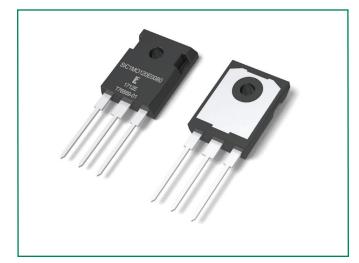
imall

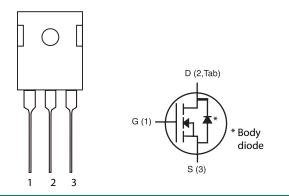
Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!


Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



LSIC1MO120E0080, 1200 V, 80 mOhm, TO-247-3L

LSIC1M0120E0080 1200 V N-channel, Enhancement-mode SiC MOSFET HF Rotts 🧐

Circuit Diagram TO-247-3L

Environmental

- Littelfuse "RoHS" logo = RoHS RoHS conform
- Littelfuse "HF" logo = **HF** Halogen Free
- Littelfuse "Pb-free" logo = Pb-free lead plating

Product Summary						
Characteristics	Value	Unit				
V _{ds}	1200	V				
Typical R _{DS(ON)}	80	mΩ				
I _D (T _C ≤ 100 °C)	25	А				

Features

- Optimized for highfrequency, high-efficiency applications
- Extremely low gate charge and output capacitance
- Low gate resistance for high-frequency switching
- Normally-off operation at all temperatures
- Ultra-low on-resistance

Applications

- High-frequency applications
- Solar Inverters
- Switch Mode Power Supplies
- UPS

- Motor Drives
- High Voltage DC/DC Converters
- Battery Chargers
- Induction Heating

SIC MOSFET

LSIC1MO120E0080, 1200 V, 80 mOhm, TO-247-3L

Maximum Ratings						
Characteristics	Symbol	Conditions	Value	Unit		
Continuous Drain Current		$V_{GS} = 20 \text{ V}, \text{ T}_{C} = 25 \text{ °C}$	39	A		
	I _D	V _{GS} = 20 V, T _C = 100 °C	25			
Pulsed Drain Current ¹	D(pulse)	T _c = 25 °C	80	A		
Power Dissipation	P _D	T _c = 25 °C, T _J = 150 °C	179	W		
Operating Junction Temperature	T,		-55 to 150	°C		
	V _{GS,MAX}	Absolute maximum values	-6 to 22			
Gate-source Voltage	V _{GS,OP,TR}	Transient, <1% duty cycle	-10 to 25] v		
Ŭ	V _{gs,op}	Recommended DC operating values	-5 to 20	-		
Storage Temperature	T _{stg}	-	-55 to 150	°C		
Lead Temperature for Soldering	T _{sold}	-	260	°C		
Mounting Torque		M2 or 6 22 percent	0.6	Nm		
Mounting Torque	M _D	M3 or 6-32 screw	5.3	in-lb		

Footnote 1: Pulse width limited by T_{J,max}

Thermal Characteristics

Characteristics	Symbol	Value	Unit
Maximum Thermal Resistance, junction-to-case	R _{th,JC,max}	0.7	°C/W
Maximum Thermal Resistance, junction-to-ambient	R _{th,JA,max}	40	°C/W

Electrical Characteristics ($T_{J} = 25$ °C unless otherwise specified)

Characteristics Symbol		Conditions	Min	Тур	Max	Unit	
Static Characteristics							
Drain-source Breakdown Voltage	V _{(BR)DSS}	$V_{gS} = 0 \text{ V}, \text{ I}_{D} = 250 \mu\text{A}$	1200	-	-	V	
Zero Gate Voltage Drain Current		$V_{\rm DS} = 1200 \text{V}, V_{\rm GS} = 0 \text{V}$	-	1	100	μA	
Zero Gate voltage Drain Current	IDSS	$V_{\rm DS} = 1200$ V, $V_{\rm GS} = 0$ V, $T_{\rm J} = 150$ °C	-	2	-		
Gate Leakage Current	I _{GSS,F}	$V_{gs} = 20 \text{ V}, \text{ V}_{ds} = 0 \text{ V}$	-	-	100	nA	
Gate Leakage Current	I _{GSS,R}	$V_{gs} = -10 \text{ V}, \text{ V}_{ds} = 0 \text{ V}$	-	-	100	ПА	
Drain-source On-state Resistance	P	$I_{\rm D} = 20$ A, $V_{\rm GS} = 20$ V	-	80	100	mΩ	
	R _{DS(ON)}	I _D = 20 A, V _{GS} = 20 V, T _J = 150 °C	-	105	-	11122	
Cata Thrashold Valtage	N/	$V_{\rm DS} = V_{\rm GS}, \ I_{\rm D} = 10 \ {\rm mA}$	1.8	2.8	4.0	V	
Gate Threshold Voltage	V _{GS,(th)}	$V_{\rm DS} = V_{\rm GS'} I_{\rm D} = 10 \text{ mA}, T_{\rm J} = 150 \text{ °C}$	-	1.9	-	V	
Gate Resistance	R _g	f = 1 MHz, V _{AC} = 25 mV	-	1.0	-	Ω	

SiC MOSFET LSIC1MO120E0080, 1200 V, 80 m Ohm, TO-247-3L

Electrical Characteristics ($T_{i} = 25 \text{ °C}$ unless otherwise specified)

	Course la sel	Conditions		Value				
Characteristics Symbol Co		Conditions	Min	Тур	Max	- Unit		
Dynamic Characteristics	Dynamic Characteristics							
Turn-on Switching Energy	E _{on}	V - 800 V I - 20 A	-	270	-			
Turn-off Switching Energy	E	$V_{_{DD}} = 800 \text{ V}, \text{ I}_{_{D}} = 20 \text{ A}, V_{_{GS}} = -5/+20 \text{ V},$	-	60	-	μJ		
Total Per-cycle Switching Energy	E _{TS}	$R_{g,ext} = 2 \Omega, L = 1.4 \text{ mH}$	-	330	-]		
Input Capacitance	C _{ISS}		-	1825	-			
Output Capacitance	C _{oss}	V _{DD} = 800 V, V _{GS} = 0 V, f = 1 MHz, V _{AC} = 25 mV	-	75	-	pF		
Reverse Transfer Capacitance	C _{RSS}		-	15	-			
C _{oss} Stored Energy	E _{oss}		-	25	-	μJ		
Total Gate Charge	O _g		-	95	-			
Gate-source Charge	O _{gs}	$V_{DD} = 800 \text{ V}, \text{ I}_{D} = 20 \text{ A}, V_{CS} = -5/+20 \text{ V}$	-	29	-	nC		
Gate-drain Charge	Q _{gd}	V _{GS} = 0,120 V	-	39	-			
Turn-on Delay Time	t _{d(on)}		-	10	-			
Rise Time	t,	$V_{DD} = 800 \text{ V}, V_{GS} = -5/+20 \text{ V},$ $I_{D} = 20 \text{ A}, \text{ R}_{Gext} = 2 \Omega,$ $\text{ R}_{L} = 40 \Omega,$ There is the initial of the set of th	-	10	-			
Turn-off Delay Time	t _{d(off)}		-	16	-	- ns		
Fall Time	t _f	Timing relative to V_{DS}	-	6	-			

Reverse Diode Characteristics

Characteristics	Symbol	Conditions	Value			- Unit	
Characteristics	Зушьог	Conditions	Min	Тур	Max	Onit	
Diada Farward Valtage		$I_{s} = 10 \text{ A}, V_{gs} = 0 \text{ V}$	-	3.8	-		
Diode Forward Voltage	V _{SD}	I _s = 10 A, V _{gs} = 0 V, T _j = 150 °C	-	3.4	-	V	
Continuous Diode Forward Current	I _s	N/ 0)// T 05 00	-	-	35		
Peak Diode Forward Current ¹	I _{SP}	V _{GS} = 0 V, T _c = 25 °C	-	-	85	A	
Reverse Recovery Time	t _{rr}	$V_{-} = 5V_{-} = 20$ Å	-	25	-	ns	
Reverse Recovery Charge	Q _{rr}	$V_{GS} = -5 V, I_{S} = 20 A,$ $V_{R} = 800 V,$ dI/dt = 5.3 A/ns	-	185	-	nC	
Peak Reverse Recovery Current	I _{rrm}	dl/dt = 5.3 A/ns	-	16	-	А	

Footnote 1: Pulse width limited by T_{J.max}

SiC MOSFET

LSIC1MO120E0080, 1200 V, 80 mOhm, TO-247-3L

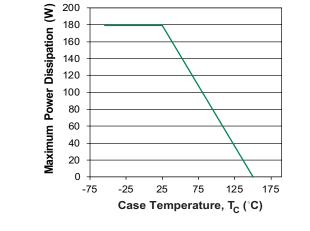


Figure 3: Output Characteristics ($T_1 = 25 \text{ °C}$)

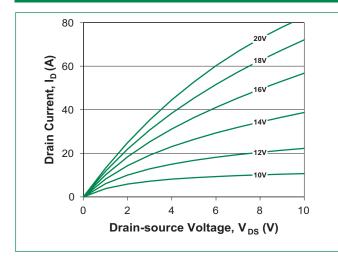
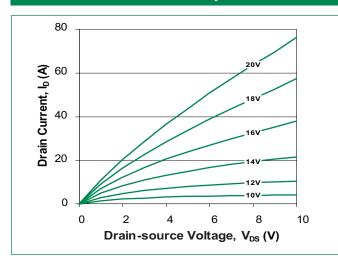
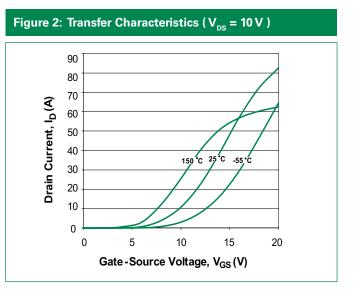




Figure 5: Output Characteristics (T₁ = -55 °C)

Figure 4: Output Characteristics (T_J = 150 °C)

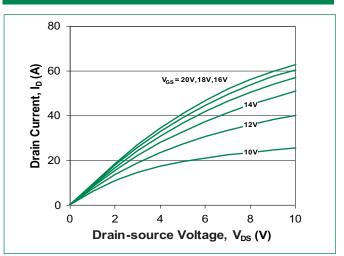
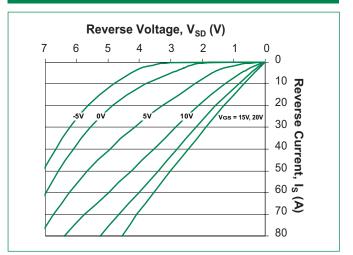
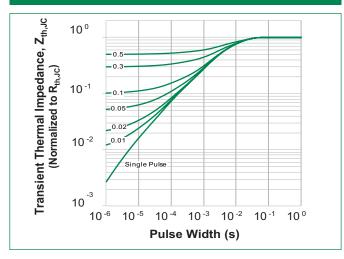



Figure 6: Reverse Conduction Characteristics ($T_1 = 25 \text{ °C}$)



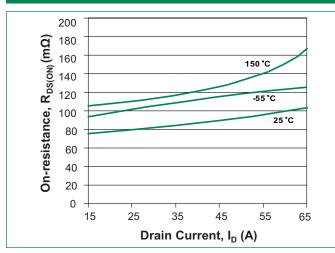
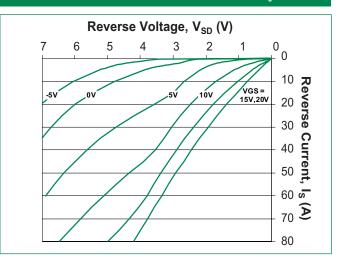
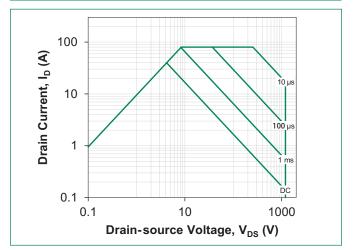

Reverse Voltage, V_{SD} (V) 7 6 5 4 3 2 1 0 0 10 **Reverse Current**, 20 V_{GS} = 10V,15V,20V -5V 0٧ 5V 30 40 50 60 ø ≥ 70 80

Figure 7: Reverse Conduction Characteristics (T_J = 150 °C)


Figure 9: Transient Thermal Impedance



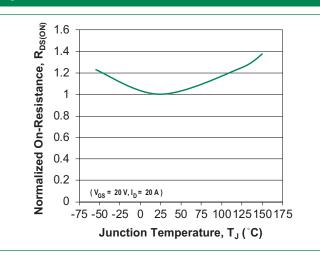
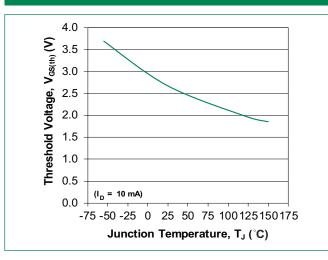
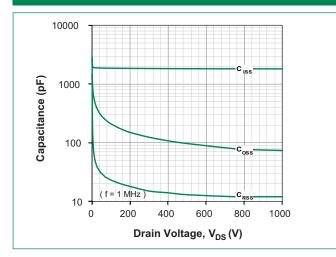

Figure 8: Reverse Conduction Characteristics (T₁ = -55 °C)

Figure 10: Safe Operating Area ($T_c = 25 \text{ °C}$)

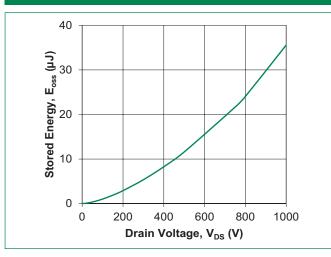
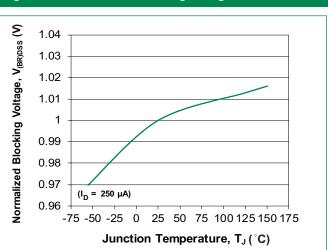
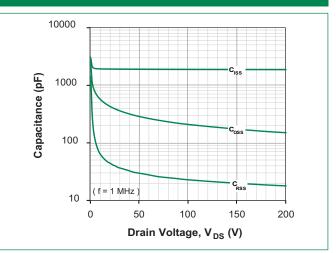
Figure 12: Normalized On-resistance




SIC MOSFET

LSIC1MO120E0080, 1200 V, 80 mOhm, TO-247-3L

Figure 15: Junction Capacitances

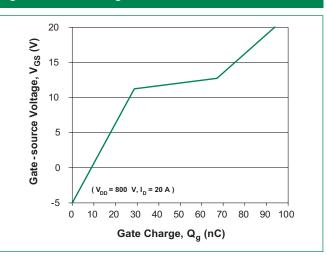

Figure 14: Drain-source Blocking Voltage

Figure 16: Junction Capacitances

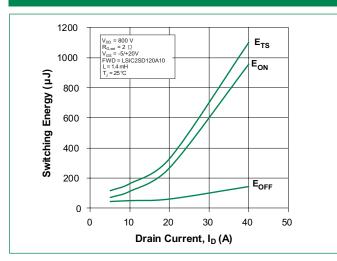
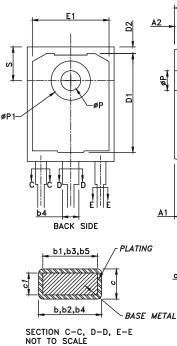
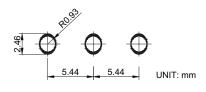
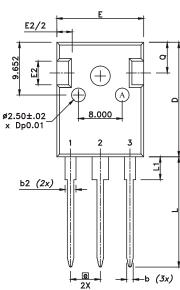


Figure 18: Gate Charge



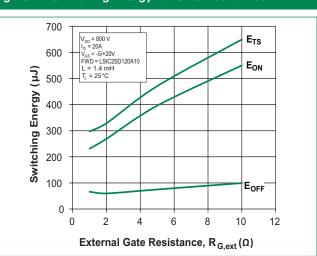



Package Dimensions TO-247-3L

Recommended Hole Pattern Layout

C

Notes:

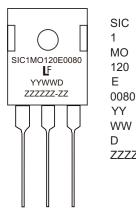

1. Dimensions are in millimeters 2. Dimension D, E do not include mold flas Mold flash shall not exceed 0.127 mm pe side measured at outer most extreme of plastic body.

3.øP to have a maximum draft angle of 38 mm to the top of the part with a maximur hole diameter of 3.912 mm.

	Symbol		Millimeters				
+	Cyntoor	Min	Nom	Max			
	А	4.902	5.029	5.156			
	A1	2.253	2.380	2.507			
	A2	1.854	1.981	2.108			
	D	20.828	20.955	21.082			
	E	15.773	15.900	16.027			
	E2	4.191	4.318	4.445			
T	E2/2	1.473	1.524	1.575			
	е		5.436				
	L	20.066	20.193	20.320			
	L1	3.937	4.191	4.445			
	øP	3.556	3.067	3.658			
	Q	5.486	5.613	5.740			
	S	6.045	6.172	6.299			
	b	0.991	-	1.397			
	b1	0.991	1.199	1.346			
	b2	1.651	-	2.387			
	b3	1.651	1.999	2.336			
	b4	2.591	-	3.429			
	b5	2.591	3.000	3.378			
	С	0.381	0.635	0.889			
ish.	c1	0.381	0.610	0.838			
31	D1	17.399	17.526	17.653			
	D2	1.067	1.194	1.321			
	E1	13.894	14.021	14.148			
	øP1	7.061	7.188	7.315			
er . 3.1 . m .	D1 D2 E1	17.399 1.067 13.894	17.526 1.194 14.021	17.653 1.321 14.148			

© 2017 Littelfuse, Inc. Specifications are subject to change without notice. Revised: 10/31/17

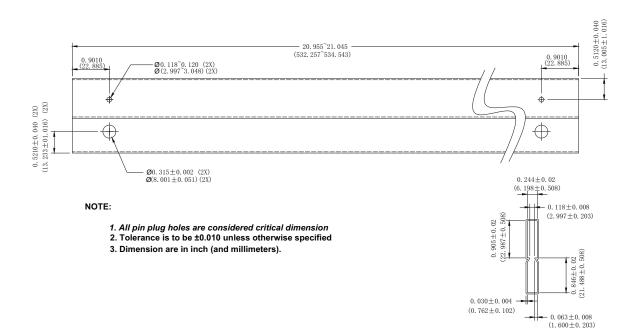
Figure 20: Switching Energy vs. Gate Resistance



SIC MOSFET

LSIC1MO120E0080, 1200 V, 80 mOhm, TO-247-3L

Part Numbering and Marking System



= SiC = Gen1

- = MOSFET
- = Voltage Rating (1200 V)
- = TO-247-3L
- = R_{DS(ON)} (80 mOhm)
- = Year
- = Week
- = Special Code
- ZZZZZZ-ZZ = Lot Number

Packing Options Part Number Marking Packing Mode M.O.Q LSIC1M0120E0080 SIC1M0120E0080 Tube 450

Packing Specification TO-247-3L

Disclaimer Notice - Littelfuse products are not designed for, and shall not be used for, any purpose (including, without limitation, automotive, military, aerospace, medical, life-sustaining or nuclear facility applications, devices intended for surgical implant into the body, or any other application in which the failure or lack of desired operation of the product may result in personal injury, death, or property damage) other than those expressly set forth in applicable Littelfuse product documentation. Warranties granted by Littelfuse shall be deemed void for products used for any purpose not expressly set forth in applicable Littelfuse documentation. Littelfuse shall not be liable for any claims or damages arising out of products used in applications not expressly intended by Littelfuse as set forth in applicable Littelfuse products is subject to Littelfuse Terms and Conditions of Sale, unless otherwise agreed by Littelfuse. Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product sector for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at <u>www.littelfuse.com/disclaimer-electronics</u>.