# mail

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



## Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



## 

**Platform Manager 2** 

In-System Programmable Hardware Management Controller

Data Sheet DS1043

#### May 2016

## **Features**

- Ten Rail Voltage Monitoring and Measurement
  - UV/OV Fault Detection Accuracy 0.2% Typ.
  - Fault Detection Speed < 100 μs</li>
  - High Voltage, Single Ended and Differential Sensing
- Two Channel Wide-Range Current Monitoring and Measurement
  - High-side current measurement up to 12 V
  - Programmable OC/UC Fault Detect
  - Detects Current faults in <1 μs
- Three Temperature Monitoring and Measurement Channels
  - Programmable OT/UT Faults Threshold
  - Two channels of Temperature Monitoring using external diodes
  - On-Chip Temperature Monitor
  - 4 High-Side MOSFET Drivers
    - Programmable Charge Pump
- Four Precision Trim and Margin Channels
  - Closed Loop Operation
  - Voltage Scaling and VID Support
- Ten General Purpose Input/Output
  - 5 V tolerant I/O
- Non-Volatile Fault Logging
- Programmed through JTAG or I<sup>2</sup>C
  - Background Update with Dual-Boot Backup

## **Application Diagram**

#### Hardware Management Application Block Diagram

- FPGA Resources
   1280 LUT, 98 I/O Version (LPTM21)
- RAM and Flash Memories
- Scalable Hardware Management Architecture
  - Glueless interface to Hardware Management Expander (L-ASC10)
  - Migrate between LPTM21 and larger density MachXO2 device to extend logic and I/O resources

#### System Level Support

- Operating voltage from 4.75 V to 13.2 V or 2.8 V to 3.46 V
- 12 V DC-DC converter provides 3.3 V supply for ASC Hardware Management Expanders
- Industrial and commercial temperature ranges
- 237-ball ftBGA (LPTM21)
- RoHS compliant and halogen-free

#### Applications

- Telecommunication and Networking
- Industrial, Test and Measurement
- · Medical Systems
- · Servers and Storage Systems
- · High Reliability Systems



© 2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.



## Description

The Lattice Platform Manager 2 device is a fast-reacting, programmable logic based hardware management controller. Platform Manager 2 is an integrated solution combining analog sense and control elements with scalable programmable logic resources. This unique approach allows Platform Manager 2 to integrate Power Management (Power Sequencing, Voltage Monitoring, Trimming and Margining), Thermal Management (Temperature Monitoring, Fan Control, Power Control), and Control Plane functions (System Configuration, I/O Expansion, etc.) as a single device.

Architecturally, the Platform Manager 2 device can be divided into two sections – Analog Sense and Control and FPGA. The Analog Sense and Control (ASC) section provides three types of analog sense channels: voltage (nine standard channels and one high voltage channel), current (one standard voltage and one high voltage) and temperature (two external and one internal).

Each of the analog sense channels is monitored through two independently programmable comparators to support both high/low and in-bounds/out-of-bounds (window-compare) monitor functions. In addition, each of the current sense channels provides a fast fault detect (one µs response time) for detecting short circuit events. The temperature sense channels can be configured to work with different external transistor or diode configurations.

The Analog Sense and Control section also provides ten general purpose 5 V tolerant open-drain digital input/output pins that can be used for controlling DC-DC converters, low-drop-out regulators (LDOs) and opto-couplers, as well as for general purpose logic interface functions. In addition, four high-voltage charge pumped outputs (HVOUT1-HVOUT4) may be configured as high-voltage MOSFET drivers to control high-side MOSFET switches. These HVOUT outputs can also be programmed as static output signals or as switched outputs (to support external charge pump implementation) operating at a dedicated duty cycle and frequency.

The ASC section incorporates four TRIM outputs for controlling the output voltages of DC-DC converters. Each power supply output voltage can be maintained typically within 0.5% tolerance across various load conditions using the Digital Closed Loop Control mode of the trimming block.

The internal 10-bit A/D converter can be used to measure the voltage and current through the l<sup>2</sup>C bus. The ADC is also used in the digital closed loop control mode of the trimming block.

The ASC section also provides the capability of logging up to 16 status records into its nonvolatile EEPROM memory. Each record includes voltage, current and temperature monitor signals along with digital input and output levels.

The ASC section includes an output control block (OCB) which allows certain inputs and control signals a direct connection to the digital outputs or HVOUTs, bypassing the ASC-I/F for a faster response. The OCB is used to connect the fast current fault detect signal to an FPGA input directly. It also supports functions such as Hot Swap with a programmable hysteretic controller.

The FPGA section contains non-volatile low cost programmable logic of 1280 Look-Up Tables (LUTs). In addition to the LUT-based logic, the FPGA section features Embedded Block RAM (EBR), Distributed RAM, User Flash Memory (UFM), flexible I/Os, and hardened versions of commonly used functions such as SPI controller, I<sup>2</sup>C controller and Timer/counter. The FPGA I/Os offer enhanced features such as drive strength control, slew rate control, buskeeper latches, internal pull-up or pull-down resistors, and open-drain outputs. These features are controllable on a "per-pin" basis.

The power management, thermal management and control plane logic functions are implemented in the FPGA section of Platform Manager 2. The FPGA receives the analog comparator values and inputs from the ASC section and sends output commands to the ASC section through the dedicated ASC-interface (ASC-I/F) high-speed, reliable serial channel. The FPGA hardware management functions are implemented using the Platform Designer tool inside Lattice Diamond software. The Platform Designer tool includes an easy to use sequence and monitor logic



builder tool and a set of pre-engineered components for functions like time-stamped fault logging, voltage by identification (VID), and fan control.

The Platform Manager 2 is designed to enable seamless scaling of the number of voltage, current and temperature sense channels in the system by adding external Analog Sense and Control (ASC) Hardware Management Expanders. The algorithm implemented within the FPGA can access and control these external ASCs through the dedicated ASC-I/F. Larger systems with up to eight ASC devices can be created by using a MachXO2 FPGA in place of the Platform Manager 2 device. The companion devices are connected in a scalable, star topology to Platform Manager 2 or MachXO2.

The Platform Manager 2 has an  $I^2C$  interface which is used by the FPGA section for ASC interface configuration. The  $I^2C$  interface also provides the mechanism for parameter measurement or I/O control or status. For example, voltage trim targets can be set over the  $I^2C$  bus and measured voltage, current, or temperature values can be read over the  $I^2C$  bus.

The Platform Manager 2 device can be programmed in-system through JTAG or I<sup>2</sup>C interfaces. The configuration is stored in on-chip non-volatile memory. Upon power-on, the FPGA section configuration is transferred to the on-chip SRAM and the device operates from SRAM. It is possible to update the non-volatile memory content in the background without interrupting the system operation.

## **Block Diagram**

#### Figure 1. Platform Manager 2 Block Diagram





## Table 1. Platform Manager 2 Device Features

|                                                                | LPTM21                    |
|----------------------------------------------------------------|---------------------------|
| Analog Sense and Control Section                               |                           |
| Voltage Monitor Inputs                                         | 10                        |
| Current Monitor Inputs                                         | 2                         |
| Temperature Monitor Inputs                                     | 2                         |
| Trim Outputs                                                   | 4                         |
| High Voltage Outputs                                           | 4                         |
| GPIO pins (5V tolerant)                                        | 10                        |
| FPGA section                                                   |                           |
| LUTs                                                           | 1280                      |
| Distributed RAM (Kbits)                                        | 10                        |
| EBR SRAM (Kbits)                                               | 64                        |
| Number of EBR SRAM Blocks (9 Kbits/block)                      | 7                         |
| UFM (Kbits)                                                    | 64                        |
| Hardened Functions<br>I <sup>2</sup> C<br>SPI<br>Timer/Counter | 2<br>1<br>1               |
| Package                                                        | Digital I/Os <sup>1</sup> |
| 237 - ftBGA                                                    | 95                        |

1. Digital I/O count does not include SDA\_M, SCL\_M or JTAGENB pins.



## **DC and Switching Characteristics**

## Absolute Maximum Ratings<sup>1, 2, 3</sup>

| Symbol                  | Parameter Condit                                      |             | Min  | Max.             | Units |
|-------------------------|-------------------------------------------------------|-------------|------|------------------|-------|
| Supply Voltages         |                                                       |             |      |                  | 1     |
| V <sub>CCA</sub>        | ASC Supply                                            |             | -0.5 | 3.75             | V     |
| V <sub>CC</sub>         | FPGA Core Supply Voltage <sup>4</sup>                 |             | -0.5 | 3.75             | V     |
| V <sub>CCIO</sub>       | FPGA Output Supply Voltage <sup>4</sup>               |             | -0.5 | 3.75             | V     |
| V <sub>VDC</sub>        | Power Supply Input to DC-DC Converter                 |             | -0.5 | 13.3             | V     |
| Monitor and I/O Pin     | Voltages                                              |             |      |                  |       |
| V <sub>IN VMON</sub>    | VMON input voltage                                    |             | -0.5 | 6                | V     |
| V <sub>IN VMONGS</sub>  | VMON input voltage ground sense                       |             | -0.5 | 6                | V     |
| V <sub>IN HIMONP</sub>  | High voltage IMON input voltage                       |             | -0.5 | 13.3             | V     |
| VIN_HIMONN_HVMON        | High voltage IMON return / VMON input volt-<br>age    |             | -0.5 | 13.3             | V     |
| V <sub>DIFF_HIMON</sub> | High voltage IMON differential voltage                |             | -2.0 | 2.0              | V     |
| V <sub>IN IMONP</sub>   | Low voltage IMON1 input voltage                       |             | -0.5 | 6.0              | V     |
| V <sub>IN IMONN</sub>   | Low voltage IMON1 return voltage                      |             | -0.5 | 6.0              | V     |
| V <sub>DIFF_IMON</sub>  | Low voltage IMON1 differential voltage                |             | -2.0 | 2.0              | V     |
| V <sub>IN_TMONP</sub>   | TMON input voltage                                    |             | -0.5 | V <sub>CCA</sub> | V     |
| V <sub>IN_TMONN</sub>   | TMON return voltage                                   |             | -0.5 | V <sub>CCA</sub> | V     |
| V <sub>IN_GPIO</sub>    | Digital input voltage (ASC Section)                   |             | -0.5 | 6                | V     |
| V <sub>OUT</sub>        | Open-drain output voltage (ASC Section)               | HVOUT [1:4] | -0.5 | 13.3             | V     |
|                         |                                                       | GPIO[1:10]  | -0.5 | 6                | V     |
| V <sub>TRIM</sub>       | TRIM output voltage                                   |             | -0.5 | V <sub>CCA</sub> | V     |
| V <sub>TRI_FPGA</sub>   | FPGA PIO Tri-State Voltage Applied <sup>5, 4</sup>    |             | -0.5 | 3.75             | V     |
| V <sub>IN_FPGA</sub>    | FPGA PIO Dedicated Input Voltage Applied <sup>4</sup> |             | -0.5 | 3.75             | V     |
| Other                   |                                                       |             | 1    |                  |       |
| I <sub>SINKMAX</sub>    | Maximum Sink Current on any ASC Section output        |             |      | 23               | mA    |
| T <sub>S</sub>          | Device Storage Temperature (Ambient)                  |             | -55  | +125             | °C    |
| TJ                      | Junction Temperature                                  |             | -40  | +125             | °C    |

1. Stress above those listed under the "Absolute Maximum Ratings" may cause permanent damage to the device. Functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

2. Compliance with the Lattice Thermal Management document is required.

3. All voltages referenced to GND.

4. Overshoot and Undershoot of -2 V to (VIHMAX +2) volts is permitted for a duration of < 20 ns.

5. The dual function I2C pins SCL\_M and SDA\_M are limited to -0.25 to 3.75 V or to -0.3 V with a duration of < 20 ns.



## **Recommended Operating Conditions**<sup>1</sup>

| Symbol                           | Parameter                                           | Conditions                 | Min  | Max.  | Units |
|----------------------------------|-----------------------------------------------------|----------------------------|------|-------|-------|
| Supply Voltages                  |                                                     |                            |      | •     | •     |
| V <sub>CCA</sub>                 | ASC Supply                                          |                            | 2.8  | 3.465 | V     |
| V <sub>CC</sub>                  | FPGA Core Supply Voltage                            |                            | 2.8  | 3.465 | V     |
| V <sub>CCIO<sup>2, 3</sup></sub> | FPGA Output Supply Voltage                          |                            | 1.14 | 3.465 | V     |
| V <sub>VDC</sub>                 | VDC Supply <sup>5</sup>                             |                            | 4.75 | 13.2  | V     |
| Monitor and I/O Pin              | Voltages                                            | · · ·                      |      |       |       |
| V <sub>IN_VMON</sub>             | V <sub>MON</sub> input voltage                      |                            | -0.3 | 5.9   | V     |
| V <sub>IN_VMONGS</sub>           | V <sub>MON</sub> input voltage ground sense         |                            | -0.2 | 0.3   | V     |
| V <sub>IN_HIMONP</sub>           | High voltage IMON input voltage4                    |                            | 4.5  | 13.2  | V     |
| VIN_HIMONN_HVMON                 | High voltage IMON return /VMON voltage <sup>4</sup> |                            | 4.5  | 13.2  | V     |
| V <sub>DIFF_HIMON</sub>          | High voltage IMON differential voltage              |                            | 0    | 500   | mV    |
| V <sub>IN_IMONP</sub>            | Low voltage IMON1 input voltage                     | Low Side Sense<br>Disabled | 0.6  | 5.9   | V     |
|                                  |                                                     | Low Side Sense<br>Enabled  | -0.3 | 1.0   | V     |
| V <sub>IN_IMONN</sub>            | Low voltage IMON1 return voltage                    | Low Side Sense<br>Disabled | 0.6  | 5.9   | V     |
|                                  |                                                     | Low Side Sense<br>Enabled  | -0.3 | 1.0   | V     |
| V <sub>DIFF_IMON</sub>           | Low voltage IMON1 differential voltage              |                            | 0    | 500   | mV    |
| V <sub>IN_GPIO</sub>             | Digital input voltage (ASC Section)                 |                            | -0.3 | 5.5   | V     |
| V <sub>OUT</sub>                 | Open-drain output voltage (ASC Section)             | HVOUT [1:4]                | -0.3 | 13.2  | V     |
|                                  |                                                     | GPIO[1:10]                 | -0.3 | 5.5   | V     |
| Other                            |                                                     |                            |      |       |       |
| T <sub>JCOM</sub>                | Junction Temperature (Commercial)                   |                            | 0    | +85   | °C    |
| T <sub>JIND</sub>                | Junction Temperature (Industrial)                   |                            | -40  | +100  | °C    |

 Like power supplies must be tied together. For example, if V<sub>CCIO</sub> and V<sub>CC</sub> are both the same voltage, they must also be the same supply. VCCA, VCC, VCCIO0 and VCCIO1 should all be tied together. See the System Connections section for more details.

2. See recommended voltage by I/O standard in subsequent table.

3.  $V_{CCIO}$  pins of unused I/O banks should be connected to the  $V_{CC}$  power supply on boards.

4. HIMON circuits are operational down to 3V. Accuracy is guaranteed within Recommended Operating Conditions

5. VDC supply voltage only required when on-chip DC-DC converter controller is used to generate VCCA/VCC. VDC should be left open when VCCA/VCC are supplied directly.

## Power Supply Ramp Rates<sup>1</sup>

| Symbol            | Parameter                                                                             | Min. | Тур. | Max. | Units |
|-------------------|---------------------------------------------------------------------------------------|------|------|------|-------|
| t <sub>RAMP</sub> | Power supply ramp rates for all $V_{\mbox{CC}}$ and $V_{\mbox{CCIO}}$ power supplies. | 0.01 |      | 100  | V/ms  |

1. Assumes monotonic ramp rates.



#### DC/DC Converter<sup>1,2</sup>

| Symbol                 | Parameter                | Conditions | Min  | Тур. | Max. | Units |
|------------------------|--------------------------|------------|------|------|------|-------|
| V <sub>VDC</sub>       | Input Supply             |            | 4.75 |      | 13.2 | V     |
| F <sub>DC</sub>        | PWM Frequency            |            |      | 215  |      | kHz   |
| V <sub>VDC_OUT</sub>   | Regulated Supply Voltage |            | 3.1  | 3.3  | 3.45 | V     |
| V <sub>VDC_DRVoh</sub> | HDRV                     | Isrc=4mA   | 3.17 |      |      | V     |
| V <sub>VDC_DRVol</sub> | HDRV                     | Isrc=4mA   |      |      | 0.34 | V     |

1. DC-DC converter performance is dependent on external component selection. See the For Further Information section for more details.

2. Valid for load currents up to 250 mA.

## Power-On-Reset and Flash Download Time

| Symbol                                | Parameter                                                                              | Conditions | Min | Тур. | Max. | Units |  |
|---------------------------------------|----------------------------------------------------------------------------------------|------------|-----|------|------|-------|--|
| Analog Sense and Control Section      |                                                                                        |            |     |      |      |       |  |
| T <sub>RST</sub>                      | Delay from V <sub>TH</sub> to start-up state                                           |            |     |      | 100  | us    |  |
| T <sub>SAFE</sub>                     | Delay from RESETb release to ASC Safe State Exit and I/O Release <sup>2, 3</sup>       |            |     | 1.8  |      | ms    |  |
| T <sub>SAFE2</sub>                    | Delay from WRCLK start to ASC Safe State<br>Exit and I/O Release <sup>2, 3, 4</sup>    |            | 56  |      |      | us    |  |
| T <sub>GOOD</sub>                     | Delay from I/O release to A <sub>GOOD</sub> asserted high in FPGA section <sup>5</sup> |            |     | 16   |      | us    |  |
| T <sub>BRO</sub>                      | Minimum duration brown out required to trig-<br>ger RESETb                             |            | 1   |      | 5    | us    |  |
| T <sub>POR</sub>                      | Delay from Brown out to reset state                                                    |            |     |      | 13   | us    |  |
| V <sub>TL</sub>                       | Threshold below which RESETb is LOW                                                    |            |     |      | 2.3  | V     |  |
| V <sub>TH</sub>                       | Threshold above which RESETb is Hi-Z                                                   |            | 2.7 |      |      | V     |  |
| V <sub>T</sub>                        | Threshold above which RESETb is valid                                                  |            | 0.8 |      |      | V     |  |
| CL                                    | Capacitive load on RESETb                                                              |            |     |      | 200  | pF    |  |
| FPGA Section                          |                                                                                        |            |     |      |      |       |  |
| V <sub>CC_PORUPEXT</sub> <sup>1</sup> | Power-On-Reset ramp up trip point (external VCC power supply)                          |            | 1.5 |      | 2.1  | V     |  |
| V <sub>PORUPIO</sub> <sup>1</sup>     | Power-On_Reset ramp up trip point<br>(VCCIO0 power supply)                             |            | 0.9 |      | 1.06 | V     |  |
| T <sub>refresh</sub> <sup>6</sup>     | Flash Download Time (Power-On-Reset to Device I/O active)                              | LPTM21     |     | 1.9  |      | ms    |  |

1. These POR trip points are provided for guidance only. Device operation is only characterized for power supply voltages specified under recommended operating conditions.

2. Both  $T_{SAFE}$  and  $T_{SAFE2}$  must complete before I/O are released from Safe State.

3. During the calibration period before T<sub>SAFE</sub> and T<sub>SAFE2</sub>, the ASC may ignore RESETb being driven low. After T<sub>SAFE</sub> and T<sub>SAFE2</sub>, the ASC can be reset by another device by driving RESETb low.

4. Safe State is released at ASC after a fixed number (64) of WRCLK cycles (typ.8 MHz frequency) and three ASC-I/F data packets are properly detected.

5. AGOOD asserted in the FPGA on the next ASC-I/F packet after I/O exits Safe State as ASC.

6. FPGA flash download time has a direct influence on WRCLK start time. See Figure 2.



Figure 2. Platform Manager 2 Power-On Reset



8



#### **DC Electrical Characteristics**

| Symbol                                     | Parameter                                                                   | Device | Min | Typ.⁵ | Max. | Units |
|--------------------------------------------|-----------------------------------------------------------------------------|--------|-----|-------|------|-------|
| I <sub>CCA</sub>                           | Supply Current (Analog Section)                                             |        |     | 25    | 35   | mA    |
| I <sub>CC-HVOUT</sub>                      | Supply Current Adder per HVOUT,<br>V <sub>HVOUT</sub> = 12 V, Isrc = 100 uA |        |     |       | 2    | mA    |
| I <sub>CC</sub> <sup>1, 2, 3, 4</sup>      | Static Core Supply Current<br>(FPGA Section)                                | LPTM21 |     | 3.49  |      | mA    |
| I <sub>CCIO</sub> <sup>1, 2, 3, 4, 6</sup> | Static Bank Power Supply, $V_{CCIO} = 2.5 V$                                |        |     | 500   |      | μA    |

1. For further information on FPGA section supply current, please see details of additional technical documentation at the end of this data sheet.

Assumes blank pattern with the following characteristics: all outputs are tri-stated, all inputs are configured as LVCMOS and held at V<sub>CCIO</sub> or GND, on-chip oscillator is off, on-chip PLL is off.

3. Frequency = 0 MHz.

4. To determine the FPGA peak start-up current data, use the Power Calculator tool.

5. Tj = 25C, power supplies at nominal voltage.

6. Does not include pull-up/pull-down.

## **Programming and Erase Supply Current**

| Symbol                                     | Parameter                             | Device | Min | Typ.⁵ | Max. | Units |
|--------------------------------------------|---------------------------------------|--------|-----|-------|------|-------|
| I <sub>CCA</sub>                           | Supply Current (Analog Section)       |        |     |       | 40   | mA    |
| I <sub>CC</sub> <sup>1, 2, 3, 4</sup>      | Core Supply Current (FPGA Section)    | LPTM21 |     | 18.8  |      | mA    |
| I <sub>CCIO</sub> <sup>1, 2, 3, 4, 6</sup> | Bank Power Supply, $V_{CCIO} = 2.5 V$ |        |     | 500   |      | μΑ    |

1. For further information on FPGA section supply current, please see details of additional technical documentation at the end of this data sheet.

2. Assumes all FPGA section inputs are held at  $V_{\mbox{CCIO}}$  or GND and all outputs are tri-stated.

3. Typical user pattern.

4. JTAG programming is at 25 MHz.

5. Tj = 25C, power supplies at nominal voltage.

6. Per bank, does not include pull-up/pull-down.

#### **FPGA Configuration Memory Programming / Erase Specifications**

| Symbol Parameter       |                                                     | Min. | Max. <sup>1</sup> | Units  |  |
|------------------------|-----------------------------------------------------|------|-------------------|--------|--|
| N                      | Flash Programming cycles per t <sub>RETENTION</sub> | _    | 10,000            | Cycles |  |
| PROGCYC                | Flash functional programming cycles                 | _    | 100,000           | Cycles |  |
| t <sub>RETENTION</sub> | Data retention at 100 °C junction temperature       | 10   | _                 | Years  |  |
|                        | Data retention at 85 °C junction temperature        | 20   |                   |        |  |

1. Maximum Flash memory reads are limited to 7.5E13 cycles over the lifetime of the product.

## FPGA I/O Hot Socketing Specifications<sup>1, 2, 3</sup>

| Symbol          | Parameter                    | Condition                   | Max.    | Units |
|-----------------|------------------------------|-----------------------------|---------|-------|
| I <sub>DK</sub> | Input or I/O leakage Current | $0 < V_{IN} < V_{IH}$ (MAX) | +/-1000 | μΑ    |

1. Insensitive to sequence of V<sub>CC</sub> and V<sub>CCIO</sub>. However, assumes monotonic rise/fall rates for V<sub>CC</sub> and V<sub>CCIO</sub>.

2.  $0 < V_{CC} < V_{CC}$  (MAX),  $0 < V_{CCIO} < V_{CCIO}$  (MAX).

3.  $I_{DK}$  is additive to  $I_{PU},\,I_{PD}$  or  $I_{BH}.$ 



## ESD Performance

Please refer to the Platform Manager 2 Product Family Qualification Summary for complete qualification data, including ESD performance.

## **Digital Specifications**

| Symbol                              | Parameter                                             | Conditions                                                                                                                                        | Min                      | Тур. | Max.                     | Units |
|-------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------|--------------------------|-------|
| Analog Ser                          | nse and Control Section                               | •                                                                                                                                                 |                          |      |                          |       |
| I <sub>IL</sub> ,I <sub>IH</sub>    | Input leakage, no pull-up, pull-<br>down <sup>7</sup> |                                                                                                                                                   |                          |      | +/ 10                    | μΑ    |
| I <sub>PD</sub>                     | Active Pull-Down Current <sup>7</sup>                 | GPIO[1:10] configured as Inputs, Internal Pull-Down enabled                                                                                       |                          | 200  |                          | μA    |
| I <sub>PD-ASCIF</sub>               | Input Leakage (WDAT and WRCLK) <sup>8</sup>           | Internal Pull-Down                                                                                                                                |                          | 175  |                          | μΑ    |
| I <sub>OH-HVOUT</sub>               | Output Leakage Current                                | HVOUT[1:4] in open drain mode and pulled up to 12 V                                                                                               |                          | 35   | 100                      | μA    |
| I <sub>PU-RESETb</sub>              | Input Pull-Up Current (RESETb)                        |                                                                                                                                                   |                          | -50  |                          | μA    |
| V <sub>IL</sub>                     | Voltage input, logic low                              | GPIO[1:10]                                                                                                                                        |                          |      | 0.8                      | V     |
|                                     |                                                       | SCL_S/SDA_S                                                                                                                                       |                          |      | 30%<br>V <sub>CCA</sub>  |       |
| V <sub>IH</sub>                     | Voltage input, logic high                             | GPIO[1:10]                                                                                                                                        | 2.0                      |      |                          | V     |
|                                     |                                                       | SCL_S/SDA_S                                                                                                                                       | 70%<br>V <sub>CCA</sub>  |      |                          |       |
| V <sub>OL</sub>                     | HVOUT[1:4] (open drain mode)                          | I <sub>SINK</sub> = 10 mA                                                                                                                         |                          |      | 0.8                      | V     |
|                                     | GPIO[1:10]                                            | I <sub>SINK</sub> = 20 mA                                                                                                                         |                          |      | 0.8                      |       |
| I <sub>SINKTOTAL</sub> <sup>6</sup> | All digital outputs                                   |                                                                                                                                                   |                          |      | 130                      | mA    |
| FPGA Sect                           | ion – Programmable I/O                                |                                                                                                                                                   |                          |      |                          |       |
| $I_{\rm IL}, I_{\rm IH}^{1,4}$      | Input or I/O Leakage                                  | Clamp OFF and $V_{CCIO} < V_{IN} < V_{IH}$ (MAX)                                                                                                  |                          |      | +175                     | μΑ    |
|                                     |                                                       | Clamp OFF and $V_{IN} = V_{CCIO}$                                                                                                                 | -10                      |      | 10                       | μΑ    |
|                                     |                                                       | Clamp OFF and V <sub>CCIO</sub> –0.97V < V <sub>IN</sub> < V <sub>CCIO</sub>                                                                      | -175                     |      |                          | μΑ    |
|                                     |                                                       | Clamp OFF and 0V < V <sub>IN</sub> < V <sub>CCIO</sub> –0.97 V                                                                                    |                          |      | 10                       | μΑ    |
|                                     |                                                       | Clamp OFF and $V_{IN} = GND$                                                                                                                      |                          |      | 10                       | μΑ    |
|                                     |                                                       | Clamp ON and $0V < V_{IN} < V_{CCIO}$                                                                                                             |                          |      | 10                       | μΑ    |
| I <sub>PU</sub>                     | I/O Active Pull-up Current                            | 0< V <sub>IN</sub> < 0.7 V <sub>CCIO</sub>                                                                                                        | -30                      |      | -309                     | μΑ    |
| I <sub>PD</sub>                     | I/O Active Pull-down Current                          | $V_{IL}$ (MAX) < $V_{IN}$ < $V_{CCIO}$                                                                                                            | 30                       |      | 305                      | μΑ    |
| I <sub>BHLS</sub>                   | Bus Hold Low Sustaining<br>Current                    | $V_{IN} = V_{IL} (MAX)$                                                                                                                           | 30                       |      |                          | μΑ    |
| I <sub>BHHS</sub>                   | Bus Hold High Sustaining Current                      | $V_{IN} = 0.7 V_{CCIO}$                                                                                                                           | -30                      |      |                          | μA    |
| I <sub>BHLO</sub>                   | Bus Hold Low Overdrive Current                        | $0 \le V_{IN} \le V_{CCIO}$                                                                                                                       |                          |      | 305                      | μΑ    |
| I <sub>BHHO</sub>                   | Bus Hold High Overdrive Current                       | $0 \le V_{IN} \le V_{CCIO}$                                                                                                                       |                          |      | -309                     | μΑ    |
| V <sub>BHT</sub> <sup>3</sup>       | Bus Hold Trip Points                                  |                                                                                                                                                   | V <sub>IL</sub><br>(MAX) |      | V <sub>IH</sub><br>(MIN) | V     |
| C1                                  | I/O Capacitance <sup>2</sup>                          | $V_{CCIO} = 3.3 V, 2.5 V, 1.8 V, 1.5 V, 1.2 V$<br>$V_{CC} = Typ.$<br>$V_{IO} = 0$ to VIH (MAX)                                                    | 3                        | 5    | 9                        | pF    |
| C2                                  | Dedicated Input Capacitive                            | $V_{CCIO} = 3.3 \text{ V}, 2.5 \text{ V}, 1.8 \text{ V}, 1.5 \text{ V}, 1.2 \text{ V}, V_{CC} = \text{Typ.}$<br>$V_{IO} = 0 \text{ to VIH (MAX)}$ | 3                        | 5.5  | 7                        | pF    |



## **Digital Specifications (Cont.)**

| Symbol            | Parameter                      | Conditions                                    | Min | Тур. | Max. | Units |
|-------------------|--------------------------------|-----------------------------------------------|-----|------|------|-------|
| V <sub>HYST</sub> | Hysteresis for Schmitt Trigger | V <sub>CCIO</sub> = 3.3 V, Hysteresis = Large |     | 450  |      | mV    |
|                   | Inputs <sup>®</sup>            | V <sub>CCIO</sub> = 2.5 V, Hysteresis = Large |     | 250  |      | mV    |
|                   |                                | V <sub>CCIO</sub> = 1.8 V, Hysteresis = Large |     | 125  |      | mV    |
|                   |                                | V <sub>CCIO</sub> = 1.5 V, Hysteresis = Large |     | 100  |      | mV    |
|                   |                                | V <sub>CCIO</sub> = 3.3 V, Hysteresis = Small |     | 250  |      | mV    |
|                   |                                | V <sub>CCIO</sub> = 2.5 V, Hysteresis = Small |     | 150  |      | mV    |
|                   |                                | V <sub>CCIO</sub> = 1.8 V, Hysteresis = Small |     | 60   |      | mV    |
|                   |                                | V <sub>CCIO</sub> = 1.5 V, Hysteresis = Small |     | 40   |      | mV    |

1. Input or I/O leakage current is measured with the pin configured as an input or as an I/O with the output driver tri-stated. It is not measured with the output driver active. Bus maintenance circuits are disabled.

2. T<sub>A</sub> 25 °C, f = 1.0 MHz.

3. Please refer to VIL and VIH in the sysIO Single-Ended DC Electrical Characteristics table of this document.

4. When VIH is higher than VCCIO, a transient current typically of 30ns in duration or less with a peak current of 6mA can occur on the high-tolow transition. For true LVDS output pins in LPTM21, VIH must be less than or equal to VCCIO.

5. With bus keeper circuit turned on. For more details, refer to TN1202, MachXO2 sysIO Usage Guide.

6. Sum of maximum current sink from all digital outputs combined. Reliable operation is not guaranteed if this value is exceeded.

7. During safe-state, all GPIO default to output, see the Safe State section for more details. GPIO[1:6] and GPIO[10] default to active low output. This will result in a leakage current dependent on the input voltage which can exceed the specified input leakage

8. WRCLK and WDAT pins may see transients above 1 mA in hot socket conditions. DC levels will remain below 1 mA.



## Voltage Monitors<sup>1</sup>

| Symbol                     | Parameter                                                       | Conditions             | Min   | Тур | Max   | Units |
|----------------------------|-----------------------------------------------------------------|------------------------|-------|-----|-------|-------|
| R <sub>VMON_in</sub>       | Input Resistance                                                |                        | 55    | 65  | 75    | kΩ    |
| C <sub>VMON_in</sub>       | Input Capacitance                                               |                        |       | 8   |       | pF    |
| V <sub>MON</sub> Range     | Programmable trip-point Range                                   |                        | 0.075 |     | 5.734 | Volts |
| V <sub>MON</sub> Accuracy  | Absolute accuracy of any trip-point<br>– Differential VMON pins | VMON voltage > 0.650 V |       | 0.2 | 0.7   | %     |
|                            | Single-ended VMON pins                                          | VMON voltage > 0.650 V |       | 0.3 | 0.9   | %     |
| V <sub>MON</sub> HYST      | Hysteresis of any trip-point (relative to setting)              |                        |       | 1   |       | %     |
| V <sub>MON</sub> CMR       | Differential VMON Common mode rejection ratio                   |                        |       | 60  |       | dB    |
| V <sub>Z</sub> Sense       | Low Voltage Sense Trip Point Error                              | Trip Point = 0.075 V   | -5    |     | +5    | mV    |
|                            | – Differential VMON1-4                                          | Trip Point = 0.150 V   | -5    |     | +5    | mV    |
|                            |                                                                 | Trip Point = 0.300 V   | -10   |     | +10   | mV    |
|                            |                                                                 | Trip Point = 0.545 V   | -15   |     | +15   | mV    |
|                            | Low Voltage Sense Trip Point Error                              | Trip Point = 0.080 V   | -10   |     | +10   | mV    |
|                            | – Single-Ended VMON5-9                                          | Trip Point = 0.155 V   | -15   |     | +15   | mV    |
|                            |                                                                 | Trip Point = 0.310 V   | -25   |     | +25   | mV    |
|                            |                                                                 | Trip Point = 0.565 V   | -55   |     | +55   | mV    |
| High Voltage Mor           | nitor                                                           |                        |       |     |       |       |
| HV <sub>MON</sub> Range    | High Voltage VMON programmable trip-point range                 |                        | 0.3   |     | 13.2  | Volts |
| HV <sub>MON</sub> Accuracy | HVMON Absolute accuracy of any trip-point                       | HVMON voltage > 1.8 V  |       | 0.4 | 1.0   | %     |
| V <sub>Z</sub> Sense       | Low Voltage Sense Trip Point Error -                            | Trip Point = 0.220 V   | -20   |     | +20   | mV    |
|                            | HVMON pin                                                       | Trip Point = 0.425 V   | -35   |     | +35   | mV    |
|                            |                                                                 | Trip Point = 0.810 V   | -75   |     | +75   | mV    |
|                            |                                                                 | Trip Point = 1.280 V   | -130  |     | +130  | mV    |

1. VMON accuracy may degrade based on SSO conditions of FPGA section, especially bank 1. See the System Connections section for more details.



## **Current Monitors**

| Symbol                                    | Symbol Parameter Conditions         |                                                                         | Min  | Тур | Мах | Units |
|-------------------------------------------|-------------------------------------|-------------------------------------------------------------------------|------|-----|-----|-------|
| IIMONPleak                                | IMON1P input leakage                | Low Side Sense Disabled<br>Fast Trip Point V <sub>sns</sub> =<br>500 mV | -2   |     | 250 | μΑ    |
|                                           |                                     | Low Side Sense Enabled<br>Fast Trip Point V <sub>sns</sub> =<br>500 mV  | -2   |     | 40  | μΑ    |
| IIMONNleak                                | IMON1N input leakage                | Low Side Sense Disabled<br>Fast Trip Point V <sub>sns</sub> =<br>500 mV | -2   |     | 2   | μΑ    |
|                                           |                                     | Low Side Sense Enabled<br>Fast Trip Point V <sub>sns</sub> =<br>500 mV  | -200 |     | 2   | μΑ    |
| I <sub>HIMONPleak</sub>                   | HIMONP input leakage                | Fast Trip Point V <sub>sns</sub> =<br>500 mV                            |      |     | 550 | μΑ    |
| I <sub>HIMONNleak</sub>                   | HIMONN_HVMON input leakage          |                                                                         |      |     | 350 | μA    |
| I <sub>MONA/B</sub> Accuracy <sup>2</sup> | HIMON, IMON1A/B Comparator          | Gain = 100x                                                             |      | 8   |     | %     |
|                                           | Irip Point accuracy                 | Gain = 50x                                                              |      | 5   |     | %     |
|                                           |                                     | Gain = 25x                                                              |      | 3   |     | %     |
|                                           |                                     | Gain = 10x                                                              |      | 2   |     | %     |
| I <sub>MONA/B</sub> Gain                  | Programmable Gain Setting           | Four settings in software                                               |      | 10  |     | V/V   |
|                                           |                                     |                                                                         |      | 25  |     | V/V   |
|                                           |                                     |                                                                         |      | 50  |     | V/V   |
|                                           |                                     |                                                                         |      | 100 |     | V/V   |
| I <sub>MONF</sub> Accuracy <sup>2</sup>   | Fast comparator trip-point accuracy | $V_{sns}^{1} = 50 \text{ mV}, 100 \text{ mV}, \text{ or}$<br>150 mV     |      | 8   |     | %     |
|                                           |                                     | V <sub>sns</sub> = 200 mV, 250 mV,<br>or 300 mV                         |      | 5   |     | %     |
|                                           |                                     | V <sub>sns</sub> = 400 mV or<br>500 mV                                  |      | 3   |     | %     |
| t <sub>IMONF</sub>                        | Fast comparator response time       |                                                                         |      |     | 1   | μs    |

 V<sub>sns</sub> is the differential voltage between IMON1P and IMON1N (or HIMONP and HIMONN).
 IMON accuracy may degrade based on SSO conditions of FPGA section, especially bank 1. See the System Connections section for more details.



## ADC Characteristics

| Symbol                         | Parameter                                     | Conditions                      | Min | Тур     | Max   | Units |
|--------------------------------|-----------------------------------------------|---------------------------------|-----|---------|-------|-------|
|                                | Resolution                                    |                                 |     | 10      |       | Bits  |
| t <sub>CONVERT</sub>           | Conversion Time from I <sup>2</sup> C Request |                                 |     |         | 200   | μs    |
| Voltage Monitors               |                                               |                                 |     | •       |       |       |
| V <sub>VMON-IN</sub>           | Input Range Full scale                        | Programmable<br>Attenuator = 1  | 0   |         | 2.048 | V     |
|                                |                                               | Programmable<br>Attenuator = 3  | 0   |         | 5.91  |       |
| LSB                            | ADC Step Size                                 | Programmable<br>Attenuator = 1  |     | 2       |       | mV    |
|                                |                                               | Programmable<br>Attenuator = 3  |     | 6       |       |       |
| E <sub>VMON</sub> -attenuator  | Error due to attenuator                       | Programmable<br>Attenuator = 3  |     | +/- 0.1 |       | %     |
| High Voltage Mor               | nitor                                         |                                 |     | •       |       |       |
| V <sub>HVMON-IN</sub>          | Input Range Full scale                        | Programmable<br>Attenuator = 4  | 0   |         | 8.192 | V     |
|                                |                                               | Programmable<br>Attenuator = 8  | 0   |         | 13.21 |       |
| LSB                            | ADC Step Size                                 | Programmable<br>Attenuator = 4  |     | 8       |       | mV    |
|                                |                                               | Programmable<br>Attenuator = 8  |     | 16      |       |       |
| E <sub>HVMON</sub> -attenuator | Error due to attenuator                       | Programmable<br>Attenuator = 4  |     | +/0.2   |       | %     |
|                                |                                               | Programmable<br>Attenuator = 8  |     | +/0.4   |       | %     |
| <b>Current Monitors</b>        | ;<br>;                                        |                                 |     |         |       |       |
| t <sub>IMON-sample</sub>       | Sample period of HVIMON and                   | 4 Settings via I <sup>2</sup> C |     | 1       |       | ms    |
|                                | IMON1 conversions for averaged                | command                         |     | 2       |       |       |
|                                | Value                                         |                                 |     | 4       |       |       |
|                                |                                               |                                 |     | 8       |       |       |
| V <sub>IMON-IN</sub>           | Input Range Full scale <sup>1</sup>           | Programmable Gain 10x           | 0   |         | 200   | mV    |
|                                |                                               | Programmable Gain 25x           | 0   |         | 80    |       |
|                                |                                               | Programmable Gain 50x           | 0   |         | 40    |       |
|                                |                                               | Programmable Gain 100x          | 0   |         | 20    |       |
| LSB                            | ADC Step Size                                 | Programmable Gain 10x           |     | 0.2     |       | mV    |
|                                |                                               | Programmable Gain 25x           |     | 0.08    |       | ]     |
|                                |                                               | Programmable Gain 50x           |     | 0.04    |       | ]     |
|                                |                                               | Programmable Gain 100x          |     | 0.02    |       |       |

1. Differential voltage applied across HIMONP/IMON1P and HIMONN/IMO1N before programmable gain amplification.



## ADC Error Budget Over Entire Operating Temperature Range

| Symbol                        | Parameter                                                                                                      | Conditions                                                             | Min | Тур    | Max | Units |
|-------------------------------|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-----|--------|-----|-------|
| TADC Error                    | Total ADC Measurement Error<br>at Any Voltage (Differential                                                    | Measurement Range 600mV - 2.048 V,<br>VMONxGS > -100 mV, Attenuator =1 | -8  | +/- 4  | 8   | mV    |
| Analog Inputs) <sup>1,3</sup> | Analog Inputs) <sup>1, 3</sup>                                                                                 | Measurement Range 600mV - 2.048 V,<br>VMONxGS > -200 mV, Attenuator =1 |     | +/- 6  |     | mV    |
|                               |                                                                                                                | Measurement Range 0 - 2.048 V,<br>VMONxGS > -200 mV, Attenuator =1     |     | +/- 10 |     | mV    |
|                               | Total Measurement Error at<br>Any Voltage (Single-Ended<br>Analog Inputs including<br>IMON) <sup>1, 2, 3</sup> | Measurement Range 600 mV - 2.048 V,<br>Attenuator =1                   | -8  | +/- 4  | 8   | mV    |

1. Total error, guaranteed by characterization, includes INL, DNL, Gain, Offset, and PSR specs of the ADC.

2. Programmable gain error on IMON not included.

3. ADC accuracy may degrade based on SSO conditions of FPGA section, especially bank 1. See the System Connections section for more details

#### **Temperature Monitors**

| Symbol                                              | Parameter                                                                      | Conditions                               | Min    | Тур  | Max   | Units |
|-----------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------|--------|------|-------|-------|
| T <sub>MON_REMOTE</sub><br>Accuracy <sup>1, 7</sup> | Temp Error – Remote Sensor                                                     | Ta = -40 to +85 °C<br>Td = -64 to 127 °C |        | 1    |       | °C    |
| T <sub>MON_INT</sub><br>Accuracy <sup>7</sup>       | Internal Sensor – Relative to ambient <sup>6</sup>                             | Ta=-40 to +85 °C                         |        | 1    |       | °C    |
| Resolution                                          |                                                                                |                                          |        | 0.25 |       | °C    |
| T <sub>MON</sub> Range                              | Programmable threshold range                                                   |                                          | -64    |      | 155   | °C    |
| T <sub>MON</sub> Offset                             | Temperature offset                                                             | Programmable in software                 | -63.75 |      | 63.75 | °C    |
| T <sub>MON</sub><br>Hysteresis                      | Hysteresis of trip points                                                      | Programmable in software                 | 0      |      | 63    | °C    |
| t <sub>TMON_settle</sub> <sup>2</sup>               | Temperature measurement                                                        | Measurement Averaging Coefficient = 1    |        | 15   |       | ms    |
|                                                     | settling time <sup>3</sup>                                                     | Measurement Averaging Coefficient = 8    |        | 120  |       | ms    |
|                                                     |                                                                                | Measurement Averaging Coefficient = 16   |        | 240  |       | ms    |
| T <sub>n</sub>                                      | Ideality Factor <b>n</b>                                                       | Programmable in software                 | 0.9    |      | 2     |       |
| T <sub>limit</sub>                                  | Temperature measurement limit <sup>4</sup>                                     |                                          |        |      | 160   | °C    |
| C <sub>TMON</sub>                                   | Maximum Capacitance<br>between T <sub>MONP</sub> and T <sub>MONN</sub><br>pins |                                          |        |      | 200   | pF    |
| R <sub>TMONSeries</sub>                             | Equivalent external resistance to sensor <sup>5</sup>                          |                                          |        |      | 200   | ohms  |

1. Accuracy number is valid for the use of a grounded collector PNP configuration, programmed with proper ideality factor, and 16x measurement filter enabled. Any other device or configuration can have additional errors, including beta, series resistance and ideality factor accuracy. See Temperature Monitor Inputs section for more details.

2. Settling time based on one TMON enabled. For multiple TMONs, settling time can be multiplied by the number of enabled TMON channels.

3. Settling time is defined as the time is takes a step change to settle to within 1% of the measured value.

4. All values above T<sub>limit</sub> read as 0x3FF over I<sup>2</sup>C. There is no cold temperature limiting reading, although performance is not specified below – 64 °C.

 This is the maximum series resistance which the TMON circuit can compensate out. Equivalent series resistance includes all board trace wiring (TMONP and TMONN) as well as parasitic base and emitter resistances. Re=1/gm should not be included as part of series resistance.

6. Internal sensor is subject to self-heating, dependent on PCB design and device configuration. Self-heating not included in published accuracy.

7. TMON accuracy may degrade based on SSO conditions of FPGA section, especially bank 1. See the System Connections section for more details



## **High Voltage FET Drivers**

| Symbol               | Parameter                                        | Conditions                | Min  | Тур    | Max   | Units |
|----------------------|--------------------------------------------------|---------------------------|------|--------|-------|-------|
| V <sub>PP</sub>      | Gate driver output voltage                       | Four settings in software |      | 12     |       | Volts |
|                      |                                                  |                           |      | 10     |       |       |
|                      |                                                  |                           |      | 8      |       |       |
|                      |                                                  |                           |      | 6      |       |       |
| IOUTSRC              | Gate driver source current                       | Four settings in software |      | 12.5   |       | μA    |
| (HIGH state)         |                                                  |                           | 25   |        |       |       |
|                      |                                                  |                           |      | 50     |       |       |
|                      |                                                  |                           |      | 100    |       |       |
| I <sub>OUTSINK</sub> | Gate driver sink current                         | Four settings in software |      | 100    |       | μΑ    |
|                      | (LOW state)                                      |                           |      | 250    |       |       |
|                      |                                                  |                           |      | 500    |       |       |
|                      |                                                  |                           |      | 3000   |       |       |
| Frequency            | Switched Mode Frequency                          | Two settings in software  |      | 15.625 |       | kHz   |
|                      |                                                  |                           |      | 31.25  |       |       |
| Duty Cycle           | Switched Mode Programma-<br>ble Duty Cycle Range | Programmable in software  | 6.25 |        | 93.75 | %     |
|                      | Duty Cycle step size                             |                           |      | 6.25   |       | %     |

## Margin/Trim DAC Output Characteristics

| Symbol                 | Parameter                                          | Conditions                                                    | Min  | Тур.            | Max. | Units |
|------------------------|----------------------------------------------------|---------------------------------------------------------------|------|-----------------|------|-------|
|                        | Resolution                                         |                                                               |      | 8 (7 +<br>sign) |      | Bits  |
| FSR                    | Full scale range                                   |                                                               |      | +/- 320         |      | mV    |
| LSB                    | LSB step size                                      |                                                               |      | 2.5             |      | mV    |
| I <sub>OUT</sub>       | Output source/sink current                         |                                                               | -200 |                 | 200  | μΑ    |
| I <sub>TRIM_Hi-Z</sub> | Tri-state mode leakage                             |                                                               |      | 0.1             |      | μΑ    |
| BPZ                    | Bipolar zero output voltage                        | Four settings in software                                     |      | 0.6             |      | V     |
|                        | (code=80h)                                         |                                                               |      | 0.8             |      |       |
|                        |                                                    |                                                               |      | 1.0             |      |       |
|                        |                                                    |                                                               |      | 1.25            |      |       |
| t <sub>S</sub>         | TrimCell output voltage settling time <sup>1</sup> | DAC code changed from 80H to FFH or<br>80H to 00H             |      |                 | 2.5  | ms    |
|                        |                                                    | Single DAC code change                                        |      | 260             |      | μs    |
| C_LOAD                 | Maximum load capacitance                           |                                                               |      |                 | 50   | pF    |
| TOSE                   | Total open loop supply voltage error <sup>2</sup>  | Full scale DAC corresponds to +/- 5% supply voltage variation | -1%  |                 | +1%  | V/V   |

1. To 1% of set value with 50 pF load connected to trim pins.

 Total resultant error in the trimmed power supply output voltage referred to any DAC code due to DAC's INL, DNL, gain, output impedance, offset error and bipolar offset error across the temperature, V<sub>CCA</sub> ranges of the device.



## Fault Log / User Tag EEPROM

| Symbol                    | Parameter                                                      | Conditions | Min | Тур. | Max. | Units   |
|---------------------------|----------------------------------------------------------------|------------|-----|------|------|---------|
| Records                   | Number of available fault log records in EEPROM                |            |     | 16   |      | Records |
| t <sub>faultTrigger</sub> | Minimum active time of trigger signal to start fault recording |            | 64  |      |      | μs      |
| t <sub>faultRecord</sub>  | Time to copy fault record to<br>EEPROM                         |            |     |      | 5    | ms      |

## Analog Sense and Control Oscillator

| Symbol             | Parameter                | Conditions | Min | Тур. | Max. | Units |
|--------------------|--------------------------|------------|-----|------|------|-------|
| CLK <sub>ASC</sub> | Internal ASC0 Clock      |            | 7.6 | 8    | 8.4  | MHz   |
| CLK <sub>ext</sub> | Externally Applied Clock |            | 7.6 | 8    | 8.4  | MHz   |

## FPGA sysIO Recommended Operating Conditions

|                        |       | V <sub>CCIO</sub> (V) |       |       | V <sub>REF</sub> (V) |       |  |
|------------------------|-------|-----------------------|-------|-------|----------------------|-------|--|
| Standard               | Min.  | Тур.                  | Max.  | Min.  | Тур.                 | Max.  |  |
| LVCMOS 3.3             | 3.135 | 3.3                   | 3.465 | —     | —                    | —     |  |
| LVCMOS 2.5             | 2.375 | 2.5                   | 2.625 | —     | —                    | —     |  |
| LVCMOS 1.8             | 1.71  | 1.8                   | 1.89  | —     | —                    | —     |  |
| LVCMOS 1.5             | 1.425 | 1.5                   | 1.575 | —     | —                    | —     |  |
| LVCMOS 1.2             | 1.14  | 1.2                   | 1.26  | —     | —                    | —     |  |
| LVTTL                  | 3.135 | 3.3                   | 3.465 | —     | —                    | —     |  |
| PCI <sup>3</sup>       | 3.135 | 3.3                   | 3.465 | —     | —                    | —     |  |
| SSTL25                 | 2.375 | 2.5                   | 2.625 | 1.15  | 1.25                 | 1.35  |  |
| SSTL18                 | 1.71  | 1.8                   | 1.89  | 0.833 | 0.9                  | 0.969 |  |
| HSTL18                 | 1.71  | 1.8                   | 1.89  | 0.816 | 0.9                  | 1.08  |  |
| LVDS25 <sup>1, 2</sup> | 2.375 | 2.5                   | 2.625 | —     | —                    | —     |  |
| LVDS33 <sup>1, 2</sup> | 3.135 | 3.3                   | 3.465 | —     | —                    | —     |  |
| LVPECL <sup>1</sup>    | 3.135 | 3.3                   | 3.465 | —     | —                    | —     |  |
| BLVDS <sup>1</sup>     | 2.375 | 2.5                   | 2.625 | —     | —                    | —     |  |
| RSDS <sup>1</sup>      | 2.375 | 2.5                   | 2.625 | —     | —                    | —     |  |
| SSTL18D                | 1.71  | 1.8                   | 1.89  | —     | —                    | —     |  |
| SSTL25D                | 2.375 | 2.5                   | 2.625 | —     | —                    | —     |  |
| HSTL18D                | 1.71  | 1.8                   | 1.89  | —     | —                    | —     |  |

1. Inputs on-chip. Outputs are implemented with the addition of external resistors.

2. LPTM21 has dedicated LVDS buffers.

3. Input on the bottom bank of the LPTM21 only.



## FPGA sysIO Single-Ended DC Electrical Characteristics<sup>1, 2</sup>

| Input/Output    | V         | /IL                      | V                       | IH       | Voi Max.             | Vou Min.                 | In Max. <sup>4</sup> | lo⊔ Max.⁴ |  |    |     |
|-----------------|-----------|--------------------------|-------------------------|----------|----------------------|--------------------------|----------------------|-----------|--|----|-----|
| Standard        | Min. (V)³ | Max. (V)                 | Min. (V)                | Max. (V) | (V)                  | (V)                      | (mA)                 | (mA)      |  |    |     |
|                 |           |                          |                         |          |                      |                          | 4                    | -4        |  |    |     |
|                 |           |                          |                         |          |                      |                          | 8                    | -8        |  |    |     |
| LVCMOS 3.3      | 0.2       | 0.9                      | 2.0                     | 2.6      | 0.4                  | V <sub>CCIO</sub> - 0.4  | 12                   | -12       |  |    |     |
| LVTTL           | -0.3      | 0.8                      | 2.0                     | 5.0      |                      |                          | 16                   | -16       |  |    |     |
|                 |           |                          |                         |          |                      |                          |                      |           |  | 24 | -24 |
|                 |           |                          |                         |          | 0.2                  | V <sub>CCIO</sub> - 0.2  | 0.1                  | -0.1      |  |    |     |
|                 |           |                          |                         |          |                      |                          | 4                    | -4        |  |    |     |
|                 |           |                          |                         |          | 0.4                  | V 04                     | 8                    | -8        |  |    |     |
| LVCMOS 2.5      | -0.3      | 0.7                      | 1.7                     | 3.6      | 0.4                  | V <sub>CCIO</sub> - 0.4  | 12                   | -12       |  |    |     |
|                 |           |                          |                         |          |                      | 16                       | -16                  |           |  |    |     |
|                 |           |                          |                         |          | 0.2                  |                          | 0.1                  | -0.1      |  |    |     |
|                 |           |                          |                         |          |                      |                          | 4                    | -4        |  |    |     |
|                 | -0.3      | 0.351/                   | 0.65\/                  | 3.6      | 0.4                  | V <sub>CCIO</sub> - 0.4  | 8                    | -8        |  |    |     |
|                 | -0.3      | 0.33 V CCIO              | 0.03 V CCIO             | 3.0      |                      | 12                       | -12                  |           |  |    |     |
|                 |           |                          |                         |          | 0.2                  | V <sub>CCIO</sub> - 0.2  | 0.1                  | -0.1      |  |    |     |
|                 |           |                          |                         |          | 0.4                  | V 0 4                    | 4                    | -4        |  |    |     |
| LVCMOS 1.5      | -0.3      | 0.35V <sub>CCIO</sub>    | $0.65V_{CCIO}$          | 3.6      | 0.4                  | VCCIO - 0.4              | 8                    | -8        |  |    |     |
|                 |           |                          |                         |          | 0.2                  | V <sub>CCIO</sub> - 0.2  | 0.1                  | -0.1      |  |    |     |
|                 |           |                          |                         |          | 0.4                  | V 0 4                    | 4                    | -2        |  |    |     |
| LVCMOS 1.2      | -0.3      | 0.35V <sub>CCIO</sub>    | 0.65V <sub>CCIO</sub>   | 3.6      | 0.4                  | VCCIO - 0.4              | 8                    | -6        |  |    |     |
|                 |           |                          |                         |          | 0.2                  | V <sub>CCIO</sub> - 0.2  | 0.1                  | -0.1      |  |    |     |
| PCI             | -0.3      | 0.3V <sub>CCIO</sub>     | 0.5V <sub>CCIO</sub>    | 3.6      | 0.1V <sub>CCIO</sub> | 0.9V <sub>CCIO</sub>     | 1.5                  | -0.5      |  |    |     |
| SSTL25 Class I  | -0.3      | V <sub>REF</sub> - 0.18  | V <sub>REF</sub> + 0.18 | 3.6      | 0.54                 | V <sub>CCIO</sub> - 0.62 | 8                    | 8         |  |    |     |
| SSTL25 Class II | -0.3      | V <sub>REF</sub> - 0.18  | V <sub>REF</sub> +0.18  | 3.6      | NA                   | NA                       | NA                   | NA        |  |    |     |
| SSTL18 Class I  | -0.3      | V <sub>REF</sub> - 0.125 | V <sub>REF</sub> +0.125 | 3.6      | 0.40                 | V <sub>CCIO</sub> - 0.40 | 8                    | 8         |  |    |     |
| SSTL18 Class II | -0.3      | V <sub>REF</sub> - 0.125 | V <sub>REF</sub> +0.125 | 3.6      | NA                   | NA                       | NA                   | NA        |  |    |     |
| HSTL18 Class I  | -0.3      | V <sub>REF</sub> - 0.1   | V <sub>REF</sub> +0.1   | 3.6      | 0.40                 | V <sub>CCIO</sub> - 0.40 | 8                    | 8         |  |    |     |
| HSTL18 Class II | -0.3      | V <sub>REF</sub> - 0.1   | V <sub>REF</sub> +0.1   | 3.6      | NA                   | NA                       | NA                   | NA        |  |    |     |

 Platform Manager 2 devices allow LVCMOS inputs to be placed in I/O banks where V<sub>CCIO</sub> is different from what is specified in the applicable JEDEC specification. This is referred to as a ratioed input buffer. In a majority of cases this operation follows or exceeds the applicable JEDEC specification. The cases where Platform Manager 2 devices do not meet the relevant JEDEC specification are documented in the table below.

2. Platform Manager 2 devices allow for LVCMOS referenced I/Os which follow applicable JEDEC specifications. For more details about mixed mode operation please refer to TN1202, MachXO2 sysIO Usage Guide.

3. The I<sup>2</sup>C pins SCL\_M and SDA\_M are limited to a  $V_{IL}$  min of -0.25V or to -0.3V with a duration of <10ns.

4. The average DC current drawn by I/Os between GND connections, or between the last GND in an I/O bank and the end of an I/O bank, as shown in the logic signal connections table shall not exceed n \* 8mA. Where n is the number of I/Os between bank GND connections or between the last GND in a bank and the end of a bank.

| Input Standard | V <sub>CCIO</sub> (V) | V <sub>IL</sub> Max. (V) |
|----------------|-----------------------|--------------------------|
| LVCMOS 33      | 1.5                   | 0.685                    |
| LVCMOS 25      | 1.5                   | 0.687                    |
| LVCMOS 18      | 1.5                   | 0.655                    |



## FPGA sysIO Differential Electrical Characteristics

The LVDS differential output buffers are available on the top side of the LPTM21 device.

#### LVDS

| Parameter<br>Symbol | Parameter Description                          | Test Conditions                                                  | Min.  | Тур.  | Max.  | Units |
|---------------------|------------------------------------------------|------------------------------------------------------------------|-------|-------|-------|-------|
| V                   | Input Voltage                                  | V <sub>CCIO</sub> = 3.3                                          | 0     | —     | 2.605 | V     |
| VINP VINM           |                                                | V <sub>CCIO</sub> = 2.5                                          | 0     | —     | 2.05  | V     |
| V <sub>THD</sub>    | Differential Input Threshold                   |                                                                  | ±100  | —     |       | mV    |
| V                   | Input Common Mode Voltage                      | $V_{CCIO} = 3.3V$                                                | 0.05  | —     | 2.6   | V     |
| ⊻СМ                 | input common mode voltage                      | $V_{CCIO} = 2.5V$                                                | 0.05  | —     | 2.0   | V     |
| I <sub>IN</sub>     | Input current                                  | Power on                                                         | _     | _     | ±10   | μA    |
| V <sub>OH</sub>     | Output high voltage for $V_{OP}$ or $V_{OM}$   | R <sub>T</sub> = 100 Ohm                                         | _     | 1.375 |       | V     |
| V <sub>OL</sub>     | Output low voltage for $V_{OP}$ or $V_{OM}$    | R <sub>T</sub> = 100 Ohm                                         | 0.90  | 1.025 |       | V     |
| V <sub>OD</sub>     | Output voltage differential                    | (V <sub>OP</sub> - V <sub>OM</sub> ), R <sub>T</sub> = 100 Ohm   | 250   | 350   | 450   | mV    |
| $\Delta V_{OD}$     | Change in V <sub>OD</sub> between high and low |                                                                  | _     | —     | 50    | mV    |
| V <sub>OS</sub>     | Output voltage offset                          | (V <sub>OP</sub> - V <sub>OM</sub> )/2, R <sub>T</sub> = 100 Ohm | 1.125 | 1.20  | 1.395 | V     |
| $\Delta V_{OS}$     | Change in V <sub>OS</sub> between H and L      |                                                                  | —     | —     | 50    | mV    |
| I <sub>OSD</sub>    | Output short circuit current                   | V <sub>OD</sub> = 0V driver outputs shorted                      | _     | —     | 24    | mA    |

#### **LVDS Emulation**

FPGA section outputs can support LVDS outputs via emulation (LVDS25E). The output is emulated using complementary LVCMOS outputs in conjunction with resistors across the driver outputs on all devices. The scheme shown in Figure 3 is one possible solution for LVDS standard implementation. Resistor values in Figure 3 are industry standard values for 1% resistors.

#### Figure 3. LVDS Using External Resistors (LVDS25E)



Note: All resistors are  $\pm 1\%$ .



#### Table 2. LVDS25E DC Conditions

| Parameter         | Description                 | Тур.  | Units |
|-------------------|-----------------------------|-------|-------|
| Z <sub>OUT</sub>  | Output impedance            | 20    | Ohms  |
| R <sub>S</sub>    | Driver series resistor      | 158   | Ohms  |
| R <sub>P</sub>    | Driver parallel resistor    | 140   | Ohms  |
| R <sub>T</sub>    | Receiver termination        | 100   | Ohms  |
| V <sub>OH</sub>   | Output high voltage         | 1.43  | V     |
| V <sub>OL</sub>   | Output low voltage          | 1.07  | V     |
| V <sub>OD</sub>   | Output differential voltage | 0.35  | V     |
| V <sub>CM</sub>   | Output common mode voltage  | 1.25  | V     |
| Z <sub>BACK</sub> | Back impedance              | 100.5 | Ohms  |
| I <sub>DC</sub>   | DC output current           | 6.03  | mA    |

#### **Over Recommended Operating Conditions**

#### BLVDS

FPGA section outputs support the BLVDS standard through emulation. The output is emulated using complementary LVCMOS outputs in conjunction with resistors across the driver outputs. The input standard is supported by the LVDS differential input buffer. BLVDS is intended for use when multi-drop and bi-directional multi-point differential signaling is required. The scheme shown in Figure 4 is one possible solution for bi-directional multi-point differential signals.

#### Figure 4. BLVDS Multi-point Output Example





#### Table 3. BLVDS DC Conditions<sup>1</sup>

|                     |                             | Nominal |         |       |
|---------------------|-----------------------------|---------|---------|-------|
| Symbol              | Description                 | Zo = 45 | Zo = 90 | Units |
| Z <sub>OUT</sub>    | Output impedance            | 10      | 10      | Ohms  |
| R <sub>S</sub>      | Driver series resistance    | 80      | 80      | Ohms  |
| R <sub>TLEFT</sub>  | Left end termination        | 45      | 90      | Ohms  |
| R <sub>TRIGHT</sub> | Right end termination       | 45      | 90      | Ohms  |
| V <sub>OH</sub>     | Output high voltage         | 1.376   | 1.480   | V     |
| V <sub>OL</sub>     | Output low voltage          | 1.124   | 1.020   | V     |
| V <sub>OD</sub>     | Output differential voltage | 0.253   | 0.459   | V     |
| V <sub>CM</sub>     | Output common mode voltage  | 1.250   | 1.250   | V     |
| I <sub>DC</sub>     | DC output current           | 11.236  | 10.204  | mA    |

#### **Over Recommended Operating Conditions**

1. For input buffer, see LVDS table.

#### LVPECL

FPGA section outputs support the differential LVPECL standard through emulation. This output standard is emulated using complementary LVCMOS outputs in conjunction with resistors across the driver outputs on all the devices. The LVPECL input standard is supported by the LVDS differential input buffer. The scheme shown in Figure 5 is one possible solution for point-to-point signals.

#### Figure 5. Differential LVPECL





#### Table 4. LVPECL DC Conditions<sup>1</sup>

| Symbol              | Description                 | Nominal | Units |
|---------------------|-----------------------------|---------|-------|
| Z <sub>OUT</sub>    | Output impedance            | 10      | Ohms  |
| R <sub>S</sub>      | Driver series resistor      | 93      | Ohms  |
| R <sub>P</sub>      | Driver parallel resistor    | 196     | Ohms  |
| R <sub>T</sub>      | Receiver termination        | 100     | Ohms  |
| V <sub>OH</sub>     | Output high voltage         | 2.05    | V     |
| V <sub>OL</sub>     | Output low voltage          | 1.25    | V     |
| V <sub>OD</sub>     | Output differential voltage | 0.80    | V     |
| V <sub>CM</sub>     | Output common mode voltage  | 1.65    | V     |
| Z <sub>BACK</sub>   | Back impedance              | 100.5   | Ohms  |
| I <sub>DC</sub>     | DC output current           | 12.11   | mA    |
| 4 East instant last |                             |         |       |

#### **Over Recommended Operating Conditions**

For input buffer, see LVDS table.

For further information on LVPECL, BLVDS and other differential interfaces please see details of additional technical documentation at the end of the data sheet.

#### RSDS

FPGA section outputs support the differential RSDS standard. The output standard is emulated using complementary LVCMOS outputs in conjunction with resistors across the driver outputs on all the devices. The RSDS input standard is supported by the LVDS differential input buffer. The scheme shown in Figure 6 is one possible solution for RSDS standard implementation. Use LVDS25E mode with suggested resistors for RSDS operation. Resistor values in Figure 6 are industry standard values for 1% resistors.

#### Figure 6. RSDS (Reduced Swing Differential Standard)





#### Table 5. RSDS DC Conditions

| Parameter         | Description                 | Typical | Units |
|-------------------|-----------------------------|---------|-------|
| Z <sub>OUT</sub>  | Output impedance            | 20      | Ohms  |
| R <sub>S</sub>    | Driver series resistor      | 294     | Ohms  |
| R <sub>P</sub>    | Driver parallel resistor    | 121     | Ohms  |
| R <sub>T</sub>    | Receiver termination        | 100     | Ohms  |
| V <sub>OH</sub>   | Output high voltage         | 1.35    | V     |
| V <sub>OL</sub>   | Output low voltage          | 1.15    | V     |
| V <sub>OD</sub>   | Output differential voltage | 0.20    | V     |
| V <sub>CM</sub>   | Output common mode voltage  | 1.25    | V     |
| Z <sub>BACK</sub> | Back impedance              | 101.5   | Ohms  |
| I <sub>DC</sub>   | DC output current           | 3.66    | mA    |

## Typical Building Block Function Performance<sup>1</sup>

#### Pin-to-Pin Performance (LVCMOS25 12 mA Drive)

| Function        | Timing | Units |
|-----------------|--------|-------|
| Basic Functions |        |       |
| 16-bit decoder  | 8.9    | ns    |
| 4:1 MUX         | 7.5    | ns    |
| 16:1 MUX        | 8.3    | ns    |

#### **Register-to-Register Performance**

| Function                                                                     | Timing | Units |
|------------------------------------------------------------------------------|--------|-------|
| Basic Functions                                                              |        |       |
| 16:1 MUX                                                                     | 412    | MHz   |
| 16-bit adder                                                                 | 297    | MHz   |
| 16-bit counter                                                               | 324    | MHz   |
| 64-bit counter                                                               | 161    | MHz   |
| Embedded Memory Functions                                                    |        |       |
| 1024x9 True-Dual Port RAM<br>(Write Through or Normal, EBR output registers) | 183    | MHz   |
| Distributed Memory Functions                                                 | ·      |       |
| 16x4 Pseudo-Dual Port RAM (one PFU)                                          | 500    | MHz   |

1. The above timing numbers are generated using the Diamond design tool. Exact performance may vary with device and tool version. The tool uses internal parameters that have been characterized but are not tested on every device.



## **FPGA External Switching Characteristics**<sup>1, 2, 3</sup>

#### **Over Recommended Operating Conditions**

| Symbol                           | Parameter                                                         | Device | Min   | Max. | Units |
|----------------------------------|-------------------------------------------------------------------|--------|-------|------|-------|
| Primary Clocks                   |                                                                   | I      | 4     | L    |       |
| f <sub>MAX_PR</sub> <sup>4</sup> | Frequency for Primary Clock Tree                                  | LPTM21 |       | 388  | MHz   |
| t <sub>W_PRI</sub>               | Clock Pulse Width for Primary Clock                               | LPTM21 | 0.5   |      | ns    |
| t <sub>SKEW_PRI</sub>            | Primary Clock Skew Within a Device                                | LPTM21 |       | 868  | ps    |
| Pin-LUT-Pin Prop                 | agation Delay                                                     |        |       |      |       |
| t <sub>PD</sub>                  | Best case propagation delay through one LUT-4                     | LPTM21 |       | 6.72 | ns    |
| General I/O Pin P                | arameters                                                         |        |       |      |       |
| t <sub>CO</sub>                  | Clock to Output – PIO Output Register                             | LPTM21 |       | 7.44 | ns    |
| t <sub>SU</sub>                  | Clock to Data Setup – PIO Input Register                          | LPTM21 | -0.17 |      | ns    |
| t <sub>H</sub>                   | Clock to Data Hold – PIO Input Register                           | LPTM21 | 1.88  |      | ns    |
| t <sub>SU_DEL</sub>              | Clock to Data Setup – PIO Input Register with Data<br>Input Delay | LPTM21 | 1.63  |      | ns    |
| t <sub>H_DEL</sub>               | Clock to Data Hold – PIO Input Register with Input Data Delay     | LPTM21 | -0.24 |      | ns    |
| f <sub>MAX_IO</sub>              | Clock Frequency of I/O and PFU Register                           | LPTM21 |       | 388  | MHz   |

1. Exact performance may vary with device and design implementation.

2. General I/O timing numbers based on LVCMOS 2.5, 8 mA, 0pf load.

3. The  $t_{SU_DEL}$  and  $t_{H_DEL}$  values use the SCLK\_ZERHOLD default step size. Each step is 105 ps.

4. This number for general purpose usage. Duty cycle tolerance is +/-10%.

## sysCLOCK PLL Timing

#### **Over Recommended Operating Condition**

| Parameter                         | Descriptions                                   | Conditions                              | Min.   | Max. | Units |
|-----------------------------------|------------------------------------------------|-----------------------------------------|--------|------|-------|
| f <sub>IN</sub>                   | Input Clock Frequency (CLKI, CLKFB)            |                                         | 7      | 400  | MHz   |
| fout                              | Output Clock Frequency (CLKOP, CLKOS, CLKOS2)  |                                         | 1.5625 | 400  | MHz   |
| f <sub>OUT2</sub>                 | Output Frequency (CLKOS3 cascaded from CLKOS2) |                                         | 0.0122 | 400  | MHz   |
| f <sub>VCO</sub>                  | PLL VCO Frequency                              |                                         | 200    | 800  | MHz   |
| f <sub>PFD</sub>                  | Phase Detector Input Frequency                 |                                         | 7      | 400  | MHz   |
| AC Character                      | istics                                         |                                         |        |      |       |
| t <sub>DT</sub>                   | Output Clock Duty Cycle                        | Without duty trim selected <sup>3</sup> | 45     | 55   | %     |
| t <sub>DT_TRIM</sub> <sup>7</sup> | Edge Duty Trim Accuracy                        |                                         | -75    | 75   | %     |
| t <sub>PH</sub> <sup>4</sup>      | Output Phase Accuracy                          |                                         | -6     | 6    | %     |



## sysCLOCK PLL Timing (Cont.)

| Parameter                         | Descriptions                              | Conditions                   | Min.         | Max.   | Units      |
|-----------------------------------|-------------------------------------------|------------------------------|--------------|--------|------------|
|                                   | Output Cleak Pariad litter                | f <sub>OUT</sub> > 100MHz    | _            | 150    | ps p-p     |
|                                   |                                           | f <sub>OUT</sub> < 100MHz    | _            | 0.007  | UIPP       |
|                                   | Output Clock Ovela to ovela litter        | f <sub>OUT</sub> > 100MHz    | _            | 180    | ps p-p     |
|                                   |                                           | f <sub>OUT</sub> < 100MHz    | _            | 0.009  | UIPP       |
| <b>+</b> 1, 8                     | Output Clock Phase litter                 | f <sub>PFD</sub> > 100MHz    |              | 160    | ps p-p     |
| OPJIT                             | Output Clock Phase Siller                 | f <sub>PFD</sub> < 100MHz    | _            | 0.011  | UIPP       |
|                                   | Output Clock Pariod litter (Fractional N) | f <sub>OUT</sub> > 100MHz    | _            | 230    | ps p-p     |
|                                   |                                           | f <sub>OUT</sub> < 100MHz    | _            | 0.12   | UIPP       |
|                                   | Output Clock Cycle-to-cycle Jitter        | f <sub>OUT</sub> > 100MHz    | _            | 230    | ps p-p     |
|                                   | (Fractional-N)                            | f <sub>OUT</sub> < 100MHz    | _            | 0.12   | UIPP       |
| t <sub>SPO</sub>                  | Static Phase Offset                       | Divider ratio = integer      | -120         | 120    | ps         |
| t <sub>W</sub>                    | Output Clock Pulse Width                  | At 90% or 10% <sup>3</sup>   | 0.9          | —      | ns         |
| t <sub>LOCK</sub> <sup>2, 5</sup> | PLL Lock-in Time                          |                              | _            | 15     | ms         |
| t <sub>UNLOCK</sub>               | PLL Unlock Time                           |                              | _            | 50     | ns         |
| + 6                               | Input Clock Period litter                 | $f_{PFD} \ge 20 \text{ MHz}$ | — 1,000 ps p | ps p-p |            |
| ЧРЈІТ                             |                                           | f <sub>PFD</sub> < 20 MHz    |              | 0.02   | UIPP       |
| t <sub>HI</sub>                   | Input Clock High Time                     | 90% to 90%                   | 0.5          | —      | ns         |
| t <sub>LO</sub>                   | Input Clock Low Time                      | 10% to 10%                   | 0.5          | —      | ns         |
| t <sub>STABLE</sub> ⁵             | STANDBY High to PLL Stable                |                              | _            | 15     | ms         |
| t <sub>RST</sub>                  | RST/RESETM Pulse Width                    |                              | 1            | —      | ns         |
| t <sub>RSTREC</sub>               | RST Recovery Time                         |                              | 1            | —      | ns         |
| t <sub>RST_DIV</sub>              | RESETC/D Pulse Width                      |                              | 10           | —      | ns         |
| t <sub>RSTREC_DIV</sub>           | RESETC/D Recovery Time                    |                              | 1            | —      | ns         |
| t <sub>ROTATE-SETUP</sub>         | PHASESTEP Setup Time                      |                              | 10           | —      | ns         |
| t <sub>ROTATE_WD</sub>            | PHASESTEP Pulse Width                     |                              | 4            | —      | VCO Cycles |

#### **Over Recommended Operating Condition**

1. Period jitter sample is taken over 10,000 samples of the primary PLL output with a clean reference clock. Cycle-to-cycle jitter is taken over 1000 cycles. Phase jitter is taken over 2000 cycles. All values per JESD65B.

2. Output clock is valid after t<sub>LOCK</sub> for PLL reset and dynamic delay adjustment.

3. Using LVDS output buffers.

4. CLKOS as compared to CLKOP output for one phase step at the maximum VCO frequency. See TN1199, MachXO2 sysCLOCK PLL Design and Usage Guide for more details.

5. At minimum f<sub>PFD</sub> As the f<sub>PFD</sub> increases the time will decrease to approximately 60% the value listed.

6. Maximum allowed jitter on an input clock. PLL unlock may occur if the input jitter exceeds this specification. Jitter on the input clock may be transferred to the output clocks, resulting in jitter measurements outside the output specifications listed in this table.

7. Edge Duty Trim Accuracy is a percentage of the setting value. Settings available are 70 ps, 140 ps, and 280 ps in addition to the default value of none.

8. Jitter values measured with the internal oscillator operating. The jitter values will increase with loading of the PLD fabric and in the presence of SSO noise.