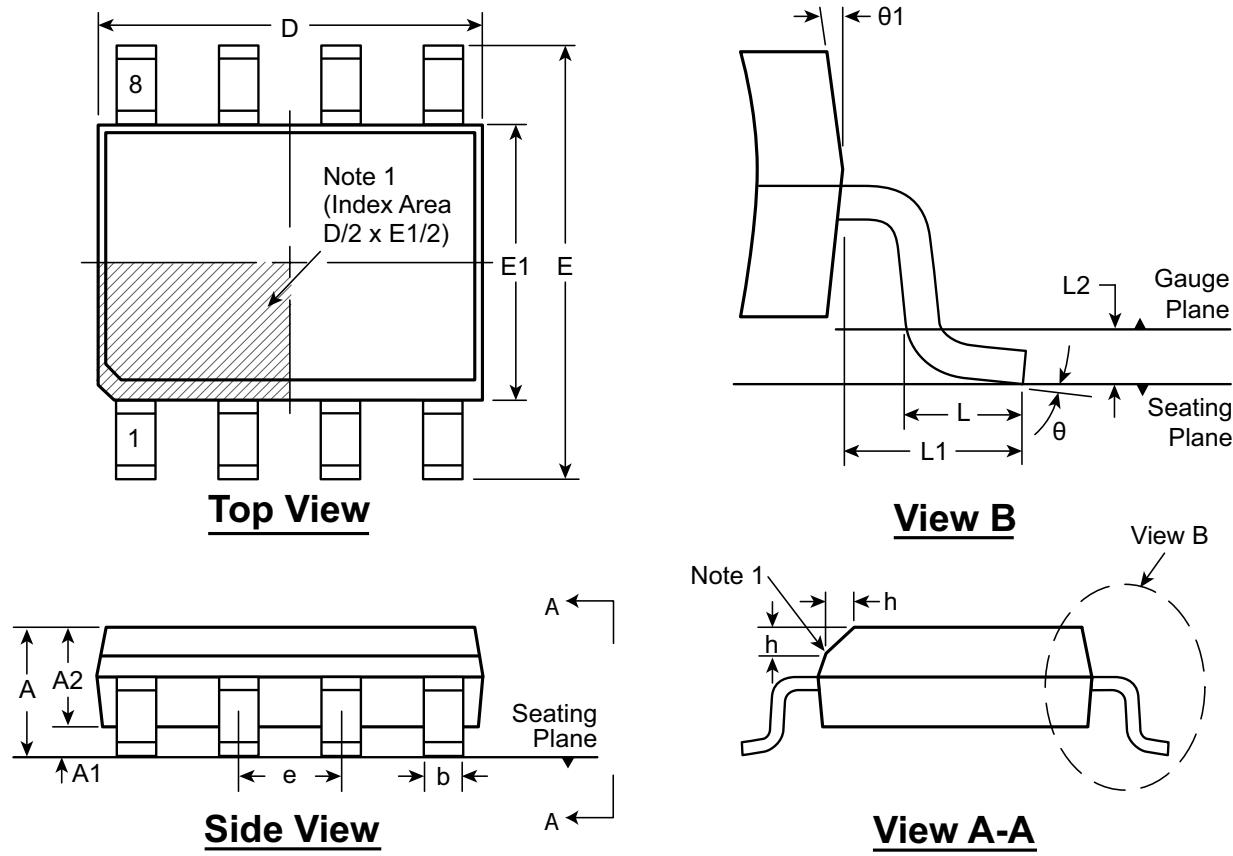
Sym	Parameter	Min	Typ	Max	Units	Conditions
BV_{DSS}	Drain-to-source breakdown voltage	-16.5	-	-	V	$V_{GS} = 0\text{V}$, $I_D = -1.0\text{mA}$
V_{GS}	Gate threshold voltage	-0.5	-0.7	-1.0	V	$V_{GS} = V_{DS}$, $I_D = -1.0\text{mA}$
$\Delta V_{GS(\text{th})}$	Change in $V_{GS(\text{th})}$ with temperature	-	-	-4.0	mV/°C	$V_{GS} = V_{DS}$, $I_D = -1.0\text{mA}$
I_{GSS}	Gate body leakage	-	-	-100	nA	$V_{GS} = \pm 10\text{V}$, $V_{DS} = 0\text{V}$
I_{DSS}	Zero gate voltage drain current	-	-	-100	nA	$V_{DS} = -15\text{V}$, $V_{GS} = 0\text{V}$
		-	-	-1.0	mA	$V_{DS} = 0.8$ Max Rating, $V_{GS} = 0\text{V}$, $T_A = 125^\circ\text{C}$
$I_{D(\text{ON})}$	On-state drain current	-	-0.4	-	A	$V_{GS} = V_{DS} = -2.0\text{V}$
		-0.6	-1.0	-		$V_{GS} = V_{DS} = -3.0\text{V}$
		-1.25	-2.30	-		$V_{GS} = V_{DS} = -5.0\text{V}$
$R_{DS(\text{ON})}$	Static drain-to-source on-state resistance	-	2.0	4.0	Ω	$V_{GS} = -2.0\text{V}$, $I_D = -50\text{mA}$
		-	1.7	2.0		$V_{GS} = -3.0\text{V}$, $I_D = -150\text{mA}$
		-	1.3	1.5		$V_{GS} = -5.0\text{V}$, $I_D = -300\text{mA}$
$\Delta R_{DS(\text{ON})}$	Change in $R_{DS(\text{ON})}$ with temperature	-	-	0.75	%/°C	$V_{GS} = -5.0\text{V}$, $I_D = -300\text{mA}$
G_{FS}	Forward transconductance	500	700	-	mmho	$V_{GS} = -15\text{V}$, $I_D = -1.0\text{A}$
C_{ISS}	Input capacitance	-	120	250	pF	$V_{GS} = 0\text{V}$,
C_{OSS}	Common source output capacitance	-	100	125		$V_{DS} = -15\text{V}$,
C_{RSS}	Reverse transfer capacitance	-	40	60		$f = 1.0\text{MHz}$
$t_{d(\text{ON})}$	Turn-on delay time	-	-	20	ns	$V_{DD} = -15\text{V}$, $I_D = -1.25\text{A}$, $R_{\text{GEN}} = 25\Omega$
t_r	Rise time	-	-	20		
$t_{d(\text{OFF})}$	Turn-off delay time	-	-	30		
t_f	Fall time	-	-	30		
V_{SD}	Diode forward voltage drop	-	-1.2	-1.5	V	$V_{GS} = 0\text{V}$, $I_{SD} = -500\text{mA}$


Notes:

- All D.C. parameters 100% tested at 25°C unless otherwise stated. (Pulse test: 300μs pulse, 2% duty cycle.)
- All A.C. parameters sample tested.







Switching Waveforms and Test Circuit


Typical Performance Curves

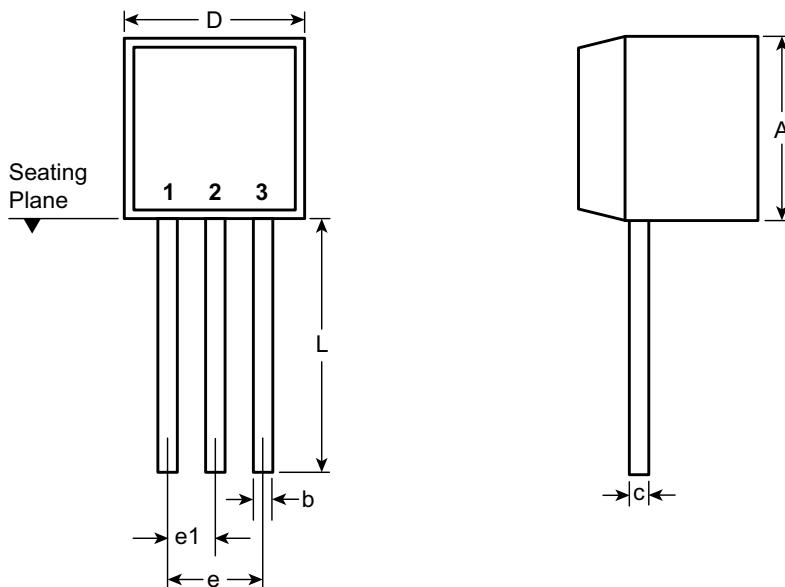
Typical Performance Curves (cont.)

8-Lead SOIC (Narrow Body) Package Outline (LG)

Note:

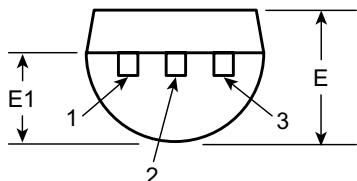
1. This chamfer feature is optional. A Pin 1 identifier must be located in the index area indicated. The Pin 1 identifier can be: a molded mark/identifier; an embedded metal marker; or a printed indicator.

Symbol	A	A1	A2	b	D	E	E1	e	h	L	L1	L2	θ	θ1
Dimension (mm)	MIN	1.35*	0.10	1.25	0.31	4.80*	5.80*	3.80*	0.25	0.40	1.04 REF	0.25 BSC	0°	5°
	NOM	-	-	-	-	4.90	6.00	3.90	-	-			-	-
	MAX	1.75	0.25	1.65*	0.51	5.00*	6.20*	4.00*	0.50	1.27			8°	15°


JEDEC Registration MS-012, Variation AA, Issue E, Sept. 2005.

* This dimension is not specified in the JEDEC drawing.

Drawings are not to scale.


Supertex Doc. #: DSPD-8SOLGTG, Version I041309.

3-Lead TO-92 Package Outline (N3)

Front View

Side View

Bottom View

Symbol		A	b	c	D	E	E1	e	e1	L
Dimensions (inches)	MIN	.170	.014 [†]	.014 [†]	.175	.125	.080	.095	.045	.500
	NOM	-	-	-	-	-	-	-	-	-
	MAX	.210	.022 [†]	.022 [†]	.205	.165	.105	.105	.055	.610*

JEDEC Registration TO-92.

* This dimension is not specified in the JEDEC drawing.

† This dimension differs from the JEDEC drawing.

Drawings not to scale.

Supertex Doc.#: DSFP-3TO92N3, Version E041009.

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to <http://www.supertex.com/packaging.html>.)

Supertex inc. does not recommend the use of its products in life support applications, and will not knowingly sell them for use in such applications unless it receives an adequate "product liability indemnification insurance agreement." **Supertex inc.** does not assume responsibility for use of devices described, and limits its liability to the replacement of the devices determined defective due to workmanship. No responsibility is assumed for possible omissions and inaccuracies. Circuitry and specifications are subject to change without notice. For the latest product specifications refer to the **Supertex inc.** (website: <http://www.supertex.com>)