

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

PREPARED BY: DATE

APPROVED BY: DATE

DISPLAY DEVICE BUSINESS GROUP
SHARP CORPORATION

SPEC No. LD-24311A

FILE No. LD-24311A

ISSUE: 23-Apr-12

PAGE: 31pages

APPLICABLE GROUP
DISPLAY DEVICE BUSINESS GROUP
DISPLAY DEVICE BUSINESS GROUP

REVISION:

DEVICE SPECIFICATION FOR

TFT-LCD Module

MODEL No.

LQ043T1DG28

These parts have corresponded with the RoHS directive.

☐ CUSTOMER'S APPROVAL BY

BY

CAWANIS

J.KAWANISHI//
DEPARTMENT GENERAL MANAGER

DEVELOPMENT DEPARTMENT I

DISPLAY DEVICE DIVISION II

DISPLAY DEVICE BUSINESS GROUP

SHARP CORPORATION

RECORDS OF REVISION

LQ043T1DG28

	1		ı		
SPEC No.	DATE	REVI SED	PAGE	SUMMARY	NOTE
		No	IAGE		
LD-24311A	2012/4/23	Α		_	
	1	Ī			

NOTICE

This specification is the proprietary of SHARP and is copyrighted, with all rights reserved. Under the copyright laws, no part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical for any purpose, in whole or in part, without the express written permission of SHARP. Express written permission is also required before any use of this specification may be made by a third party.

The application circuit examples in this specification are provided to explain the representative applications of SHARP's devices and are not intended to guarantee any circuit design or permit any industrial property right or other rights to be executed. SHARP takes no responsibility for any problems related to any industrial property right or a third party resulting from the use of SHARP's devices, except for those resulting directly from device manufacturing processes.

In case of using the device for application such as control and safety equipment for transportation (controls of aircraft, trains, automobiles, etc), rescue and security equipment and various safety related equipment which require higher reliability and safety, take into consideration that appropriate measures such as fail-safe function and redundant system design should be taken.

Do not use the device for equipment that requires an extreme level or reliability, such as aerospace applications, telecommunication equipment (trunk lines), nuclear power control equipment and medical or other equipment for life support.

SHARP assumes no responsibility for any damage resulting from the use of the device which does not comply with the instructions and the precautions specified in this specification.

Contact and consult with a SHARP representative for any questions about this device.

1. Applicable Scope

This specification is applicable to TFT-LCD Module "LQ043T1DG28".

2. General Description

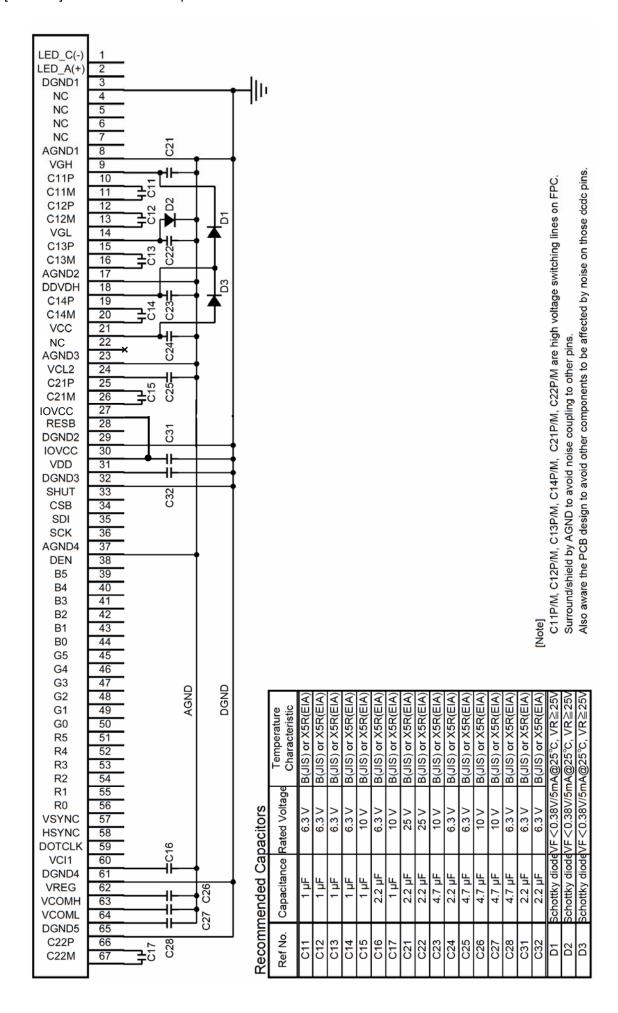
This module is a color active matrix LCD module incorporating amorphous silicon TFT (Thin Film Transistor). It is composed of a color TFT-LCD panel, driver IC , Input FPC, a back light unit and touch panel. Graphics and texts can be displayed on a 480 x 272 x RGB dots panel with about 262k colors by supplying 18bit data signals (6bit x RGB), four timing signals, 3wires 24bit serial interface signals, logic (Typ. +3.3V), analog (Typ. +3.3V) supply voltages for TFT-LCD panel driving and supply voltage for back light.

3. Mechanical (Physical) Specifications

Item	Specifications	Unit
Screen size	10.9 (4.3" type) diagonal	cm
Active area	95.04 (H) × 53.856 (V)	mm
Divid format	480 (H) x 272 (V)	pixel
Pixel format	1Pixel =R+G+B dots	-
Pixel pitch	0.198 (H) x 0.198 (V)	mm
Pixel configuration	R,G,B horizontal stripes	-
Display mode	Normally white	-
Unit outline dimensions	105.5 (W) x 67.2 (H) x 4.2 (D)	mm
Mass	About 51	g
Surface hardness	2H	-
Surface treatment	Anti glare	-

^{*}The above-mentioned table indicates module sizes without some projections and FPC.

For detailed measurements and tolerances, please refer to 18. Outline Dimensions.


4. Input Terminal Names and Functions

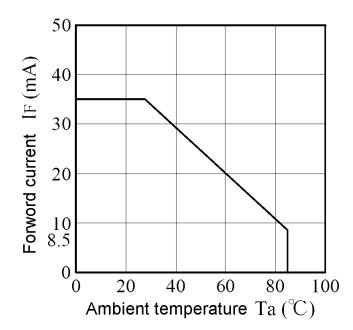
Recommendation CN: [HIROSE] FH26G-67S-0.3SHBW(05) or [KYOCERA ELCO] 00 6281 067 2X2 829 +

			OSE] FH26G-67S-0.3SHBW(05) or [KYOCERA ELCO] 00	
Pin No	Symbol	I/O	Description	Remarks
1	LED_C (-)	-	Power supply for LED (Cathode)	
2	LED_A(+)	-	Power supply for LED (Anode)	
3	DGND1	-	Digital Ground	
4	X1(R)	0	Touch Panel Right Electrode	
5	Y2(B)	0	Touch Panel Bottom Electrode	
6	X2(L)	0	Touch Panel Left Electrode	
7	Y1(T)	0	Touch Panel Top Electrode	
8	AGND1	-	Analog Ground	
9	VGH	-	Connect a Stabilizing capacitor to GND	Note 4-1
10	C11P	-	Connect a Booster capacitor to C11M	Note 4-1
11	C11M	-	Connect a Booster capacitor to C11P	Note 4-1
12	C12P	-	Connect a Booster capacitor to C12M	Note 4-1
13	C12M	-	Connect a Booster capacitor to C12P	Note 4-1
14	VGL	-	Connect a Stabilizing capacitor to GND	Note 4-1
15	C13P	-	Connect a Booster capacitor to C13M	Note 4-1
16	C13M	-	Connect a Booster capacitor to C13P	Note 4-1
17	AGND2	-	Analog Ground	
18	DDVDH	-	Connect a Stabilizing capacitor to GND	Note 4-1
19	C14P	-	Connect a Booster capacitor to C14M	Note 4-1
20	C14M	-	Connect a Booster capacitor to C14P	Note 4-1
21	VCC	-	Booster input voltage pin	
22	NC	-	No connection	
23	AGND3	-	Analog Ground	
24	VCL2	-	Connect a Stabilizing capacitor to GND	Note 4-1
25	C21P	-	Connect a Booster capacitor to C21M	Note 4-1
26	C21M	-	Connect a Booster capacitor to C21P	Note 4-1
27	IOVCC	-	Voltage input pin for logic I/O	Note 4-1
28	RESB	I	System reset	
29	DGND2	-	Digital Ground	
30	IOVCC	-	Voltage input pin for logic I/O	
31	VDD	-	Connect a Stabilizing capacitor to GND	Note 4-1
32	DGND3	-	Digital Ground	
33	SHUT	I	Sleep mode control	
34	CSB	1	Chip select pin of serial interface	
35	SDI	1	Data input pin in serial mode	
36	SCK	I	Clock input pin in serial mode	
37	AGND4		Analog Ground	Note 4-1
38	DEN	ı	Display enable signal	
39	B5	I	BLUE data signal(MSB)	
40	B4	ı	BLUE data signal	
41	В3	ı	BLUE data signal	

LD-24311A-4

Pin No.	Symbol	I/O	Description	Remarks
42	B2	Ι	BLUE data signal	
43	B1	Ι	BLUE data signal	
44	В0	I	BLUE data signal(LSB)	
45	G5	I	GREEN data signal(MSB)	
46	G4	I	GREEN data signal	
47	G3	I	GREEN data signal	
48	G2	I	GREEN data signal	
49	G1	I	GREEN data signal	
50	G0	I	GREEN data signal(LSB)	
51	R5	I	RED data signal(MSB)	
52	R4	I	RED data signal	
53	R3	I	RED data signal	
54	R2	I	RED data signal	
55	R1	I	RED data signal	
56	R0	I	RED data signal(LSB)	
57	VSYNC	I	Frame synchronization signal	
58	HSYNC	I	Line synchronization signal	
59	DOTCLK	I	Dot-clock signal	
60	VCI1	-	Connect a Stabilizing capacitor to GND	Note 4-1
61	DGND4	-	Digital Ground	
62	VREG	-	Connect a Stabilizing capacitor to GND	Note 4-1
63	VCOMH	-	Connect a Stabilizing capacitor to GND	Note 4-1
64	VCOML	-	Connect a Stabilizing capacitor to GND	Note 4-1
65	DGND5	-	Digital Ground	
66	C22P	-	Connect a Booster capacitor to C22M	Note 4-1
67	C22M	-	Connect a Booster capacitor to C22P	Note 4-1

5. Absolute Maximum Ratings


Item	Symbol	Conditions	Rated value	Unit	Remarks
Input voltage	VI	Ta = 25°C	-0.3 ~ IOVCC+0.3	V	Note 5-1
Logic I/O power supply voltage	IOVCC	Ta = 25°C	-0.3 ~ +4.0	V	
Analog power supply voltage	VCC	Ta = 25°C	AGND-0.3 ~ +4.6	V	
Temperature for storage	Tstg	-	-30~ +85	°C	Note 5-2
Temperature for operation	Topr	-	-10 ~ +70	°C	Note 5-2, 5-3
LED input electric current	I _{LED}	Ta = 25°C	35	mA	Note 5-4
LED electricity consumption	P _{LED}	Ta = 25°C	123	mW	Note 5-4

[Note 5-1] RESB, SHUT, CSB, SDI, SCK, DEN, B5~B0, G5~G0, R5~R0, VSYNC, HSYNC, DOTCLK [Note 5-2] Humidity: 95%RH Max. ($Ta \le 40$ °C)

Maximum bulb temperature under 39°C (Ta>40°C) See to it that no dew will be condensed. [Note 5-3] The high temperature is the panel surface temperature regulations.

[Note 5-4] Power consumption of one LED ($Ta = 25^{\circ}C$).

Ambient temperature and the maximum input are fulfilling the following operating conditions.

6. Electrical Characteristics

6-1. TFT LCD Panel Driving

Ta = 25°C

It	em	Symbol	Min.	Тур.	Max.	Unit	Remarks
Logic I/O	DC voltage	IOVCC	+3.0	+3.3	+3.6	V	
power supply	DC current	I _{IOVCC}	-	0.1	0.2	mA	Note 6-1
Analog	DC voltage	VCC	+3.2	+3.3	+3.4	V	Note 6-1 Note 6-6
power supply	DC current	I _{VCC}	-	16	24	mA	Note 6-3
Permis	sive input	V _{RFIOVCC}	-	-	100	mVp-p	Note 6-4
Ripple	voltage	V _{RFVCC}	-	-	100	mVp-p	Note 6-4
Logic	High	V _{IH}	0.8xIOVCC	-	IOVCC	V	Note 6-5
Input Voltage	Low	V _{IL}	0	-	0.2xIOVCC	V	Note 6-5
Logic inp	out Current	I _{IH} / I _{IL}	-1	-	1	μΑ	Note 6-5

[Note 6-1] IOVCC = +3.3V, VCC = +3.3V, $f_{VSYNC} = 60Hz$

Current situation for I_{IOVCC}: Black & White checker flag pattern

[Note 6-2] Refer to Recommended Capacitors and Register setting.

[Note 6-3] IOVCC = +3.3V, VCC = +3.3V, $f_{VSYNC} = 60Hz$

Current situation for I_{VCC}: All black pattern

[Note 6-4] IOVCC = +3.3V, VCC = +3.3V

[Note 6-5] RESB, SHUT, CSB, SDI, SCK, DEN, B5~B0, G5~G0, R5~R0, VSYNC, HSYNC, DOTCLK

[Note 6-6] When it is out of the above recommended operating voltage, for example, in case of

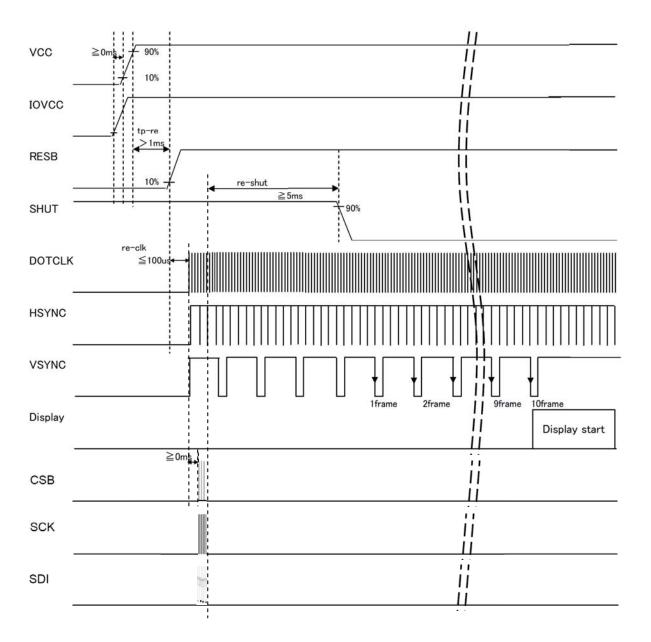
 $+3.0V \le VCC < +3.3V$, $+3.4V < VCC \le +3.6V$, the module does not break.

But the deterioration of display quality, flicker etc., may be occurred.

6-2. Register Setting

Register Setting (%)

Reg.#	Register	Data (Gamma2.2)	Remark
R00 h	Panel Driving Control	0013 h	Note 6-7
R01 h	Power Control 1	9A09 h	
R02 h	Power Control 2	9A11 h	
R03 h	Power Control 3	1100 h	
R04 h	Power Control 4	1100 h	
R05 h	Power Control 5	0232 h	
R06 h	Horizontal Back Porch Control	000E h	Note 6-8
R07 h	Vertical Back Porch Control	0004 h	Note 6-9
R09 h	Interface Control	0001 h	
R0A h	Power Control 6	1A61 h	
R0B h	Power Control 7	FF9B h	
R0C h	Power Control 8	00B0 h	
R0D h	Power Control 9	CA53 h	
R0E h	Power Control 10	CA53 h	
R10 h	Gamma Set 1	0616 h	
R11 h	Gamma Set 2	7916 h	
R12 h	Gamma Set 3	0805 h	
R13 h	Gamma Set 4	0217 h	
R14 h	Gamma Set 5	3121 h	
R15 h	Gamma Set 6	1707 h	
R16 h	Gamma Set 7	750F h	
R17 h	Gamma Set 8	1B0D h	
R18 h	Gamma Set 9	0106 h	
R19 h	Gamma Set 10	1112 h	


Wait min. 5ms

↓
Sleep mode →Normal mode conversion (SHUT "H" → "L")

↓
Wait min.10 frame
↓
Back light ON
↓
Display ON

¾If a setting other than the Register setting is captured temporarily due to disturbances such as electrostatic discharge, the normal display is restored by transmitting the recommended setting again.

(At this time, it is not necessary to turn on the power again or perform initializing with RESB.)

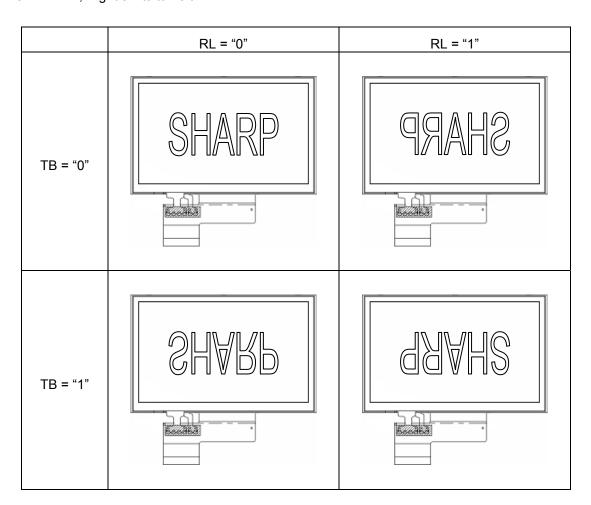
Characteristics	symbol	Min	Тур	Max	Units
VCC on to rising edge of RESB	tp-re	1	-	-	ms
Register set to Falling edge of SHUT	re-shut	5	-	-	ms
RESB on to rising edge of DOTCLK	re-clk	-	-	100	usec
Falling edge of SHUT to display start		-	-	10	frame
1 line: 512 clk	Andread are				
1 frame: 278 line	tshut-on	-	167	-	msec
PIXCLK = 8.5MHz					

※Display starts at 10th falling edge of VSYNC after the falling edge of SHUT.

Panel Driving Control (R00h)

R/W	DC	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	1	0	RL	0	0	0	0	TB	0	0	0	0	1	0	0	1	1
PC	OR .	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	1

TB: Selects the output shift direction of the gate driver.

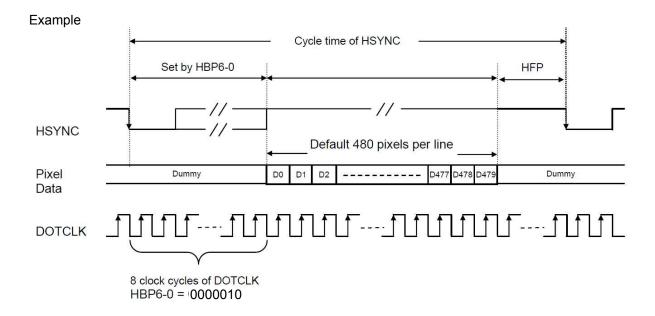

When TB = "0", Top shifts to Bottom.

When TB = "1", Bottom shifts to Top.

RL: Selects the output shift direction of the source driver.

When RL ="0", Left shifts to Right.

When RL ="1", Right shifts to Left.


Horizontal Back Porch Control (R06h)

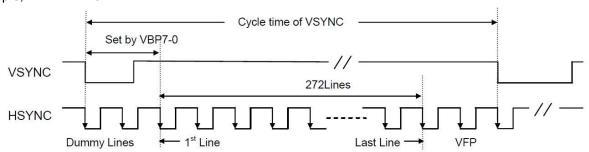
R/W	DC	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	1	0	0	0	0	0	0	0	0	0	HBP6	HBP5	HBP4	HBP3	HBP2	HBP1	HBP0
PO	OR .	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	0

Number of DOTCLK for HSYNC active low period must be smaller than that of HBP.

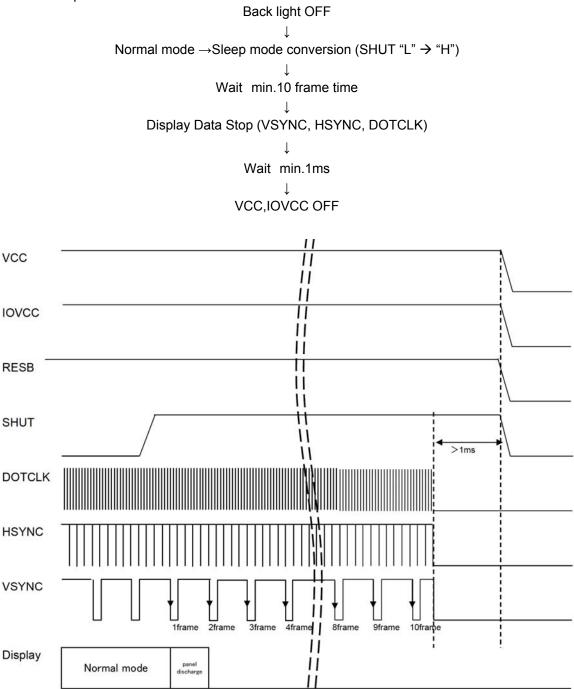
HBP6-0: Set the delay period from falling edge of HSYNC signal to first valid data.

HBP6	HBP5	HBP4	НВР3	HBP2	HBP1	HBP0	No. of clock cycle of DOTCLK
0	0	0	0	1	0	0	2
0	0	0	0	1	0	1	3
0	0	0	0	1	1	0	4
0	0	0	0	1	1	1	5
0	0	0	0	0	0	0	6
0	0	0	0	0	0	1	7
0	0	0	0	0	1	0	8
0	0	0	0	0	1	1	9
0	0	0	1	1	0	0	10
				:			:
				:			Step = 1
				:			:
1	1	1	0	0	1	1	121
1	1	1	1	1	0	0	122
1	1	1	1	1	0	1	123
1	1	1	1	1	1	0	124
1	1	1	1	1	1	1	125
1	1	1	1	0	0	0	126
1	1	1	1	0	0	1	127
1	1	1	1	0	1	0	128
1	1 1 1 1		1	0	1	1	129

Vertical Back Porch Control (R07h)


R/W	DC	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	1	0	0	0	0	0	0	0	0	VBP7	VBP6	VBP5	VBP4	VBP3	VBP2	VBP1	VBP0
PC	OR	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1

VBP7-0: Set the delay period from falling edge of VSYNC to first valid line.


The line data within this delay period will be treated as dummy line.

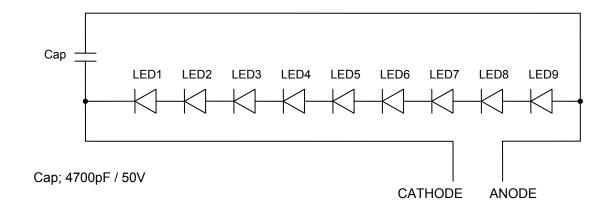
VBP7	VBP6	VBP5	VBP4	VBP3	VBP2	VBP1	VBP0	No. of clock cycle of HSYNC
0	0	0	0	0	0	0	0	Setting inhibited
0	0	0	0	0	0	0	1	1
0	0	0	0	0	0	1	0	2
0	0	0	0	0	0	1	1	3
0	0	0	0	0	1	0	0	4
			:					:
			:					Step = 1
			:					:
1	1	1	0	0	0	0	0	224
1	1	1	0	0	0	0	1	225
1	1	1	1	*	*	*	*	Reserved

Example; VBP = 2 line

6-3. Power Down Sequence

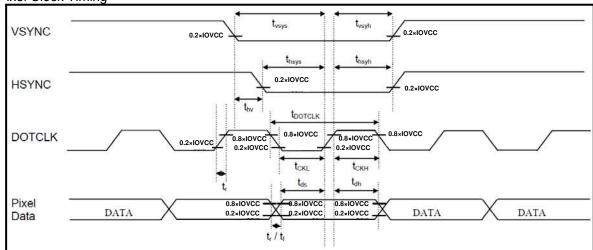
Characteristics	symbol	Min	Тур	Max	Units
Rising edge of SHUT to input-signal off	Tshut-dotclk Off	10	-	-	frame
1 line: 512 clk					
1 frame: 278 line		167	-	-	msec
PIXCLK = 8.5MHz					
Input-signal-off to IOVCC off	toff-vdd	1	-	-	ms

- Note1) DOTCLK/HSYNC/VSYNC must be maintained at least 10 frames after the rising edge of SHUT.
- Note2) Display become off at the 2nd falling edge of VSYNC after the rising edge of SHUT.


6-4. Back light driving

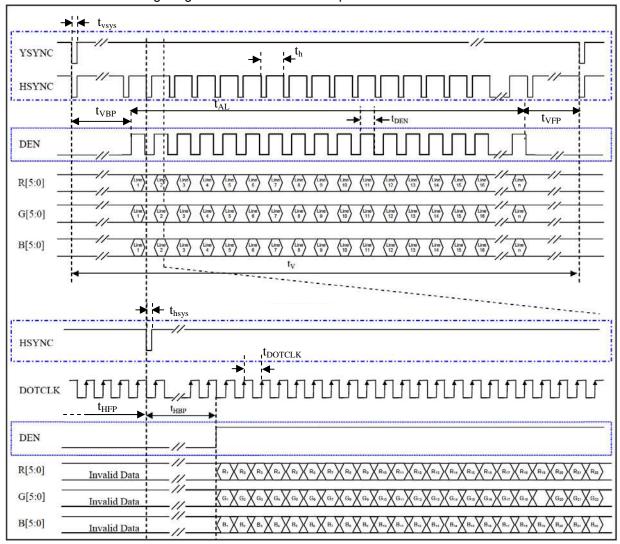
The back light system has 9 pieces LED

[LED] NSSW006T (Nichia)


Parameter	Symbol	Min.	Тур.	Max.	Unit	Remark
Rated Voltage	V_{BL}	-	28.8	31.5	V	
Rated Current	IL	-	20	-	mA	Ta=25°C
Power consumption	WL	-	576	-	mW	

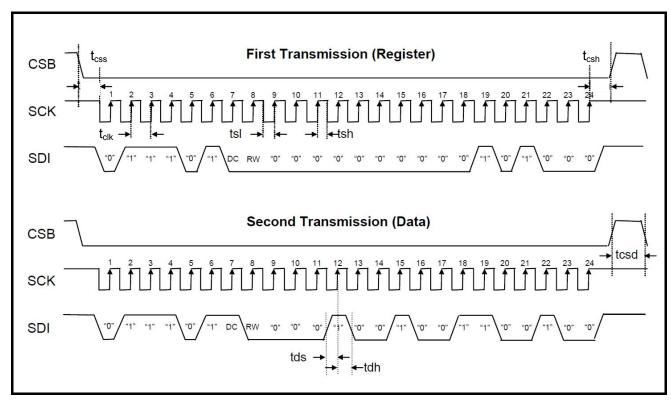
[LED-FPC circuit]

7. Timing characteristics of input signals


7-1. Pixel Clock Timing

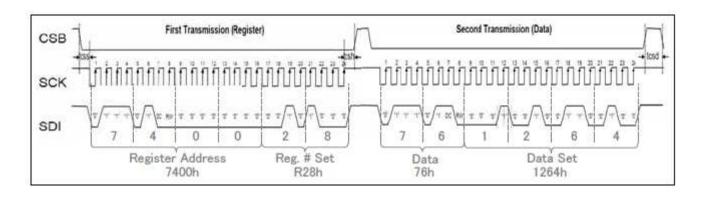
IOVCC=2.7V~3.6V

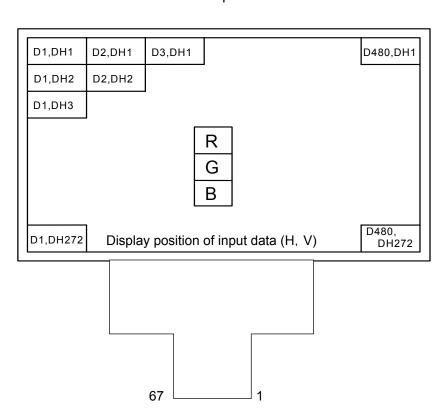
Characteristics	Symbol	Min	Тур	Max	Units
DOTCLK Frequency	f _{DOTCLK}	-	8.54	12	MHz
DOTCLK Period	t _{DOTCLK}	83	-	-	nsec
DOTCLK Low Period	t _{CKL}	41	-	-	nsec
DOTCLK High Period	t _{CKH}	41	-	-	nsec
Vertical Sync Setup Time	t _{vsys}	20	-	-	nsec
Vertical Sync Hold Time	t _{vsyh}	20	-	-	nsec
Horizontal Sync Setup Time	t _{hsys}	20	-	-	nsec
Horizontal Sync Hold Time	t _{hsyh}	20	-	-	nsec
Phase difference of Sync signal falling edge	t _{hv}	0	-	t _H -2	t _{DOTCLK}
Data Setup Time	t _{ds}	20	-	-	nsec
Data Hold Time	t _{dh}	20	-	-	nsec
Rise / Fall Time	t _r / t _f	-	-	10	nsec


7-2. 18-bit RGB Interface Timing Diagram & Transaction Example

		Symbol	Γ	Units		
	Characteristics		Min	Тур	Max	
Seria	l Clock Frequency	1/t _{DOTCLK}	_	8.54	12.0	MHz
	One Line Period	t _H	505	512	_	t _{DOTCLK}
	Active Data Period	t _{data,} t _{DEN}	480	480	480	t _{DOTCLK}
Horizontal	Horizontal Back Porch	t _{HBP}	2	16	_	t _{DOTCLK}
	Horizontal Front Porch	t_{HFP}	2	16	_	t _{DOTCLK}
	Horizontal sync Period	t _{hsys}	2	_	t _H -2	t _{DOTCLK}
	One Field Period	t _V	275	278	_	t _H
	Active Line Period	t_AL	272	272	272	t _H
	Vertical Back Porch	t_{VBP}	2	4	_	t _H
Vertical	Vertical Front Porch	t _{VFP}	1	2	_	t _H
	Vertical sync Period	t_{vsys}	1	2	T _v -2	t _H
	Frequency%	1/tv	50	60	-	t _H

^{*}If frequency is low, the display grade, flicker and others may become deterioration. Keep frequency over 50Hz(1/Tv). Although this module is operated in DEN mode to decide a horizontal first position, the inputs of not only DEN but Hsync and Vsync are also required.


7-3. SPI Interface Timing Diagram & Transaction Example (3-wires 24 bit)


IOVCC=2.7V~3.6V

Characteristics	symbol	Min	Тур	Max	Units
Serial Clock Frequency	fclk	-	-	20	MHz
Serial Clock Cycle Time	tclk	50	-	-	nsec
Clock Low Width	tsl	25	-	-	nsec
Clock High Width	tsh	25	_	_	nsec
Chip Select Setup Time	tcss	10	_	_	nsec
Chip Select Hold Time	tcsh	10	_	_	nsec
Chip Select High Delay Time	tcsd	25	_	_	nsec
Data Setup Time	tds	10	_	_	nsec
Data Hold Time	tdh	10	_	_	nsec

Register write example example) write 「1264h」 to Register # 「R28h」

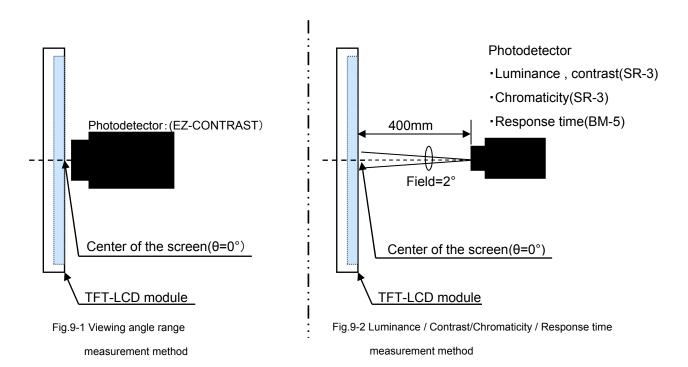
8. Input Signals, Basic Colors and Gray Scale of Each Color

0. 11	Colors &	Is, Basic Colors and Gray Scale of Each Color Date signal																		
	Gray	Gray	R0	R1	R2	R3	R4	R5	G0	G1	G2	G3	G4	G5	В0	B1	B2	В3	В4	B5
	Scale	Scale	LSB		l .			MSB	LSB					MSB	LSB			<u>I</u>		MSB
	Black	_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue	_	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1
	Green	_	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
Basic Color	Cyan	ı	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1
Colo	Red	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
or	Magenta	_	1	1	1	1	1	1	0	0	0	0	0	0	1	1	1	1	1	1
	Yellow	_	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0
	White	_	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Black	GS0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	仓	GS1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray	Darker	GS2	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray Scale of Red	仓	V			V	l					\	/					`	L		
le of	Û	\downarrow			\	<u> </u>					•	/				1	,	L		
Red	Brighter	GS61	1	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Û	GS62	0	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Red	GS63	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Black	GS0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Ð	仓	GS1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
Gray Scale of Green	Darker	GS2	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
scale	仓	V			V	V					\	L					`	L		
of C	Û	V			\ 	/					\	/					`	l e	Ī	
iree	Brighter	GS61	0	0	0	0	0	0	1	0	1	1	1	1	0	0	0	0	0	0
]	Û	GS62	0	0	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0	0
	Green	GS63	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
	Black	GS0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
G	仓	GS1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
iray (Darker	GS2	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
Gray Scale of Blue	仓	V			١	V						L					`	L		
e of l	Û	V			\ 	<u>ا</u>		<u> </u>			\	/					<u> </u>	ν -		
Blue	Brighter	GS61	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	1	1
	Û	GS62	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1
	Blue	GS63	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1

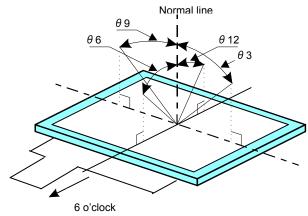
0: Low level voltage, 1: High level voltage

Each basic color can be displayed in 64 gray scales from 6 bit data signals.

According to the combination of 18 bit data signals, the 262k color display can be achieved on the screen.


9. Optical Characteristics

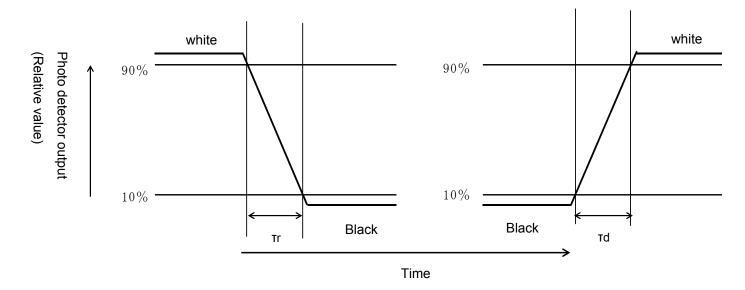
Module characteristics


Ta = 25° C, IOVCC = $+3.3$ V, VCC = $+3.3$	ЗV
---	----

Param	neter	Symbol	Condition	Min.	Тур.	Max.	Unit	Remark
Viewing	Horizontal	θ3		-	80	-	deg.	
angle range	rionzoniai	θ9	OD > 40	-	80	-	deg.	[Note 9-1]
(With	Vertical	θ 12	CR≧10	ı	55	-	deg.	[Note 9-4]
Wide View)	ew) Vertical θ 6			ı	80	-	deg.	
0 1	4 4: -	O.D.	Optimum viewing	050	500			[Note 9-2]
Contras	st ratio	CR	angle	250	500	-	_	[Note 9-4]
Response	Rise	Tr	0-00	-	22	40	ms	[Note 9-3]
Time	Decay	Td	θ=0°	-	8	20	ms	[Note 9-4]
Chroma	ticity of	Х		0.26	0.31	0.36	_	.
Wh	ite	у		0.29	0.34	0.39	-	[Note 9-4]
	6 1.11	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		0.40	000		., .	ILED=20mA
Luminance	e of white	XL		240	300	-	cd/m²	[Note 9-4]
The life of	LED (Refe	rence)	ILED=20mA	(10,000)			hour	[Note 9-5]

^{*} The optical characteristics measurements are operated under a stable luminescence (ILED = 20mA) and a dark condition. (Refer to Fig.9-1 and Fig.9-2)

[Note 9-1] Definitions of viewing angle range


[Note 9-2] Definition of contrast ratio

The contrast ratio is defined as the following

Contrast ratio (CR) = Luminance (brightness) with all pixels white Luminance (brightness) with all pixels black

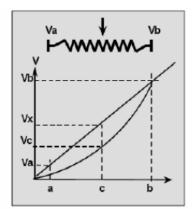
[Note 9-3] Definition of response time

The response time is defined as the following figure and shall be measured by switching the input signal for "black" and "white"

[Note 9-4] This shall be measured at center of the screen.

[Note 9-5] The life of LED (Reference)

Luminosity will become 50% on more for an initial value in about 10,000H which condition is $Ta=25^{\circ}C$ and ILED=20mA.


10. Touch panel characteristics

Parameter	Min.	Тур.	Max.	Unit	Remark
Input voltage	-	5.0	7.0	V	
Resistor between terminals(XL-XR)	200	750	1600	Ω	
Resistor between terminals(YU-YD)	100	270	900	Ω	
Line linearity(X direction)	-	-	1.5	%	Nata 40 0
Line linearity(Y direction)	-	-	1.5	%	Note 10-3
Insuration resistance	20	-	-	ΜΩ	at DC25V
Minimum power to push I	-	-	80	g	Note 10-1
Minimum power to push II	-	-	50	g	Note 10-2

[Note 10-1] It is applied inside (2~12mm) from Active area with use of 0.8mm stylus pen.

[Note 10-2] It is applied inside 12mm from Active area with use of 0.8mm stylus pen.

[Note 10-3] Linearity is defined as accuracy of position when a touch panel is pushed. That is, it is defined as a deviation to the detection voltage over the ideal voltage as follows.

Va : Starting point voltage

Vb : Ending point voltage

a: Starting point

b: Ending point

c; Measuring point

Vc : Measured voltage of c

Vx : Expecting voltage of c

Linearity = (Vx-Vc)/(Vb-Va) x 100

11. Handling of modules

- 11-1. Inserting the FPC into its connector and pulling it out.
 - 1) Be sure to turn off the power supply and the signals when inserting or disconnecting the cable.
 - 2) Please insert for too much stress not to join FPC in the case of insertion of FPC.

11-2. Handling of FPC

- 1) The bending radius of the FPC on flexible part should be more than R0.6mm, and it should be bent evenly.
- 2) Do not dangle the LCD module by holding the FPC, or do not give any stress to it.
- 3) Do not add stress to the terminal area of FPC and LCD panel.
- 4) Do not bend FPC to the display direction when handling and mounting.

11-3. Mounting of the module

1) The module should be held on to the plain surface. Do not give any warping or twisting stress to the module. Refer to 18.Outline Dimensions about the handling area in surface and gasket area in back. When LCD surface is pushed by the power over 300gf/cm², with use of handling area, the pooling may occur at a different place from the pushed place. Because there is a grade difference in the pooling, check and judge after mounting.

- 2) Please consider that GND can ground a modular metal portion etc. so that static electricity is not charged to the module.
- 3) Design guidance for touch panel (T/P)
 - a) Example of housing design
 - (1) If a consumer will put a palm on housing in normal usage, care should be taken as follows.
 - (2) Keep the gap, for example 0.3 to 0.7mm, between bezel edge and T/P surface.

 The reason is to avoid the bezel edge from contacting T/P surface that may cause a "short" with bottom layer. (See Fig.1)
 - (3) Inserting a cushion material is recommended.
 - (4) The cushion material should be limited just on the busbar insulation paste area. If it is over the transparent insulation paste area, a "short" may be occurred.
 - (5) There is one part where a resistance film is left in the T/P part of the end of the pole.

 Design to keep insulation from the perimeter to prevent from mis-operation and so on.
- b) Mounting on display and housing bezel
 - (1) In all cases, the T/P should be supported from the backside of the Plastic.
 - (2) Do not to use an adhesive-tape to bond it on the front of T/P and hang it to the housing bezel.
 - (3) Never expand the T/P top layer (PET-film) like a balloon by internal air pressure. The life of the T/P will be extremely short.
 - (4) The dimensions of top layer and PET are changing with environmental temperature and humidity. Avoid a stress from housing bezel to top layer, because it may cause "waving"
 - (5) The input to the T/P sometimes distorts touch panel itself.

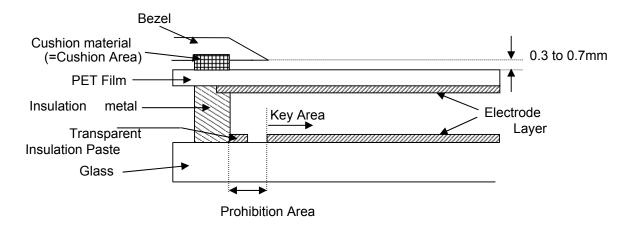


Fig.1