: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

LT1248
Power Factor Controller

feATURES

- High Power Factor Over Wide Load Range with Line Current Averaging
- International Operation Without Switches
- Instantaneous Overvoltage Protection
- Minimal Line Current Dead Zone
- Typical 250 4 A Start-Up Supply Current
- Rejects Line Switching Noise
- Synchronization Capability
- Low Quiescent Current: 9mA
- Fast 1.5A Peak Current Gate Driver

APPLICATIONS

- Universal Power Factor Corrected Power Supplies
- Preregulators Up To 1500W

DESCRIPTIO

The $\mathrm{LT}^{\circledR} 1248$ provides active power factor correction for universal off-line power systems. By using fixed high frequency PWM current averaging, without the need for slope compensation, the LT1248 achieves far lower line current distortion with a smaller magnetic element than systems that use either peak-current detection or zero current switching approaches in both continuous and discontinuous modes of operation.
The LT1248 uses a multiplier containing a square gain function from the voltage amplifier to reduce the AC gain at light output load and thus maintains low line current distortion and high system stability. The LT1248 also provides filtering capability to reject line switching noise which can cause instability when fed into the multiplier. Line current dead zone is minimized with low bias voltage at the current input to the multiplier.

The LT1248 provides many protection features including peak current limiting and overvoltage protection, and can be operated at frequencies as high as 300 kHz .
$\overline{\boldsymbol{\Omega},}$ LTC and LT are registered trademarks of Linear Technology Corporation.

BLOCK DIAGRAM

AßSOLUTE MAXIMUM RATINGS
(Note 1)
Supply Voltage 27V
GTDR Current Continuous 0.5A
GTDR Output Energy(Per Cycle) $5 \mu \mathrm{~J}$
$l_{\text {AC }}$, R $_{\text {SET }}$, PK LIm Input Current. 20 mA
V SENSE, EN/SYNC, OVP Input Voltage $V_{\text {MAX }}$
ISENSE, MOUT Input Current $\pm 5 \mathrm{~mA}$
Operating Junction Temperature RangeLT1248C$0^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$
LT1248I $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Thermal Resistance (Junction-to-Ambient)
N Package $100^{\circ} \mathrm{C} / \mathrm{W}$
S Package $120^{\circ} \mathrm{C} / \mathrm{W}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec) $300^{\circ} \mathrm{C}$ $300^{\circ} \mathrm{C}$

PACKAGE/ORDER INFORMATION

Consult factory for Military grade parts.

ELECTRICAL CHARACTERISTICS The • denotes specifications which apply over the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. Maximum operating voltage $\left(\mathrm{V}_{\mathrm{MAX}}\right)=25 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=18 \mathrm{~V}, \mathrm{R}_{\mathrm{SET}}=15 \mathrm{k}$ to GND , $\mathrm{C}_{\text {SET }}=1 \mathrm{nF}$ to $\mathrm{GND}, \mathrm{I}_{\mathrm{AC}}=100 \mu \mathrm{~A}, \mathrm{I}_{\text {SENSE }}=0 \mathrm{~V}, \mathrm{CA}_{\text {OUT }}=3.5 \mathrm{~V}, \mathrm{VA}_{\text {OUT }}=5 \mathrm{~V}, 0 \mathrm{VP}=7.5 \mathrm{~V}$, no load on any outputs, unless otherwise noted.

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Overall						
Supply Current (VCc in Undervoltage Lockout)	$\mathrm{V}_{\text {CC }}=$ Lockout Voltage - 0.2 V	\bullet		0.25	0.45	mA
Supply Current (Inactive)	EN/SYNC $=0 \mathrm{~V}, \mathrm{~V}_{\text {CC }} \leq \mathrm{V}_{\text {Max }}$	\bullet		0.5	1.5	mA
Supply Current, On	$11.5 \mathrm{~V} \leq \mathrm{V}_{\text {CC }} \leq \mathrm{V}_{\text {MAX }}$, CA $_{\text {OUT }}=1 \mathrm{~V}$	\bullet		8.5	12.0	mA
$\mathrm{V}_{\text {cC }}$ Turn-On Threshold (Undervoltage Lockout)		\bullet	15.5	16.5	17.5	V
$V_{\text {cc }}$ Turn-Off Threshold		\bullet	9.5	10.5	11.5	V
EN/SYNC Threshold, Rising		\bullet	2.2	2.6	2.85	V
EN/SYNC Threshold Hysteresis				0.40		V
EN/SYNC Input Current	$\begin{aligned} & E N / S Y N C=0 V \\ & 3 V \leq E N / S Y N C \leq 7 V \end{aligned}$	\bullet	$\begin{gathered} -5 \\ -50 \end{gathered}$	$\begin{aligned} & \hline-1 \\ & -25 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 5 \\ 50 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$

Voltage Amplifier

Voltage Amp Offset Voltage	$V A_{\text {OUT }}=3.5 \mathrm{~V}$	\bullet	-8		8	mV
Input Bias Current	$\mathrm{V}_{\text {SENSE }}=0 \mathrm{~V}$ to 7 V	\bullet		-25	-250	nA
Voltage Gain			70	100		dB
Voltage Amp Unity-Gain Bandwidth				3		MHz
Voltage Amp Output High (Internally Clamped)		\bullet	11.3	13.3		V
Voltage Amp Output Low		\bullet		1.1	2	V
Voltage Amp Short-Circuit Current	VA ${ }_{\text {Out }}=0 \mathrm{~V}$	\bullet	5	14	30	mA
SS Current	SS $=2.5 \mathrm{~V}$	-	5	12	30	$\mu \mathrm{A}$

Current Amplifier

Current Amp Offset Voltage		\bullet	± 1	± 4	mV
ISENSE Bias Current		\bullet	-25	-250	nA
Current Amp Voltage Gain			80	110	dB
Current Amp Unity-Gain Bandwidth			3		MHz
Current Amp Output High		\bullet	7.2	8.5	V
Current Amp Output Low		\bullet	1.1	2	V

ELECTRICAL CHARACTERISTICS The • denotes specifications which apply over the full operating temperature range, otherwise specifications are at $\mathrm{T}_{A}=25^{\circ} \mathrm{C}$. Maximum operating voltage $\left(\mathrm{V}_{\text {MAX }}\right)=25 \mathrm{~V}, \mathrm{~V}_{C C}=18 \mathrm{~V}$, $\mathrm{R}_{\text {SET }}=15 \mathrm{k}$ to GND ,
$\mathrm{C}_{\text {SET }}=1 \mathrm{nF}$ to $\mathrm{GND}, \mathrm{I}_{\mathrm{AC}}=100 \mu \mathrm{~A}$, $\mathrm{I}_{\text {SENSE }}=0 \mathrm{~V}, \mathrm{CA}_{\text {OUT }}=3.5 \mathrm{~V}, \mathrm{VA}_{\text {OUT }}=5 \mathrm{~V}, \mathrm{OVP}=7.5 \mathrm{~V}$, no load on any outputs, unless otherwise noted.

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Current Amplifier						
Current Amp Short-Circuit Current	CAout $=0 \mathrm{~V}$	\bullet	5	14	30	mA
Input Range, ISENSE, M M ${ }_{\text {OUT }}$ (Linear Operation)		\bullet	-0.3		1	V

Reference

Reference Output Voltage	$I_{\text {REF }}=0 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		7.39	7.50	7.60	V
$V_{\text {REF }}$ Load Regulation	$-5 \mathrm{~mA}<I_{\text {REF }}<\mathrm{mA}$			5		mV
$V_{\text {REF }}$ Line Regulation	$11.5 \mathrm{~V}<V_{\text {CC }}<V_{\text {MAX }}$	\bullet	-20	5	20	mV
$V_{\text {REF }}$ Short-Circuit Current	$V_{\text {REF }}=0 \mathrm{~V}$	\bullet	12	28	50	mA
$V_{\text {REF }}$ Worst Case	Load, Line, Temperature	\bullet	7.32	7.5	7.68	V

Current Limit

PK LIM Offset Voltage		\bullet	-15	15	mV
PK LIM Input Current	PK LIM $=-0.1 \mathrm{~V}$	\bullet	-50	-100	$\mu \mathrm{A}$
PK LIm to GTDR Propagation Delay	PK LIM Falling from 50mV to -50mV		400		ns

Multiplier

Multiplier Output Current	$\mathrm{I}_{\text {AC }}=100 \mu \mathrm{~A}, \mathrm{R}_{\text {SET }}=15 \mathrm{k}$		35			$\mu \mathrm{A}$
Multiplier Output Current Offset	$\mathrm{R}_{\mathrm{AC}}=1 \mathrm{M}$ from I_{AC} to GND	\bullet		-0.05	-0.5	$\mu \mathrm{A}$
Multiplier Maximum Output Current	$\mathrm{I}_{\text {AC }}=450 \mu \mathrm{~A}, \mathrm{R}_{\text {SET }}=15 \mathrm{k}, \mathrm{VA}$ OUT $=7 \mathrm{~V}, \mathrm{M}_{\text {OUT }}=0 \mathrm{~V}$	\bullet	-286	-260	-235	$\mu \mathrm{A}$
Multiplier Gain Constant (Note 2)				0.035		V^{-2}
${ }_{\text {AC }}$ Input Resistance	IAC from $50 \mu \mathrm{~A}$ to 1 mA		15	32	50	k Ω
Oscillator						
Oscillator Frequency	$\begin{aligned} & \hline R_{\text {SET }}=15 k, C_{\text {SET }}=1000 \mathrm{pF} \\ & R_{\text {SET }}=15 k, C_{\text {SET }}=1500 \mathrm{pF} \end{aligned}$	\bullet	$\begin{aligned} & \hline 85 \\ & 58 \end{aligned}$	$\begin{aligned} & \hline 100 \\ & 68 \end{aligned}$	$\begin{aligned} & 115 \\ & 78 \end{aligned}$	kHz kHz
$\mathrm{C}_{\text {SET }}$ Ramp Peak-to-Peak Amplitude			4.35	4.7	5.0	V
CSET Ramp Valley Voltage			1.25	1.4	1.55	V
Synchronization Pulse Threshold on EN/SYNC Pin	$\begin{aligned} & \text { Pulse Low }=3.5 \mathrm{~V} \text {, High }=7 \mathrm{~V} \text {, Width }>200 \mathrm{~ns} \\ & \text { RSET }=15 \mathrm{k}, \text { CSET }=1000 \mathrm{pF} \end{aligned}$		4.5	5.6	6.5	V
Synchronization Frequency Range		\bullet	1.2		1.6	$\mathrm{f}_{\text {NOM }}$

Overvoltage Comparator

Comparator Trip Voltage Ratio (VTRIP $\left./ V_{\text {REF }}\right)$		\bullet	1.04	1.05	1.06	
Hysteresis			0.35		V	
OVP Bias Current	OVP $=7.5 \mathrm{~V}$	\bullet	-50	-250	nA	
OVP Propagation Delay			100	ns		

Gate Driver

Max GTDR Output Voltage	OmA Load, $18 \mathrm{~V}<\mathrm{V}_{\text {CC }}$	\bullet	12	15	17.5
GTDR Output High	-200 mA Load, $11.5 \mathrm{~V} \leq \mathrm{V}_{\text {CC }} \leq 15 \mathrm{~V}$	\bullet	$\mathrm{~V}_{\text {CC }}-3.0$	V	
GTDR Output Low (Device Unpowered)	$\mathrm{V}_{\text {CC }}=0 \mathrm{~V}, 50 \mathrm{~mA}$ Load (Sinking)	\bullet	0.9	1.5	V
GTDR Output Low (Device Active)	200 mA Load (Sinking)	\bullet	0.5	1	V
	10 mA Load	\bullet	0.2	0.4	V
Peak GTDR Current	10 nF from GTDR to GND		2		A
GTDR Rise and Fall Time	1 nF from GTDR to GND		25	ns	
GTDR Max Duty Cycle			90	96	$\%$

Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired
Note 2: Multiplier Gain Constant: $K=\frac{I_{M}}{I_{\text {AC }}\left(V A_{O U T}-2\right)^{2}}$

TYPICAL PERFORMANCE CHARACTERISTICS

Current Amplifier Open-Loop
Gain and Phase

Supply Current vs Supply Voltage

GTDR Source Current

TYPICAL PGRFORMANCE CHARACTERISTICS

Start-Up Supply Current vs Supply Voltage

Frequency vs $\mathrm{R}_{\text {SEt }}$ and $\mathrm{C}_{\text {SET }}$

GTDR Maximum Duty Cycle vs
$\mathrm{R}_{\text {SEt }}$ and $\mathrm{C}_{\text {Set }}$

Shutdown Mode Supply Current and Reference Voltage

Synchronization and Shutdown Thresholds at EN/SYNC Pin

SS Pin Characteristics

$\mathrm{M}_{\text {OUT }}$ Pin Characteristics

TYPICAL PGRFORMANCE CHARACTERISTICS

PIn functions

Pin 1 (GND).
Pin 2 ($\mathrm{PK}_{\text {LIIM }}$): The threshold of the peak current limit comparator is GND. To set current limit, a resistor divider can be connected from $V_{\text {REF }}$ to current sense resistor.
Pin 3 (CA $A_{\text {Out }}$): This is the output of the current amplifier that senses and forces the line current to follow the reference signal that comes from the multiplier by commanding the pulse width modulator. When CAout is low, the modulator has zero duty cycle.

Pin 4 (Isense): This is the inverting input of the current amplifier. This pin is clamped at -0.6 V by an ESD protection diode.

Pin 5 ($\mathrm{M}_{\text {OUT }}$): This is the multiplier high impedance current output and the noninverting input of the current amplifier. This pin is clamped at -0.6 V and 2 V .

Pin 6 (Iac): This is the AC line voltage sensing input to the multiplier. It is a current input that is biased at 2 V to minimize the crossover dead zone caused by low line voltage. At the pin, a 32 k resistor is in series with the current input, so that a lowpass RC can be used to filter out the switching noise from the high impedance lines.

Pin 7 (VA out): This is the output of the voltage error amplifier. The output is clamped at 13.5 V . When the output goes below 2.5 V , the multiplier output current is zero.

Pin 8 (OVP): This is the input to the overvoltage comparator. The threshold is 1.05 times the reference voltage. When the comparator trips, the multiplier is quickly inhibited and outputs no current. Figure 4 in the Applications Information section shows how to set overvoltage threshold with only one additional resistor.
Pin $9\left(V_{\text {REF }}\right)$: This is the 7.5 V reference. When either $\mathrm{V}_{\text {CC }}$ or EN/SYNC goes low, $\mathrm{V}_{\text {REF }}$ will stay at OV. V $\mathrm{V}_{\text {ReF }}$ biases most of the internal circuity and can source up to 5 mA externally.

Pin 10 (EN/SYNC): This pin has two functions. When it goes below 2.6 V , the chip goes into shutdown mode and draws little current. Pulses at this pin that go below the 5 V threshold will synchronize the chip. The synchronizing pulses should have an on-time of at least 200ns for the LT1248 resetting circuit to work.
Pin 11 ($V_{\text {SENSE }}$): This is the inverting input to the voltage amplifier.

PIn functions

Pin 12 ($\mathrm{R}_{\text {SET }}$): A resistor from $\mathrm{R}_{\text {SET }}$ to GND sets the oscillator charging current and the maximum multiplier output current which is used to limit the maximum line current.

$$
I_{\text {M(MAX) }}=3.75 \mathrm{~V} / \mathrm{R}_{\text {SET }}
$$

Pin 13 (SS): Soft-Start. When either V CC $^{\text {or EN/SYNC goes }}$ low, the SS pin will stay at OV . With a capacitor from the pin to GND, the 12μ A charging current slowly brings up the SS to 8 V ; below 7.5V SS is the reference input to the voltage amplifier. At supply dropout or EN/SYNC Iow, the soft start capacitor will be quickly discharged.
Pin 14 (C Set): The capacitor from this pin to GND, and $\mathrm{R}_{\text {SET }}$, determine oscillator frequency. The oscillator ramp is 5 V , and the frequency $=1.5 /\left(\mathrm{R}_{\text {SET }} \cdot \mathrm{C}_{\text {SET }}\right)$.

Pin 15 ($V_{\text {cc }}$): This is the supply for the chip. The LT1248 has a very fast gate driver required to fast charge high power MOSFET gate capacitance. High current spikes occur during charging. For good supply bypass, a $0.1 \mu \mathrm{~F}$ ceramic capacitor in parallel with a low ESR electrolytic capacitor, 56μ F or higher is required in close proximity to IC GND.
Pin 16 (GTDR): The MOSFET gate driver is a 1.5 A fast totem pole output. It is clamped at 15 V , but capacitive loads like MOSFET gates may cause overshoot. A gate series resistor of at least 5Ω will prevent the overshoot.

APPLICATIONS INFORMATION

Error Amplifier

The error amplifier has a 100 dB DC gain and 3MHz unitygain frequency. The output is internally clamped at 13.5 V . The noninverting input is tied to the $7.5 \mathrm{~V} \mathrm{~V}_{\text {Ref }}$ through a diode and can be pulled down from the SS (soft-start) pin.

Current Amplifier

The current amplifier has a 110dB DC gain, 3MHz unitygain frequency, and a $2 \mathrm{~V} / \mu \mathrm{s}$ slew rate. It is internally clamped at 8.5 V . Note that in the current averaging operation, high gain at twice the line frequency is necessary to minimize line current distortion. Because $\mathrm{CA}_{\text {OUt }}$ may need to swing 5 V over one line cycle at high line condition, 14 mV AC will be needed at the inputs of the current amplifier for a gain of 350 at 120 Hz . Especially at light load when the current loop reference signal is small, lower gain will distort the reference signal and line current. If signal gain at switching frequency is too high, the system behaves more like a current mode system and can cause subharmonic oscillation. Therefore, the current amplifier should be compensated to have a gain of less than 15 at the switching frequency, but more than 250 at twice the line frequency.

Multiplier

The multiplier is a current multiplier with high noise immunity in a high power switching environment. The current gain is: $I_{M}=\left(I_{A C} \bullet I_{E A}{ }^{2}\right) /(200 \mu A)^{2}$, with $I_{E A}=\left(V V_{O U T}\right.$ $-2 \mathrm{~V} / 25 \mathrm{k}$. With a square function, because of the lower gain at light power load, system stability is maintained and line current distortion caused by the line frequency AC

Figure 1. Multiplier Current I_{M} vs I_{AC} and $\mathrm{VA}_{\text {OUT }}$

APPLICATIONS INFORMATION

ripple fed back to the error amplifier is minimized. Note that switching ripple on the high impedance lines could get into the multiplier from the $I_{A C}$ pin and cause instability. The LT1248 provides an internal 25 k resistor in series with the low impedance multiplier current input so that only a capacitor from the $I_{A C}$ pin to GND is needed to filter out the noise. The maximum multiplier output current, which limits the system line current, is set by the $\mathrm{R}_{\mathrm{SET}}$ according to the formula: $I_{M(M A X)}=3.75 \mathrm{~V} / \mathrm{R}_{\text {SET }}$.

Oscillator Frequency and Maximum Line Current Settling

Oscillator frequency is set by $\mathrm{R}_{\text {SET }}$ and CSET. Ramp amplitude is 5 V and $\mathrm{C}_{\text {SET }}$ charging current is set by $\mathrm{V}_{\text {REF }} / \mathrm{R}_{\text {SET }}$. Typical discharging time for $\mathrm{C}_{\text {SET }}=1 \mathrm{nF}$ is 250 ns . R RET should always be determined first to set the maximum multiplier output current for system line current limit. For a 300W preregulator, with $\mathrm{R}_{\mathrm{SET}}=15 \mathrm{k}, \mathrm{I}_{\mathrm{M}(\mathrm{MAX})}=3.75 \mathrm{~V} / 15 \mathrm{k}$ $=250 \mu \mathrm{~A}$. With a 4 k resistor $\mathrm{R}_{\text {REF }}$ from $\mathrm{M}_{\text {OUT }}$ to the 0.2Ω line current sense resistor R_{S}, the line current limit is: (l_{M} - 4k)/Rs. As a general rule, R_{S} is chosen according to:

$$
\mathrm{R}_{\mathrm{S}}=\frac{\mathrm{I}_{\mathrm{M}(\mathrm{MAX})} \cdot \mathrm{R}_{\text {REF }} \bullet \mathrm{V}_{\text {LINE(MIN })}}{\mathrm{K}(1.414) \mathrm{P}_{\mathrm{OUT}(\mathrm{MAX})}}
$$

where $\mathrm{P}_{\text {OUT(MAX) }}$ is the maximum power output and K is usually between 1.1 and 1.3 depending on efficiency and resistor tolerance. With R ${ }_{\text {SET }}$ selected, CSET can then be determined by: $\mathrm{C}_{\text {SET }}=1.5 /\left(\right.$ Frequency $\bullet \mathrm{R}_{\text {SET }}$). For 100 kHz , $C_{\text {SET }}=1.5 /(100 \mathrm{kHz} \cdot 15 \mathrm{k})=1 \mathrm{nF}$. For optional double protection, the LT1248 provides a current limit comparator. When the comparator trips at OV, the GTDR pin quickly goes low to shut off the MOS switch. A resistor divider from $V_{\text {REF }}$ to R_{S} (Figure 2) senses the voltage across the line current sense resistor and the current limit is set by: $l_{\text {LINE }}=[(7.5 \mathrm{~V} / \mathrm{R1})+50 \mu \mathrm{~A}]\left(\mathrm{R} 2 / \mathrm{R}_{\mathrm{S}}\right)$, where $50 \mu \mathrm{~A}$ is $\mathrm{I}_{\text {PKLIM }}$.
 LIMIT DELAY IS ABOUT $2 \mu \mathrm{~s}$.

Figure 2

With $\mathrm{I}_{\text {LINE }}$ and R_{S} chosen, let $\mathrm{R} 1=10 \mathrm{k}$, then $\mathrm{R} 2=$ $\left(\mathrm{l}_{\mathrm{LINE}} \bullet \mathrm{R}_{\mathrm{S}}\right) / 0.8 \mathrm{~mA}$.
Always use $R_{S E T}$ to set the primary line current limit. The PK LIM comparator is only for secondary protection. The secondary limit should be higher than the primary limit; 6.5 A is good (5A for primary limit) for a 300 W regulator. When line current reaches the primary limit, $\mathrm{V}_{\text {OUT }}$ drops to keep the line current constant, and system stability is still maintained by the current loop which is controlled by the current amplifier. When line current reaches the secondary limit, the comparator controls the system and loop hysteresis may occur and can cause audible noise.

Synchronization

The LT1248 can be synchronized to a frequency that is up to 1.6 times the natural frequency. With a 200 ns one-shot timer on-chip, the LT1248 provides flexibility on the synchronizing pulse width. Because the EN/SYNC pin also serves the chip shutdown function, the pulses at the pin should not go below 3 V and must go below 5 V with widths greater than 200 ns . The Figure 3 circuit will synchronize the LT1248.

Figure 3

Overvoltage Protection

Because of the slow loop response necessary for power factor correction, output overshoot can occur with sudden load removal or reduction. To protect the power components and output load, the LT1248 provides an overvoltage comparator which senses the output voltage and quickly shuts off the current switch. In Figure 4, because there is no DC current going through R3, R1 and R2 set the regulator output DC level: $V_{\text {OUT }}=V_{\text {REF }}[(R 1+R 2) / R 2]$, with $R 1=1 \mathrm{M}, R 2=20 \mathrm{k}, \mathrm{V}_{\text {OUT }}$ is 382 V .

APPLICATIONS INFORMATION

Note that $\mathrm{V}_{\text {SENSE }}$ is the summing node and it stays at 7.5 V . When overshoot occurs on $\mathrm{V}_{\text {OUT }}$, the overcurrent from R1 will go through R2 as well as R3. Amplifier feedback will keep $V_{\text {SENSE }}$ locked at 7.5 V . The equivalent AC resistance, seen by the comparator input pin OVP, is R2 in parallel with R3, which is 10k. Therefore, with the comparator trip level of $1.05 \mathrm{~V}_{\text {REF }}$ and R 3 of 20 k , the comparator trips when $V_{\text {OUT }}$ overshoot exceeds 10\%. Overvoltage trip level:

$$
\% \mathrm{~V}_{\text {OUT }}=5 \%\left(\frac{\mathrm{R} 2+\mathrm{R} 3}{\mathrm{R} 3}\right)
$$

$\mathrm{M}_{\text {OUT }}$ is a high impedance current output. In the current loop, offset line current is determined by multiplier offset current and input offset voltage of the current amplifier. A -4 mV current amplifier $\mathrm{V}_{0 \text { S }}$ translates into 20 mA line current and 5 W input power for 250 V line if 0.2Ω sense resistor is used. Under no load or when the load power is less than this offset input power, $V_{\text {Out }}$ would slowly charge up to an overvoltage state because the overvoltage comparator can only reduce multiplier output current to zero. This does not guarantee zero output current if the current amplifier has offset. To regulate $\mathrm{V}_{\text {OUT }}$ under this condition, the amplifier M1 (see Block Diagram), becomes active in the current loop when VA OUT goes down to 2.2 V . The M1 can put out up to $7 \mu \mathrm{~A}$ to the resistor at the I ISENSE pin to cancel any current amplifier negative $\mathrm{V}_{0 S}$ and keep $V_{\text {OUT }}$ error to within 2 V .

Figure 4

Undervoltage Lockout

The LT1248 turns on when $V_{\text {CC }}$ is higher than 16 V and remains on until $\mathrm{V}_{\text {CC }}$ falls below 10 V , whereupon the chip enters the lockout state. In the lockout state, the LT1248 only draws $250 \mu \mathrm{~A}$, the oscillator is off, and the $\mathrm{V}_{\text {REF }}$ and the GTDR pins remain low to keep the power MOSFET off.

Start-Up and Supply Voltage

The LT1248 draws only $250 \mu \mathrm{~A}$ before the chip starts at 16 V on $\mathrm{V}_{\text {CC }}$. To trickle start, a 90k resistor from the power line to $V_{C C}$ supplies the trickle current and C 4 holds the $\mathrm{V}_{C C}$ up while switching starts. Then the auxiliary winding takes over and supplies the operating current. Note that D3 and the large value C3, in both Figures 5 and 6, are only necessary for systems that have sudden large load variation down to minimum load and/or very light load conditions. Under these conditions, the loop may exhibit a start/ restart mode because switching remains off long enough for C 4 to discharge below 10V. The C 3 will hold $\mathrm{V}_{\text {CC }}$ up until switching resumes. For less severe load variations, D3 is replaced with a short and C3 is omitted. The turns ratio between the primary winding and the auxiliary winding determines $V_{\text {CC }}$ according to:

Figure 5

Figure 6

APPLICATIONS INFORMATION

$V_{\text {OUT }} /\left(V_{\text {CC }}-2 V\right)=N_{P} / N_{S}$.
For 382V V ${ }_{\text {OUt }}$ and $18 \mathrm{~V} \mathrm{~V}_{\text {CC }}$, $\mathrm{Np} / \mathrm{Ns} \approx 19$.
In Figure 6, a new technique for supply voltage eliminates the need for an extra inductor winding. It uses capacitor charge transfer to generate a constant current source which feeds a Zener diode. Current to the Zener is equal to $\left(\mathrm{V}_{\text {OUT }}-\mathrm{V}_{\mathrm{Z}}\right)(\mathrm{C})(\mathrm{f})$, where V_{Z} is Zener voltage and f is switching frequency. For $\mathrm{V}_{\text {OUT }}=382 \mathrm{~V}, \mathrm{~V}_{\mathrm{Z}}=18 \mathrm{~V}, \mathrm{C}=$ 1000 pF , and $\mathrm{f}=100 \mathrm{kHz}$, Zener current will be 36 mA . This is enough to operate the LT1248, including the FET gate drive. Normally soft-start is not needed because the LT1248 has overcurrent limit and overvoltage protection. If soft-start is used with a $0.01 \mu \mathrm{~F}$ capacitor on SS pin, $V_{\text {OUT }}$ ramps up slower during start-up. Then C4 has to hold $V_{C C}$ longer, and the circuit may not start. Increasing C4 to $100 \mu \mathrm{~F}$ ensures start-up, but start-up time will be extended if the same 90k trickle charge resistor is used.

Output Capacitor

The peak-to-peak 120 Hz output ripple is determined by:

$$
V_{\text {P-P }}=(2)\left(I_{\text {LOAD }(D C)}\right)(Z)
$$

where $I_{\operatorname{LOAD}(D C)}$: DC load current.
Z: capacitor impedance at 120 Hz .
For $180 \mu \mathrm{~F}$ at 300 W load, $\operatorname{I} \operatorname{LOAD}(\mathrm{DC})=300 \mathrm{~W} / 385 \mathrm{~V}=0.78 \mathrm{~A}$, $V_{P-P}=2 \bullet 0.78 \mathrm{~A} \cdot 7.4 \Omega=11.5 \mathrm{~V}$. If less ripple is desired, higher capacitance should be used. The selection of the output capacitor should also be based on the operating ripple current through the capacitor. The ripple current can be divided into three major components. The first is at 120 Hz ; it's RMS value is related to the DC load current as follows:

$$
\mathrm{I}_{1 \mathrm{RMS}} \approx 0.71 \cdot \mathrm{I}_{\mathrm{LOAD}(\mathrm{DC})}
$$

The second component contains the PF switching frequency ripple current and its harmonics. Analysis of the ripple is complicated because it is modulated with a 120 Hz signal. However computer numerical integration and Fourier analysis approximate the RMS value reasonably close to the bench measurements. The RMS value is about 0.82A at a typical condition of $120 \mathrm{VAC}, 200 \mathrm{~W}$ load. This ripple is line-voltage dependent, and the worst case is at low line.
$I_{2 R M S}=0.82 \mathrm{~A}$ at $120 \mathrm{VAC}, 200 \mathrm{~W}$

The third component is the switching ripple from the load, if the load is a switching regulator.

$$
I_{3 R M S} \approx I_{\operatorname{LOAD}(D C)}
$$

For the United Chemicon KMH 400V capacitor series, ripple current multiplier for currents at 100 kHz is 1.43. The equivalent 120 Hz ripple current can be then found:

$$
I_{\text {RMS }}=\sqrt{\left(I_{\text {RMS }}\right)^{2}+\left(I_{\text {RMMS }} / 1.43\right)^{2}+\left(I_{\text {3RMS }} / 1.43\right)^{2}}
$$

For a typical system that runs at an average load of 200W and 385 V output:

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{LOAD}(\mathrm{DC})}=0.52 \mathrm{~A} \\
& \mathrm{I}_{\text {RMS }} \approx 0.71 \cdot 0.52 \mathrm{~A}=0.37 \mathrm{~A} \\
& \mathrm{I}_{2 R M S} \approx 0.82 \mathrm{~A} \text { at } 120 \mathrm{VAC} \\
& \mathrm{I}_{3 R M S} \approx \mathrm{I}_{\mathrm{LOAD}(\mathrm{DC})}=0.52 \mathrm{~A} \\
& \mathrm{I}_{\text {RMS }}=\sqrt{(0.37 \mathrm{~A})^{2}+(0.82 \mathrm{~A} / 1.43)^{2}+(0.52 \mathrm{~A} / 1.43)^{2}}=0.77 \mathrm{~A}
\end{aligned}
$$

The 120 Hz ripple current rating at $105^{\circ} \mathrm{C}$ ambient is 0.95 A for the $180 \mu \mathrm{FKMH} 400 \mathrm{~V}$ capacitor. The expected life of the output capacitor may be calculated from the thermal stress analysis:

$$
L=L_{0} \bullet 2^{\frac{\left(105^{\circ} \mathrm{C}+\Delta \mathrm{T}_{\mathrm{K}}\right)-\left(\mathrm{T}_{\mathrm{A}}+\Delta \mathrm{T}_{0}\right)}{10}}
$$

where:
L: expected life time
L_{0} : hours of load life at rated ripple current and rated ambient temperature.
$\Delta \mathrm{T}_{\mathrm{k}}$: Capacitor internal temperature rise at rated condition. $\Delta \mathrm{T}_{\mathrm{K}}=\left(I^{2} \mathrm{R}\right) /(\mathrm{KA})$. Where I is the rated current, R is capacitor $E S R$, and $K A$ is a volume constant.
T_{A} : Operating ambient temperature.
$\Delta \mathrm{T}_{0}$: Capacitor internal temperature rise at operating condition.

In our example $L_{0}=2000$ hours and $\Delta \mathrm{T}_{\mathrm{K}}=10^{\circ} \mathrm{C}$ at rated $0.95 \mathrm{~A} . \Delta \mathrm{T}_{0}$ can then be calculated from:

$$
\Delta \mathrm{T}_{\mathrm{K}}=\left(\mathrm{I}_{\mathrm{RMS}} / 0.95 \mathrm{~A}\right)^{2} \cdot \Delta \mathrm{~T}_{\mathrm{K}}=(0.77 \mathrm{~A} / 0.95 \mathrm{~A})^{2} \bullet 10^{\circ} \mathrm{C}=6.6^{\circ} \mathrm{C}
$$

Assuming the operating ambient temperature is $60^{\circ} \mathrm{C}$, the approximate life time is:

$$
\mathrm{L}_{0} \approx 2000 \cdot 2^{\frac{\left(105^{\circ} \mathrm{C}+10^{\circ} \mathrm{C}\right)-\left(60^{\circ}+6.6^{\circ} \mathrm{C}\right)}{10}} \approx 57,000 \text { hours }
$$

For longer life, a capacitor with a higher ripple current rating or parallel capacitors should be used.

TYPICAL APPLICATION
300W, 382V Preregulator

Kool $M \mu$ is a registered trademark of Magnetics, Inc.

PACKAGE DESCRIPTION

Dimensions in inches (millimeters) unless otherwise noted.

N Package

16-Lead PDIP (Narrow 0.300)
(LTC DWG \# 05-08-1510)

S Package
16-Lead Plastic Small Outline (Narrow 0.150)
(LTC DWG \# 05-08-1610)

FLASH SHALL NOT EXCEED $0.010^{\prime \prime}(0.254 \mathrm{~mm})$ PER SIDE

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LT1103	Off-Line Switching Regulator	Universal Off-Line Inputs with Outputs to 100W
LT1249	PFC in S0-8	Simplified PFC Design with Minimal Part Count
LT1508	Power Factor and PWM Controller	Voltage Mode PWM, Simplified PFC Design
LT1509	Power Factor and PWM Controller	Complete Solution for Universal Off-Line Switching Power Supplies

