

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



# Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

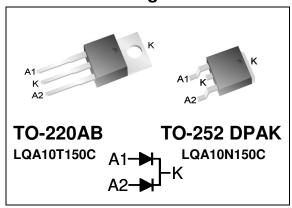
Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China







# LQA10T150C, LQA10N150C Qspeed<sup>™</sup> Family




150 V, 10 A Common-Cathode Diode

### **Product Summary**

| I <sub>F(AVG)</sub> per diode                           | 5    | Α  |
|---------------------------------------------------------|------|----|
| $V_{RRM}$                                               | 150  | ٧  |
| Q <sub>RR</sub> (Typ at 125 °C)                         | 21.4 | nC |
| I <sub>RRM</sub> (Typ at 125 °C)                        | 1.41 | Α  |
| Softness t <sub>b</sub> /t <sub>a</sub> (Typ at 125 °C) | 0.59 |    |

### **Pin Assignment**



### **RoHS Compliant**

Package uses Lead-free plating and "Green" mold compound Halogen free per IEC 61249-2-21.

### **General Description**

This device has the lowest  $Q_{RR}$  of any 150 V Silicon diode. Its recovery characteristics increase efficiency, reduce EMI and eliminate snubbers.

## **Applications**

- AC/DC and DC/DC output rectification
  - · Output and freewheeling diodes
- · Motor drive circuits
- DC-AC inverters

#### **Features**

- Low Q<sub>RR</sub>, Low I<sub>RRM</sub>, Low t<sub>RR</sub>
- High dl<sub>F</sub>/dt capable
- · Soft recovery

### **Benefits**

- Increases efficiency
  - Eliminates need for snubber circuits
  - Reduces EMI filter component size and count
- Enables extremely fast switching

### **Absolute Maximum Ratings**

Absolute maximum ratings are the values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

| Symbol              | Parameter                            | Conditions                                                               | Rating     | Units |
|---------------------|--------------------------------------|--------------------------------------------------------------------------|------------|-------|
| V <sub>RRM</sub>    | Peak repetitive reverse voltage      | T <sub>J</sub> = 25 °C                                                   | 150        | V     |
| I <sub>F(AVG)</sub> | Average forward current              | Per Diode, T <sub>J</sub> = 150 °C, T <sub>C</sub> = 130 °C              | 5          | Α     |
|                     |                                      | Per Device, T <sub>J</sub> = 150 °C, T <sub>C</sub> = 130 °C             | 10         | Α     |
| I <sub>FSM</sub>    | Non-repetitive peak surge current    | Per Diode, 60 Hz, ½ cycle                                                | 60         | Α     |
| I <sub>FSM</sub>    | Non-repetitive peak surge current    | Per Diode, $\frac{1}{2}$ cycle of t = 28 $\mu$ s Sinusoid, $T_C$ = 25 °C | 350        | Α     |
| TJ                  | Operating junction temperature range |                                                                          | -55 to 150 | °C    |
| T <sub>STG</sub>    | Storage temperature                  |                                                                          | -55 to 150 | °C    |
|                     | Lead soldering temperature           | Leads at 1.6mm from case, 10 sec                                         | 300        | °C    |
| P <sub>D</sub>      | Power dissipation                    | T <sub>C</sub> = 25 °C                                                   | 27.7       | W     |

### **Thermal Resistance**

| Symbol            | Resistance from:    | Conditions      | Rating | Units |
|-------------------|---------------------|-----------------|--------|-------|
| $R_{\theta JA}$   | Junction to ambient | TO-220AB (only) | 62     | °C/W  |
| R <sub>θ</sub> JC | Junction to case    | Per Diode       | 4.5    | °C/W  |
|                   |                     | Per Device      | 2.3    | °C/W  |

www.power.com January 2015

## **Electrical Specifications** at T<sub>J</sub> = 25 °C (unless otherwise specified)

| Symbol                                                                       | Parameter                                     | Conditions                                    |                                                 | Min  | Тур  | Max  | Units |
|------------------------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------|-------------------------------------------------|------|------|------|-------|
| DC Chara                                                                     | acteristics per diode                         |                                               |                                                 |      |      |      |       |
| I <sub>R</sub>                                                               | Reverse current per diode                     | $V_R = 150 \text{ V}, T_J =$                  | 25 °C                                           | -    | -    | 250  | μΑ    |
|                                                                              |                                               | V <sub>R</sub> = 150 V, T <sub>J</sub> =      | V <sub>R</sub> = 150 V, T <sub>J</sub> = 125 °C |      | 0.1  | -    | mA    |
| V <sub>F</sub>                                                               | Forward voltage per diode                     | $I_F = 5 A, T_J = 25$                         | °C                                              | -    | 0.95 | 1.1  | V     |
|                                                                              |                                               | $I_F = 5 A, T_J = 150$                        | ) °C                                            | -    | 0.8  | -    | V     |
| СЈ                                                                           | Junction capacitance per diode                | V <sub>R</sub> = 10 V, 1 MHz                  |                                                 | -    | 22   | -    | pF    |
| Dynamic                                                                      | Characteristics per diode                     | e                                             |                                                 |      |      |      |       |
| t <sub>RR</sub>                                                              | Reverse recovery time, per diode              | dl <sub>F</sub> /dt = 100 A/μs                | T <sub>J</sub> = 25 °C                          | -    | 15.1 | -    | ns    |
|                                                                              |                                               | $V_R = 100 \text{ V},$<br>$I_F = 5 \text{ A}$ | T <sub>J</sub> = 125 °C                         | -    | 23.6 | -    | ns    |
| Q <sub>RR</sub>                                                              | Reverse recovery charge,                      | dl <sub>F</sub> /dt = 100 A/μs                | T <sub>J</sub> = 25 °C                          | -    | 8.6  | 21.3 | nC    |
|                                                                              | per diode                                     | $V_R = 100 \text{ V},$<br>$I_F = 5 \text{ A}$ | T <sub>J</sub> = 125 °C                         | -    | 21.4 | -    | nC    |
| I <sub>RRM</sub>                                                             | Maximum reverse                               | dl <sub>F</sub> /dt = 100 A/μs                | $T_J = 25  ^{\circ}C$                           | -    | 0.92 | 2.06 | Α     |
|                                                                              | recovery current, per diode                   | $V_R = 100 \text{ V},$<br>$I_F = 5 \text{ A}$ | T <sub>J</sub> = 125 °C                         | -    | 1.41 | -    | Α     |
| S                                                                            | t <sub>b</sub>                                | $dI_F/dt = 100 A/\mu s$                       | T <sub>J</sub> = 25 °C                          | -    | 0.69 | -    |       |
| S Softness per diode = $\frac{t_b}{t_a}$ $\frac{dI_F/dt}{I_F = 5 \text{ A}}$ | $V_R = 100 \text{ V},$<br>$I_F = 5 \text{ A}$ | T <sub>J</sub> = 125 °C                       | -                                               | 0.59 | -    |      |       |

**Note to component engineers**: Q-Series diodes employ Schottky technologies in their design and construction. Therefore, component engineers should plan their test setups to be similar to traditional Schottky test setups. (For further details, see application note AN-300.)

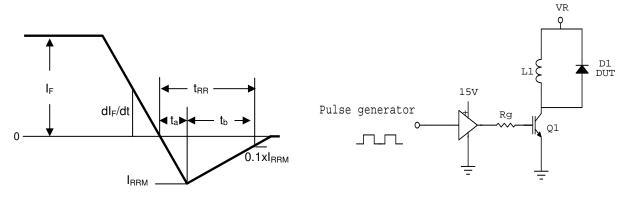
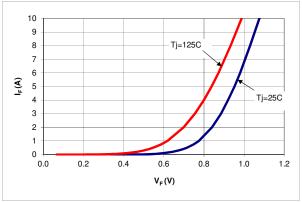
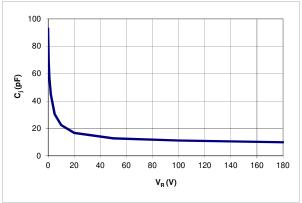




Figure 1. Reverse Recovery Definitions

Figure 2. Reverse Recovery Test Circuit


## Electrical Specifications at T<sub>J</sub> = 25 °C (unless otherwise specified)



1.0 0.9 8.0 Tj=125C 0.7 0.6 0.5 0.4 0.3 0.2 Tj=25C 0.1 0.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.8  $V_F(V)$ 

Figure 3. Typical I<sub>F</sub> vs V<sub>F</sub>

Figure 4. Typical I<sub>F</sub> vs V<sub>F</sub>



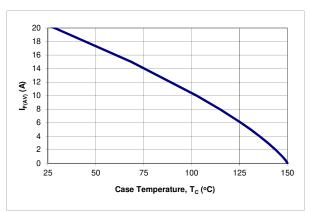
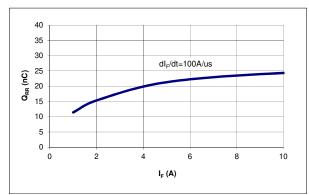




Figure 5. Typical C<sub>j</sub> vs V<sub>R</sub>

Figure 6. DC Current Derating Curve



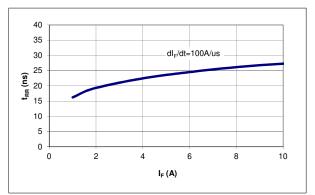
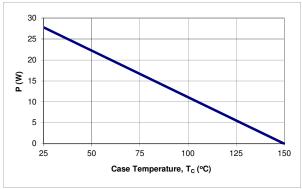




Figure 7. Typical Q<sub>RR</sub> vs I<sub>F</sub> at T<sub>j</sub>=125 °C

Figure 8. Typical t<sub>RR</sub> vs I<sub>F</sub> at T<sub>j</sub>=125 °C



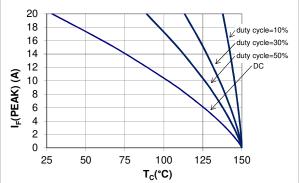



Figure 9. Power Derating Curve

Figure 10. IF (Peak) vs TC, f = 70 kHz

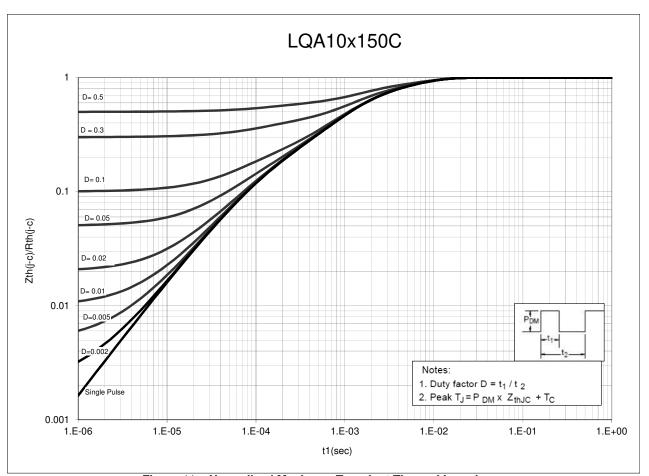
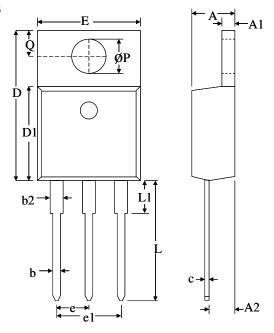
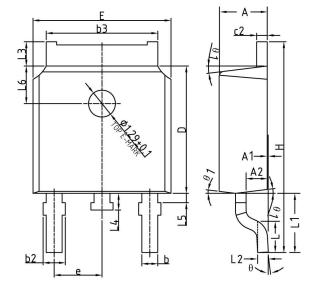




Figure 11. Normalized Maximum Transient Thermal Impedance

# **Dimensional Outline Drawings**


TO-220AB



|            | Millimeters |       |  |
|------------|-------------|-------|--|
| Dim        | MIN MAX     |       |  |
| Α          | 4.32        | 4.70  |  |
| <b>A</b> 1 | 1.11        | 1.38  |  |
| <b>A</b> 2 | 2.59        | 2.79  |  |
| b          | 0.77        | 1.00  |  |
| b2         | 1.23        | 1.36  |  |
| С          | 0.34        | 0.47  |  |
| D          | 14.71       | 15.75 |  |
| D1         | 9.05        | 9.25  |  |
| E          | 9.96        | 10.36 |  |
| е          | 2.44        | 2.64  |  |
| e1         | 4.98        | 5.18  |  |
| L          | 12.70       | 14.22 |  |
| L1         | 1           | 3.90  |  |
| ØP         | 3.71        | 3.96  |  |
| Q          | 2.54        | 2.90  |  |

| Mechanical Mounting Method        | Maximum Torque / Pressure specification                            |
|-----------------------------------|--------------------------------------------------------------------|
| Screw through hole in package tab | 1 Newton Meter (nm) or 8.8 inch-pounds (lb-in)                     |
| Clamp against package body        | 12.3 kilogram-force per square centimeter (kgf/cm²) or 175 lbf/in² |

### TO-252 DPAK



|            | Millimeters |       |  |  |  |
|------------|-------------|-------|--|--|--|
| Dim        | MIN MAX     |       |  |  |  |
| Α          | 2.20        | 2.38  |  |  |  |
| <b>A</b> 1 | 0           | 0.10  |  |  |  |
| A2         | 0.90        | 1.10  |  |  |  |
| b          | 0.72        | 0.85  |  |  |  |
| b2         | 0.72        | 0.90  |  |  |  |
| b3         | 5.13        | 5.46  |  |  |  |
| c2         | 0.47        | 0.60  |  |  |  |
| D          | 6.00        | 6.20  |  |  |  |
| E          | 6.50        | 6.70  |  |  |  |
| е          | 2.186       | 2.386 |  |  |  |
| Н          | 9.80        | 10.40 |  |  |  |
| L          | 1.40        | 1.70  |  |  |  |
| L1         | 2.90        | REF   |  |  |  |
| L2         | 0.51        | BSC   |  |  |  |
| L3         | 0.90        | 1.25  |  |  |  |
| L4         | 0.60        | 1.00  |  |  |  |
| L5         | 0.15        | 0.75  |  |  |  |
| L6         | 1.80 REF    |       |  |  |  |
| Θ          | 0°          | 8°    |  |  |  |
| Θ1         | 5° 9°       |       |  |  |  |

**Soldering time and temperature:** This product has been designed for use with high-temperature, lead-free solder. The component leads can be subjected to a maximum temperature of 300 °C, for up to 10 seconds. See Application Note AN-303, for more details.

### **Ordering Information**

| Part Number | Package     | Packing         |
|-------------|-------------|-----------------|
| LQA10T150C  | TO-220AB    | 50 units/tube   |
| LQA10N150C  | TO-252 DPAK | 2500 units/reel |

The information contained in this document is subject to change without notice.

| Revision | Notes                                         | Date  |
|----------|-----------------------------------------------|-------|
| 1.0      | Initial Release                               | 12/14 |
| 1.0      | Corrected IF(AVG) per diode to 5 A on page 1. | 01/15 |



### For the latest updates, visit our website: www.power.com

Power Integrations reserves the right to make changes to its products at any time to improve reliability or manufacturability. Power Integrations does not assume any liability arising from the use of any device or circuit described herein. POWER INTEGRATIONS MAKES NO WARRANTY HEREIN AND SPECIFICALLY DISCLAIMS ALL WARRANTIES INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS.

#### **PATENT INFORMATION**

The products and applications illustrated herein (including transformer construction and circuits' external to the products) may be covered by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations' patents may be found at www.power.com. Power Integrations grants its customers a license under certain patent rights as set forth at http://www.power.com/ip.htm.

The PI Logo, TOPSwitch, TinySwitch, LinkSwitch, LYTSwitch, InnoSwitch, DPA-Switch, PeakSwitch, CAPZero, SENZero, LinkZero, HiperPFS, HiperTFS, HiperLCS, Qspeed, EcoSmart, Clampless, E-Shield, Filterfuse, FluxLink, StackFET, PI Expert and PI FACTS are trademarks of Power Integrations, Inc. Other trademarks are property of their respective companies. ©Copyright 2015 Power Integrations, Inc.

### Power Integrations Worldwide Sales Support Locations

#### **WORLD HEADQUARTERS**

5245 Hellver Avenue San Jose, CA 95138, USA. Main: +1-408-414-9200 Customer Service: Phone: +1-408-414-9665 Fax: +1-408-414-9765 e-mail: usasales@power.com

**CHINA (SHANGHAI)** 

Rm 2410, Charity Plaza, No. 88, North Caoxi Road, Shanghai, PRC 200030 Phone: +86-21-6354-6323 Fax: +86-21-6354-6325

e-mail: chinasales@power.com

#### **CHINA (SHENZHEN)**

17/F, Hivac Building, No. 2, Keji Nan 8th Road, Nanshan District, Shenzhen, China, 518057 Phone: +86-755-8672-8689 Fax: +86-755-8672-8690 e-mail: chinasales@power.com

**GERMANY** 

Lindwurmstrasse 114 80337, Munich Germany Phone: +49-895-527-

39110

Fax: +49-895-527-39200

e-mail:

eurosales@power.com

**INDIA** 

#1, 14th Main Road Vasanthanagar Bangalore-560052 India Phone: +91-80-4113-8020 Fax: +91-80-4113-8023

e-mail:

indiasales@power.com

Via Milanese 20, 3<sup>rd</sup>. Fl. 20099 Sesto San Giovanni (MI) Italy

Phone: +39-024-550-8701 Fax: +39-028-928-6009

e-mail:

eurosales@power.com

**JAPAN** 

Kosei Dai-3 Building 2-12-11, Shin-Yokohama, Kohoku-ku, Yokohama-shi, Kanagawa 222-0033 Japan

Phone: +81-45-471-1021 Fax: +81-45-471-3717

e-mail: japansales@power.com

**KOREA** 

RM 602, 6FL Korea City Air Terminal B/D, 159-6 Samsung-Dong, Kangnam-Gu,

Seoul, 135-728 Korea Phone: +82-2-2016-6610 Fax: +82-2-2016-6630 e-mail: koreasales@power.com

**SINGAPORE** 

51 Newton Road, #19-01/05 Goldhill Plaza Singapore, 308900 Phone: +65-6358-2160 Fax: +65-6358-2015

e-mail:

singaporesales@power.com

**TAIWAN** 

5F, No. 318, Nei Hu Rd., Sec. 1 Nei Hu District Taipei 11493, Taiwan R.O.C. Phone: +886-2-2659-4570 Fax: +886-2-2659-4550 e-mail:

taiwansales@power.com

First Floor, Unit 15, Meadway Court, Rutherford Close, Stevenage, Herts. SG1 2EF United Kingdom

Phone: +44 (0) 1252-730-141 Fax: +44 (0) 1252-727-689 e-mail: eurosales@power.com

**APPLICATIONS HOTLINE** 

World Wide +1-408-414-9660

**APPLICATIONS FAX** 

World Wide +1-408-414-9760