

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

AP3433

General Description

The AP3433 is a current mode, PWM synchronous buck (step-down) DC-DC converter, capable of driving a 3A load with high efficiency, excellent line and load regulation.

The device integrates two N-channel power MOSFETs with low on-resistance. Current mode control provides fast transient response and cycle-by-cycle current limit.

The switching frequency of AP3433 can be programmable from 300kHz to 2MHz, which allows small-sized components, such as capacitors and inductors. A standard series of inductors from several different manufacturers are available. This feature greatly simplifies the design of switch-mode power supplies.

Under voltage lockout is internally set at 2.6V, but can be increased by programming the threshold with a resistor network on the enable pin. The output voltage startup ramp is controlled by the soft-start pin. An open drain power good signal indicates the output is within 93% to 107% of its nominal voltage.

The AP3433 is available in QFN-3×3-16 package.

Features

- Input Voltage Range: 2.95V to 5.5V
- 0.827V Reference Voltage with ±3% Precision
- Two 45mΩ(typical) MOSFETs for High Efficiency at 3A Load
- High Efficiency: up to 94%
- Output Current: 3A
- Programmable Frequency:300kHz to 2MHz
- Current Mode Control
- Synchronizes to External Clock
- Adjustable Soft-start
- Soft Start-up into Pre-biased Output
- UV and OV Power Good Output
- Built-in Over Current Protection
- Built-in Thermal Shutdown Function
- Programmable UVLO Function
- Built-in Over Voltage Protection
- Thermally Enhanced 3mm×3mm 16-pin QFN

Applications

- Low-voltage, High-density Power Systems
- Point of Load Regulation for Consumer Applications such as Set Top Boxes, LCD Displays, CPE Equipment

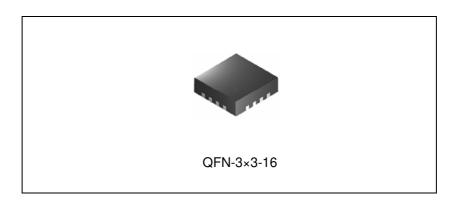


Figure 1. Package Type of AP3433

AP3433

Pin Configuration

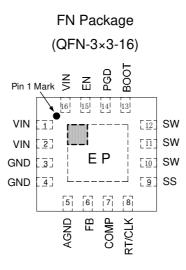


Figure 2. Pin Configuration of AP3433 (Top View)

Pin Description

Pin Number	Pin Name	Function
1,2,16	VIN	Supply input pin. A capacitor should be connected between the VIN and GND pin to keep the DC input voltage constant
3,4	GND	Power ground. This pin should be electrically connected to the power pad under the IC
5	AGND	Analog ground. This pin should be electrically connected to GND close to the device
6	FB	Feedback pin. Inverting node of the transconductance error amplifier
7	COMP	Compensation pin. This pin is the output of the transconductance error amplifier and the input to the current comparator. Connect external compensation elements to this pin to stabilize the control loop
8	RT/CLK	Resistor timing or external clock input pin
9	SS	Soft-start pin. An external capacitor connected to this pin sets the output voltage rise time. This pin can also be used for tracking
10,11,12	SW	Internal power switch output pin. This pin is connected to the inductor and bootstrap capacitor
13	ВООТ	Bootstrap pin. A bootstrap capacitor is connected between the BOOT pin and SW pin. The voltage across the bootstrap capacitor drives the internal high-side power MOSFET
14	PGD	Power good indicator output. Asserts low if output voltage is low due to thermal shutdown, over-current, over/under-voltage or EN shut down
15	EN	Enable pin, internal pull-up current source. Pull below 1.2V to disable. Float to enable. Can be used to set the on/off threshold (adjust UVLO) with two additional resistors

AP3433

Functional Block Diagram

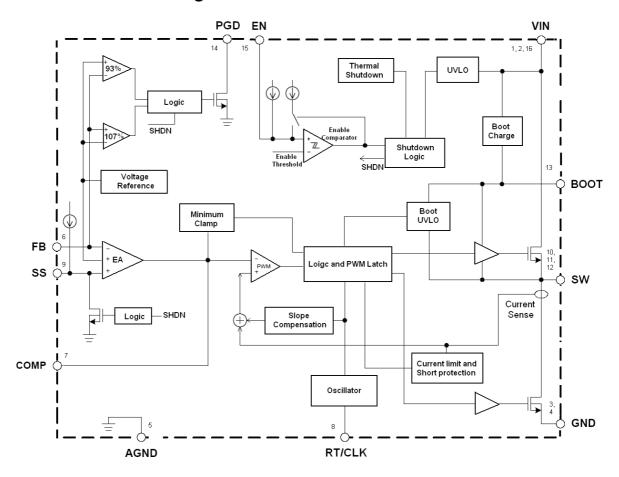
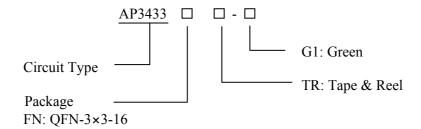



Figure 3. Functional Block Diagram of AP3433

Ordering Information

Package	Temperature Range	Part Number	Marking ID	Packing Type
QFN-3×3-16	-40 to 85°C	AP3433FNTR-G1	B1D	Tape & Reel

BCD Semiconductor's Pb-free products, as designated with "G1" suffix in the part number, are RoHS compliant and green.

AP3433

Absolute Maximum Ratings (Note 1)

Parameter	Symbol	Value	Unit
VIN Pin Voltage	V _{IN}	-0.3 to 6.5	V
EN Pin Voltage	V _{EN}	-0.3 to 6.5	V
SW Pin Voltage	V_{SW}	-0.3 to V _{IN} +0.3	V
FB Pin Voltage	V_{FB}	-0.3 to 6.5	V
COMP Pin Voltage	V _{COMP}	-0.3 to 6.5	V
PGD Pin Voltage	V_{PGD}	-0.3 to 6.5	V
RT/CLK Pin Voltage	V _{RT/CLK}	-0.3 to 6.5	V
SS Pin Voltage	V_{SS}	-0.3 to 6.5	V
Thermal Resistance (Junction to Ambient)	θ_{JA}	70	°C/W
Thermal Resistance (Junction to Case)	θ _{JC (BOTTOM)}	5	°C/W
Operating Junction Temperature	T_{J}	-40 to 125	°C
Storage Temperature	T_{STG}	-65 to 150	°C
Lead Temperature (Soldering, 10sec)	T_{LEAD}	260	°C
ESD (Machine Model)		200	V
ESD (Human Body Model)		2000	V

Note 1: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability.

Recommended Operating Conditions

Parameter	Symbol	Min	Max	Unit
Input Voltage	V_{IN}	2.95	5.5	V
Maximum Output Current	I _{OUT(MAX)}	3		A
Operating Ambient Temperature	T_{A}	-40	85	°C

AP3433

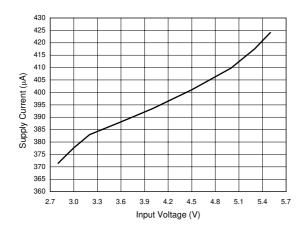
Electrical Characteristics

 V_{IN} =2.95 to 5.5V, T_{A} =25°C, unless otherwise specified. Specifications with **boldface type** apply over full operating temperature range from -40 to 85°C.

Parameters	Symbol	Conditions	Min	Тур	Max	Unit
SUPPLY VOLTAGE (VIN PIN)						
Input Voltage	V_{IN}		2.95		5.5	V
Quiescent Current	I_Q	V_{FB} =0.9V, V_{IN} =5V, T_A =25°C, R_T =400k Ω		360	575	μΑ
Shutdown Supply Current	I_{SHDN}	V_{EN} =0V, T_A =25°C 2.95V \leq V $_{IN}$ \leq 5.5V		2	5	μΑ
ENABLE AND UVLO	(EN PIN)					
Enable Threshold	V_{EN_H}	Rising	1.16	1.25	1.37	V
Enable Threshold	V_{EN_L}	Falling		1.18		V
Internal Under Voltage Lockout Threshold	$V_{ m UVLO}$			2.6	2.8	V
Internal Under Voltage Hysteresis	V_{HYS}			150		mV
VOLTAGE REFEREN	CE (FB PI	N)	•			
Voltage Reference	V_{REF}	2.95V\(\leq V_{IN}\leq 5.5V\)	0.802	0.827	0.852	V
MOSFET						
High Side Switch	R _{ON_H}	V _{BOOT-SW} =5V		45	81	mΩ
On-resistance		V _{BOOT-SW} =2.95V		64	110	mΩ
Low Side Switch	R _{ON_L}	V _{IN} =5V		42	81	mΩ
On-resistance		V _{IN} =2.95V		59	110	mΩ
CURRENT LIMIT						
Current Limit Threshold	I_{LIMIT}		4.2	6.6		A
THERMAL SHUTDOWN						
Thermal Shutdown	T_{TSD}			140		°C
Hysteresis				20		°C

AP3433

Electrical Characteristics (Continued)


 V_{IN} =2.95 to 5.5V, T_{A} =25°C, unless otherwise specified. Specifications with **boldface type** apply over full operating temperature range from -40 to 85°C.

Parameters	Symbol	Conditions	Min	Тур	Max	Unit
TIMING RESISTOR AND EXTERNAL CLOCK (RT/CLK PIN)						
Switching Frequency Range (RT Mode)			300		2000	kHz
Switching Frequency Range (CLK Mode)			300		2000	kHz
Switching Frequency	f_S	R_T =400k Ω	400	500	600	kHz
Minimum CLK Pulse Width			75			ns
RT/CLK Voltage		R_T =400k Ω		0.5		V
RT/CLK High Threshold				1.6	2.2	V
RT/CLK Low Threshold			0.4	0.6		V
BOOT (BOOT PIN)						
BOOT Charge Resistor	R _{BOOT}	V _{IN} =5V		16		Ω
BOOT-SW UVLO		V _{IN} =2.95V		2.2		V
SOFT START (SS PIN))					
Charge Current	I_{SS}	V _{SS} =0.4		2.2		μА
SS to Reference Crossover	V_{SS}	98% Nominal		1.1		V
POWER GOOD (PGD	PIN)					
		V _{FB} Falling (Fault)		91		
		V _{FB} Rising (Good)		93		
Feedback Threshold	V_{FB_TH}	V _{FB} Rising (Fault)		107		$ \%V_{REF}$
	_	V _{FB} Falling (Good)		105		

AP3433

Typical Performance Characteristics

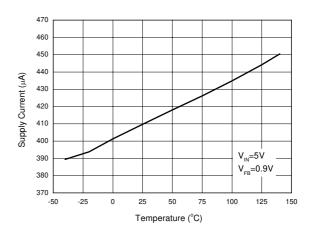
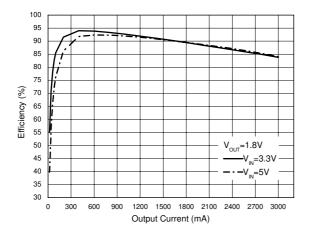
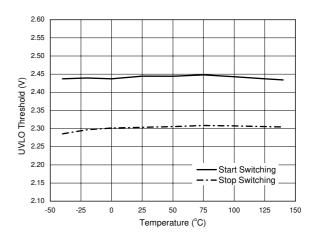



Figure 4. Supply Current vs. Input Voltage

Figure 5. Supply Current vs. Temperature



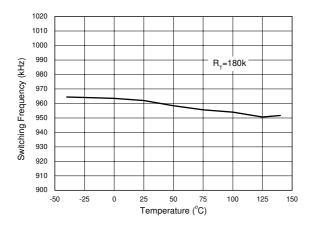

Figure 6. Efficiency vs. Output Current

Figure 7.UVLO Threshold vs. Temperature

AP3433

Typical Performance Characteristics (Continued)

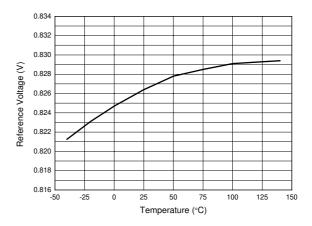
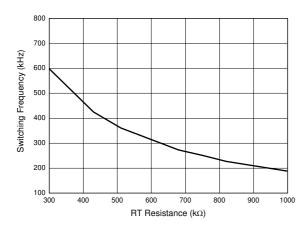



Figure 8. Switching Frequency vs. Temperature

Figure 9. Reference Voltage vs. Temperature

2000 1900 Switching Frequency (kHz) 1800 1700 1600 1500 1400 1300 1100 1000 900 800 100 120 140 RT Resistance (kΩ)

Figure 10. Switching Frequency vs. RT Resistance Low Frequency Range

Figure 11. Switching Frequency vs. RT Resistance
High Frequency Range

AP3433

Typical Performance Characteristics (Continued)

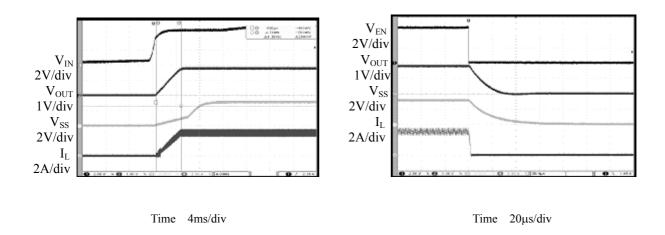


Figure 12. Start up from V_{IN} (V_{IN} =5V, V_{OUT} =1.8V, I_{OUT} =3A)

Figure 13. Disable IC (V_{IN}=5V, V_{OUT}=1.8V, I_{OUT}=3A)

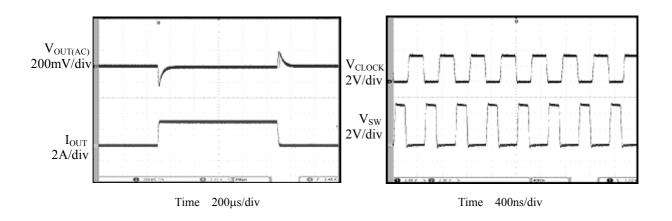


Figure 14. Load Transient Response $(V_{IN}=5V, V_{OUT}=1.8V, I_{OUT}=0 \text{ to } 3A)$

Figure 15. Synchronizing to External Clock (f_{CLOCK}=2MHz)

AP3433

Typical Performance Characteristics (Continued)

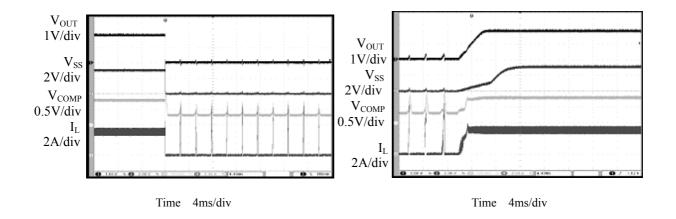


Figure 16. Short Circuit Protection $(V_{IN}=5V, V_{OUT}=1.8V, I_{OUT}=3A)$

Figure 17. Short Circuit Recovery (V_{IN}=5V, V_{OUT}=1.8V, I_{OUT}=3A)

AP3433

Typical Application

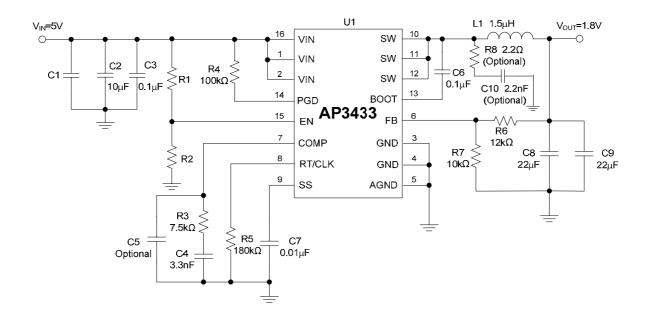
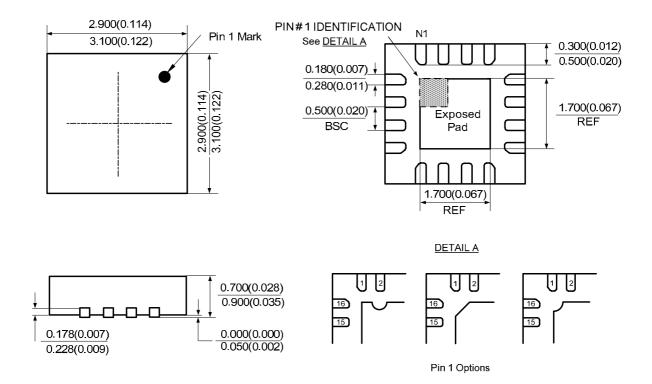


Figure 18. Typical Application of AP3433



AP3433

Mechanical Dimensions

QFN-3×3-16

Unit:mm(inch)

BCD Semiconductor Manufacturing Limited

http://www.bcdsemi.com

IMPORTANT NOTICE

BCD Semiconductor Manufacturing Limited reserves the right to make changes without further notice to any products or specifications herein. BCD Semiconductor Manufacturing Limited does not assume any responsibility for use of any its products for any particular purpose, nor does BCD Semiconductor Manufacturing Limited assume any liability arising out of the application or use of any its products or circuits. BCD Semiconductor Manufacturing Limited does not convey any license under its patent rights or other rights nor the rights of others.

MAIN SITE

- Headquarters

BCD Semiconductor Manufacturing Limited

No. 1600, Zi Xing Road, Shanghai ZiZhu Science-based Industrial Park, 200241, China Tel: +86-21-24162266, Fax: +86-21-24162277

REGIONAL SALES OFFICE

Shenzhen Office

Shanghai SIM-BCD Semiconductor Manufacturing Co., Ltd., Shenzhen Office Unit A Room 1203, Skyworth Bldg., Gaoxin Ave.1.S., Nanshan District, Shenzhen,

China Tel: +86-755-8826 7951 Fax: +86-755-8826 7865 - Wafer Fab

Shanghai SIM-BCD Semiconductor Manufacturing Co., Ltd. 800 Yi Shan Road, Shanghai 200233, China Tel: +86-21-6485 1491, Fax: +86-21-5450 0008

Taiwan Office

BCD Semiconductor (Taiwan) Company Limited 4F, 298-1, Rui Guang Road, Nei-Hu District, Taipei,

Taiwan Tel: +886-2-2656 2808 Fax: +886-2-2656 2806

USA Office BCD Semiconductor Corp. 30920 Huntwood Ave. Hayward, CA 94544, USA Tel: +1-510-324-2988 Fax: +1-510-324-2788