

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

LT1815/LT1816/LT1817

DLOGY Single/Dual/Quad 220MHz, 1500V/µs Operational Amplifiers with Programmable Supply Current

FEATURES

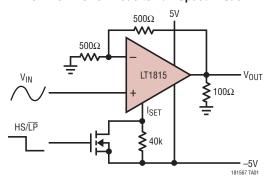
- 220MHz Gain-Bandwidth Product
- 1500V/µs Slew Rate
- 6.5mA Supply Current per Amplifier
- Programmable Current Option
- 6nV/√Hz Input Noise Voltage
- Unity-Gain Stable
- 1.5mV Maximum Input Offset Voltage
- 8µA Maximum Input Bias Current
- 800nA Maximum Input Offset Current
- 50mA Minimum Output Current, V_{OUT} = ±3V
- ±3.5V Minimum Input CMR, V_S = ±5V
- Specified at ±5V, Single 5V Supplies
- Operating Temperature Range: -40°C to 85°C
- Space Saving MSOP and SSOP Packages
- Low Profile (1mm) SOT-23 (ThinSOTTM) and Leadless DFN Packages

APPLICATIONS

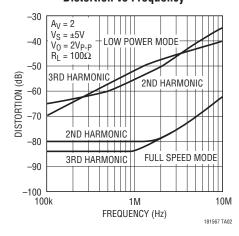
- Wideband Amplifiers
- Buffers
- Active Filters
- Video and RF Amplification
- Communication Receivers
- Cable Drivers
- Data Acquisition Systems

DESCRIPTION

The LT®1815/LT1816/LT1817 are low power, high speed, very high slew rate operational amplifiers with excellent DC performance. The LT1815/LT1816/LT1817 feature higher bandwidth and slew rate, much lower input offset voltage and lower noise and distortion than other devices with comparable supply current. A programmable current option (LT1815 and LT1816A) allows power savings and flexibility by operating at reduced supply current and speed. The circuit topology is a voltage feedback amplifier with the slewing characteristics of a current feedback amplifier.


The output drives a 100Ω load to $\pm 3.8 V$ with $\pm 5 V$ supplies. On a single 5V supply, the output swings from 1V to 4V with a 100Ω load connected to 2.5V. Harmonic distortion is -70 dB for a 5 MHz, $2 V_{P-P}$ output driving a 100Ω load in a gain of -1.

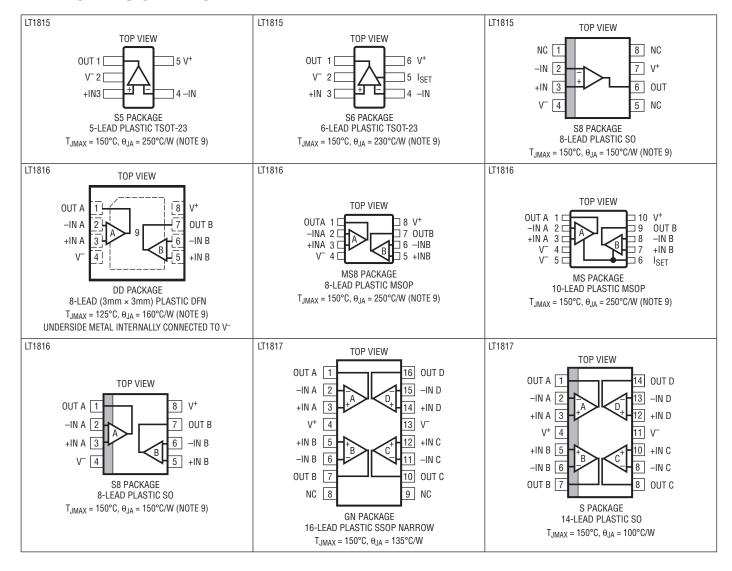
The LT1815/LT1816/LT1817 are manufactured on Linear Technology's advanced low voltage complementary bipolar process and are available in a variety of TSOT-23, SO, MSOP, SSOP and leadless DFN packages.


LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear Technology Corporation. ThinSOT is a trademark of Linear Technology Corporation. All other trademarks are the property of their respective owners.

TYPICAL APPLICATION

Programmable Current Amplifier Switches from Low Power Mode to Full Speed Mode

Distortion vs Frequency



ABSOLUTE MAXIMUM RATINGS (Note 1)

Total Supply Voltage (V ⁺ to V ⁻)	12.6V
Differential Input Voltage	
(Transient Only, Note 2)	±6V
Input Voltage	±V _S
Output Short-Circuit Duration (Note 3)	Indefinite
Operating Temperature Range	40°C to 85°C

Specified Temperature Range (Note 8)40°C to 85°C
Maximum Junction Temperature 150°C
(DD Package)125°C
Storage Temperature Range65°C to 150°C
(DD Package)65°C to 125°C
Lead Temperature (Soldering, 10 sec)300°C

PIN CONFIGURATION

ORDER INFORMATION

LEAD FREE FINISH	TAPE AND REEL	PART MARKING*	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE
LT1815CS5#PBF	LT1815CS5#TRPBF	LTUP	5-Lead Plastic TSOT-23	0°C to 70°C
LT1815IS5#PBF	LT1815IS5#TRPBF	LTVC	5-Lead Plastic TSOT-23	-40°C to 85°C
LT1815CS6#PBF	LT1815CS6#TRPBF	LTUL	6-Lead Plastic TSOT-23	0°C to 70°C
LT1815IS6#PBF	LT1815IS6#TRPBF	LTVD	6-Lead Plastic TSOT-23	-40°C to 85°C
LT1815CS8#PBF	LT1815CS8#TRPBF	1815	8-Lead Plastic SO	0°C to 70°C
LT1815IS8#PBF	LT1815IS8#TRPBF	18151	8-Lead Plastic SO	-40°C to 85°C
LT1816CDD#PBF	LT1816CDD#TRPBF	LAAR	8-Lead (3mm × 3mm) Plastic DFN	0°C to 70°C
LT1816IDD#PBF	LT1816IDD#TRPBF	LAAR	8-Lead (3mm × 3mm) Plastic DFN	-40°C to 150°C
LT1816CMS8#PBF	LT1816CMS8#TRPBF	LTWA	8-Lead Plastic MSOP	0°C to 70°C
LT1816IMS8#PBF	LT1816IMS8#TRPBF	LTNQ	8-Lead Plastic MSOP	-40°C to 85°C
LT1816ACMS#PBF	LT1816ACMS#TRPBF	LTYA	10-Lead Plastic MSOP	0°C to 70°C
LT1816AIMS#PBF	LT1816AIMS#TRPBF	LTXX	10-Lead Plastic MSOP	-40°C to 85°C
LT1816CS8#PBF	LT1816CS8#TRPBF	1816	8-Lead Plastic SO	0°C to 70°C
LT1816IS8#PBF	LT1816IS8#TRPBF	18161	8-Lead Plastic SO	-40°C to 85°C
LT1817CGN#PBF	LT1817CGN#TRPBF	1817	16-Lead Plastic SSOP	0°C to 70°C
LT1817IGN#PBF	LT1817IGN#TRPBF	18171	16-Lead Plastic SSOP	-40°C to 85°C
LT1817CS#PBF	LT1817CS#TRPBF	LT1817CS	14-Lead Plastic SO	0°C to 70°C
LT1817IS#PBF	LT1817IS#TRPBF	LT1817IS	14-Lead Plastic SO	-40°C to 85°C

Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container. Consult LTC Marketing for information on non-standard lead based finish parts.

For more information on lead free part marking, go to: http://www.linear.com/leadfree/ For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/

ELECTRICAL CHARACTERISTICS The \bullet denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $T_A = 25^{\circ}C$ (Note 8). $V_S = \pm 5V$, $V_{CM} = 0V$, unless otherwise noted. For the programmable current option (LT1815S6 or LT1816A), the I_{SET} pin must be connected to V^- through 75Ω or less, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
V _{OS}	Input Offset Voltage	(Note 4) T _A = 0°C to 70°C T _A = -40°C to 85°C	•		0.2	1.5 2.0 3.0	mV mV mV
	Input Offset Voltage (Low Power Mode) (Note 10)	LT1815S6/LT1816A, $40k\Omega$ Between I_{SET} and V^- $T_A = 0^{\circ}\text{C}$ to 70°C $T_A = -40^{\circ}\text{C}$ to 85°C	•		2	7 9 10	mV mV mV
$\frac{\Delta V_{OS}}{\Delta T}$	Input Offset Voltage Drift	T _A = 0°C to 70°C (Note 7) T _A = -40°C to 85°C (Note 7)	•		10 10	15 30	μV/°C μV/°C
I _{OS}	Input Offset Current	T _A = 0°C to 70°C T _A = -40°C to 85°C	•		60	800 1000 1200	nA nA nA
I _B	Input Bias Current	T _A = 0°C to 70°C T _A = -40°C to 85°C	•		-2	±8 ±10 ±12	μΑ μΑ μΑ

ELECTRICAL CHARACTERISTICS The \bullet denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $T_A = 25^{\circ}C$ (Note 8). $V_S = \pm 5V$, $V_{CM} = 0V$, unless otherwise noted. For the programmable current option (LT1815S6 or LT1816A), the I_{SET} pin must be connected to V^- through 75Ω or less, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
e _n	Input Noise Voltage Density	f = 10kHz			6		nV/√Hz
in	Input Noise Current Density	f = 10kHz			1.3		pA/√Hz
R _{IN}	Input Resistance	V _{CM} = ±3.5V Differential		1.5	5 750		MΩ kΩ
C _{IN}	Input Capacitance				2		pF
V _{CM}	Input Voltage Range	Guaranteed by CMRR T _A = -40°C to 85°C	•	±3.5 ±3.5	±4.2		V
CMRR	Common Mode Rejection Ratio	$V_{CM} = \pm 3.5V$ $T_A = 0^{\circ}C$ to $70^{\circ}C$ $T_A = -40^{\circ}C$ to $85^{\circ}C$	•	75 73 72	85		dB dB dB
	Minimum Supply Voltage	Guaranteed by PSRR T _A = -40°C to 85°C	•		±1.25	±2 ±2	V
PSRR	Power Supply Rejection Ratio	$V_S = \pm 2V$ to $\pm 5.5V$ $T_A = 0$ °C to 70°C $T_A = -40$ °C to 85°C	•	78 76 75	97		dB dB dB
	Channel Separation	$V_{OUT} = \pm 3V$, $R_L = 100\Omega$, LT1816/LT1817 $T_A = 0^{\circ}$ C to 70°C $T_A = -40^{\circ}$ C to 85°C	•	82 81 80	100		dB dB dB
A _{VOL}	Large-Signal Voltage Gain	$V_{OUT} = \pm 3V$, $R_L = 500\Omega$ $T_A = 0^{\circ}C$ to $70^{\circ}C$ $T_A = -40^{\circ}C$ to $85^{\circ}C$	•	1.5 1.0 0.8	3		V/mV V/mV V/mV
		$V_{OUT} = \pm 3V$, $R_L = 100\Omega$ $T_A = 0^{\circ}C$ to $70^{\circ}C$ $T_A = -40^{\circ}C$ to $85^{\circ}C$	•	0.7 0.5 0.4	2.5		V/mV V/mV V/mV
V _{OUT}	Maximum Output Swing	$R_L = 500\Omega$, 30mV Overdrive $T_A = 0^{\circ}$ C to 70°C $T_A = -40^{\circ}$ C to 85°C	•	±3.8 ±3.7 ±3.6	±4.1		V V V
		$R_L = 100\Omega$, 30mV Overdrive $T_A = 0^{\circ}$ C to 70°C $T_A = -40^{\circ}$ C to 85°C	•	±3.50 ±3.25 ±3.15	±3.8		V V V
I _{OUT}	Maximum Output Current	$V_{OUT} = \pm 3V$, 30mV Overdrive $T_A = 0^{\circ}C$ to 70°C $T_A = -40^{\circ}C$ to 85°C	•	±50 ±45 ±40	±80		mA mA mA
	Maximum Output Current (Low Power Mode) (Note 10)	LT1815S6/LT1816A; $40k\Omega$ Between I_{SET} and V^- ; $V_{OUT} = \pm 3V$, $30mV$ Overdrive $T_A = 0^{\circ}C$ to $70^{\circ}C$ $T_A = -40^{\circ}C$ to $85^{\circ}C$	•	±50 ±40 ±30	±75		mA mA mA
I _{SC}	Output Short-Circuit Current	$V_{OUT} = 0V$, 1V Overdrive (Note 3) $T_A = 0$ °C to 70°C $T_A = -40$ °C to 85°C	•	±100 ±90 ±70	±200		mA mA mA
SR	Slew Rate	$A_V = -1 \text{ (Note 5)}$ $T_A = 0^{\circ}\text{C to } 70^{\circ}\text{C}$ $T_A = -40^{\circ}\text{C to } 85^{\circ}\text{C}$	•	900 750 600	1500		V/µs V/µs V/µs
FPBW	Full-Power Bandwidth	6V _{P-P} (Note 6)			80		MHz

ELECTRICAL CHARACTERISTICS The • denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $T_A = 25^{\circ}C$ (Note 8). $V_S = \pm 5V$, $V_{CM} = 0V$, unless otherwise noted. For the programmable current option (LT1815S6 or LT1816A), the I_{SET} pin must be connected to V^- through 75Ω or less, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
GBW	Gain-Bandwidth Product	$f = 200kHz$, $R_L = 500\Omega$, LT1815 $T_A = 0^{\circ}C$ to $70^{\circ}C$ $T_A = -40^{\circ}C$ to $85^{\circ}C$	•	150 140 130	220		MHz MHz MHz
		f = 200kHz, R_L = 500 Ω , LT1816/LT1817 T_A = 0°C to 70°C T_A = -40°C to 85°C	•	140 130 120	220		MHz MHz MHz
	Gain-Bandwidth Product (Low Power Mode) (Note 10)	LT1815S6/LT1816A; $40k\Omega$ Between I_{SET} and V^- ; $f=200kHz$, $R_L=500\Omega$ $T_A=0^{\circ}C$ to $70^{\circ}C$ $T_A=-40^{\circ}C$ to $85^{\circ}C$	•	35 30 25	55		MHz MHz MHz
-3dB BW	-3dB Bandwidth	$A_V = 1, R_L = 500\Omega$			350		MHz
t_r, t_f	Rise Time, Fall Time	$A_V = 1$, 10% to 90%, 0.1V, $R_L = 100\Omega$			1		ns
t _{PD}	Propagation Delay	$A_V = 1, 50\%$ to 50%, 0.1V, $R_L = 100\Omega$			1.4		ns
OS	Overshoot	$A_V = 1, 0.1V; R_L = 100\Omega$			25		%
t_S	Settling Time	A _V = -1, 0.1%, 5V			15		ns
THD	Total Harmonic Distortion	$A_V = 2$, $f = 5MHz$, $V_{OUT} = 2V_{P-P}$, $R_L = 500\Omega$			-70		dB
dG	Differential Gain	$A_V = 2$, $V_{OUT} = 2V_{P-P}$, $R_L = 150\Omega$			0.08		%
dP	Differential Phase	$A_V = 2$, $V_{OUT} = 2V_{P-P}$, $R_L = 150\Omega$			0.04		Deg
R _{OUT}	Output Resistance	$A_V = 1$, $f = 1MHz$			0.20		Ω
I _S	Supply Current	LT1815 $T_A = 0^{\circ}\text{C to } 70^{\circ}\text{C}$ $T_A = -40^{\circ}\text{C to } 85^{\circ}\text{C}$	•		6.5	7 9 10	mA mA mA
		LT1816/LT1817, per Amplifier $T_A = 0^{\circ}\text{C to } 70^{\circ}\text{C}$ $T_A = -40^{\circ}\text{C to } 85^{\circ}\text{C}$	•		6.5	7.8 10.5 11.5	mA mA mA
	Supply Current (Low Power Mode) (Note 10)	LT1815S6/LT1816A, $40k\Omega$ Between I_{SET} and V^- , per Amplifier $T_A = 0^{\circ}\text{C}$ to 70°C $T_A = -40^{\circ}\text{C}$ to 85°C	•		1	1.5 1.8 2.0	mA mA mA
I _{SET}	I _{SET} Pin Current (Note 10)	LT1815S6/LT1816A T _A = 0°C to 70°C T _A = -40°C to 85°C	•	-150 -175 -200	-100		μΑ μΑ μΑ

ELECTRICAL CHARACTERISTICS The \bullet denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $T_A = 25^{\circ}C$ (Note 8). $V_S = 5V$, OV; $V_{CM} = 2.5V$, R_L to 2.5V, unless otherwise noted. For the programmable current option (LT1815S6 or LT1816A), the I_{SET} pin must be connected to V^- through 75Ω or less, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
V _{OS}	Input Offset Voltage	(Note 4) T _A = 0°C to 70°C T _A = -40°C to 85°C	•		0.4	2.0 2.5 3.5	mV mV mV
	Input Offset Voltage (Low Power Mode) (Note 10)	LT1815S6/LT1816A, $40k\Omega$ Between I_{SET} and $V^ T_A$ = 0°C to 70°C T_A = -40°C to 85°C	•		2	7 9 10	mV mV mV
$\frac{\Delta V_{OS}}{\Delta T}$	Input Offset Voltage Drift	$T_A = 0$ °C to 70°C (Note 7) $T_A = -40$ °C to 85°C (Note 7)	•		10 10	15 30	μV/°C μV/°C
I _{OS}	Input Offset Current	T _A = 0°C to 70°C T _A = -40°C to 85°C	•		60	800 1000 1200	nA nA nA
I _B	Input Bias Current	T _A = 0°C to 70°C T _A = -40°C to 85°C	•		-2.4	±8 ±10 ±12	μΑ μΑ μΑ
e _n	Input Noise Voltage Density	f = 10kHz			6		nV/√Hz
i _n	Input Noise Current Density	f = 10kHz			1.3		pA/√Hz
R _{IN}	Input Resistance	V _{CM} = 1.5V to 3.5V Differential		1.5	5 750		MΩ kΩ
C _{IN}	Input Capacitance				2		pF
V _{CM}	Input Voltage Range (High)	Guaranteed by CMRR T _A = -40°C to 85°C	•	3.5 3.5	4.1		V
	Input Voltage Range (Low)	Guaranteed by CMRR T _A = -40°C to 85°C	•		0.9	1.5 1.5	V
CMRR	Common Mode Rejection Ratio	V _{CM} = 1.5V to 3.5V T _A = 0°C to 70°C T _A = -40°C to 85°C	•	73 71 70	82		dB dB dB
	Channel Separation	V_{OUT} = 1.5V to 3.5V, R_L = 100 Ω , LT1816/LT1817 T_A = 0°C to 70°C T_A = -40°C to 85°C	•	81 80 79	100		dB dB dB
	Minimum Supply Voltage	Guaranteed by PSRR T _A = -40°C to 85°C	•		2.5	4 4	V
A _{VOL}	Large-Signal Voltage Gain	$V_{OUT} = 1.5V \text{ to } 3.5V, R_L = 500\Omega$ $T_A = 0^{\circ}\text{C to } 70^{\circ}\text{C}$ $T_A = -40^{\circ}\text{C to } 85^{\circ}\text{C}$	•	1.0 0.7 0.6	2		V/mV V/mV V/mV
		$V_{OUT} = 1.5V \text{ to } 3.5V, R_L = 100\Omega$ $T_A = 0^{\circ}\text{C to } 70^{\circ}\text{C}$ $T_A = -40^{\circ}\text{C to } 85^{\circ}\text{C}$	•	0.7 0.5 0.4	1.5		V/mV V/mV V/mV
V _{OUT}	Maximum Output Swing (High)	$R_L = 500\Omega$, 30mV Overdrive $T_A = 0^{\circ}$ C to 70°C $T_A = -40^{\circ}$ C to 85°C	•	3.9 3.8 3.7	4.2		V V V
		$R_L = 100\Omega$, 30mV Overdrive $T_A = 0^{\circ}$ C to 70°C $T_A = -40^{\circ}$ C to 85°C	•	3.7 3.6 3.5	4		V V V
V _{OUT}	Maximum Output Swing (Low)	$R_L = 500\Omega$, 30mV Overdrive $T_A = 0^{\circ}$ C to 70°C $T_A = -40^{\circ}$ C to 85°C	•		0.8	1.1 1.2 1.3	V V V
		$R_L = 100\Omega$, 30mV Overdrive $T_A = 0^{\circ}$ C to 70°C $T_A = -40^{\circ}$ C to 85°C	•		1	1.3 1.4 1.5	V V V

ELECTRICAL CHARACTERISTICS The \bullet denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $T_A = 25^{\circ}C$ (Note 8). $V_S = 5V$, OV; $V_{CM} = 2.5V$, R_L to 2.5V, unless otherwise noted. For the programmable current option (LT1815S6 or LT1816A), the I_{SET} pin must be connected to V^- through 75Ω or less, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
I _{OUT}	Maximum Output Current	V_{OUT} = 1.5V or 3.5V, 30mV Overdrive T_A = 0°C to 70°C T_A = -40°C to 85°C	•	±30 ±25 ±20	±50		mA mA mA
	Maximum Output Current (Low Power Mode) (Note 10)	LT1815S6/LT1816A; $40k\Omega$ Between I _{SET} and V ⁻ ; $V_{OUT} = 1.5V$ or 3.5V, 30mV Overdrive $T_A = 0^{\circ}C$ to $70^{\circ}C$ $T_A = -40^{\circ}C$ to $85^{\circ}C$	•	±30 ±25 ±20	±50		mA mA mA
I _{SC}	Output Short-Circuit Current	V_{OUT} = 2.5V, 1V Overdrive (Note 3) T_A = 0°C to 70°C T_A = -40°C to 85°C	•	±80 ±70 ±50	±140		mA mA mA
SR	Slew Rate	$A_V = -1$ (Note 5) $T_A = 0^{\circ}C$ to $70^{\circ}C$ $T_A = -40^{\circ}C$ to $85^{\circ}C$	•	450 375 300	750		V/µs V/µs V/µs
FPBW	Full-Power Bandwidth	2V _{P-P} (Note 6)			120		MHz
GBW	Gain-Bandwidth Product	$ f = 200 \text{kHz}, R_L = 500\Omega, LT1815 $ $ T_A = 0^{\circ}\text{C to } 70^{\circ}\text{C} $ $ T_A = -40^{\circ}\text{C to } 85^{\circ}\text{C} $	•	140 130 120	200		MHz MHz MHz
		f = 200kHz, R_L = 500Ω, LT1816/LT1817 T_A = 0°C to 70°C T_A = -40°C to 85°C	•	130 110 100	200		MHz MHz MHz
	Gain-Bandwidth Product (Low Power Mode) (Note 10)	LT1815S6/LT1816A; $40k\Omega$ Between I _{SET} and V ⁻ ; $f = 200kHz$, $R_L = 500\Omega$ $T_A = 0^{\circ}C$ to $70^{\circ}C$ $T_A = -40^{\circ}C$ to $85^{\circ}C$	•	30 25 20	50		MHz MHz MHz
-3dB BW	-3dB Bandwidth	$A_V = 1$, $R_L = 500\Omega$			300		MHz
t _r , t _f	Rise Time, Fall Time	$A_V = 1$, 10% to 90%, 0.1V, $R_L = 100\Omega$			1.2		ns
t _{PD}	Propagation Delay	$A_V = 1$, 50% to 50%, 0.1V, $R_L = 100\Omega$			1.5		ns
OS	Overshoot	$A_V = 1, 0.1V; R_L = 100\Omega$			25		%
t _S	Settling Time	$A_V = -1, 0.1\%, 2V$			15		ns
THD	Total Harmonic Distortion	$A_V = 2$, $f = 5MHz$, $V_{OUT} = 2V_{P-P}$, $R_L = 500\Omega$			-65		dB
dG	Differential Gain	$A_V = 2$, $V_{OUT} = 2V_{P-P}$, $R_L = 150\Omega$			0.08		%
dP	Differential Phase	$A_V = 2$, $V_{OUT} = 2V_{P-P}$, $R_L = 150\Omega$			0.13		Deg
R _{OUT}	Output Resistance	$A_V = 1$, $f = 1MHz$			0.24		Ω
I _S	Supply Current	LT1815 $T_A = 0^{\circ}\text{C to } 70^{\circ}\text{C}$ $T_A = -40^{\circ}\text{C to } 85^{\circ}\text{C}$	•		6.3	8 10 11	mA mA mA
		LT1816/LT1817, per Amplifier $T_A = 0^{\circ}C$ to $70^{\circ}C$ $T_A = -40^{\circ}C$ to $85^{\circ}C$	•		6.3	9 12 13	mA mA mA
	Supply Current (Low Power Mode) (Note 10)	LT1815S6/LT1816A, $40k\Omega$ Between I _{SET} and V ⁻ , per Amplifier $T_A = 0^{\circ}\text{C}$ to 70°C $T_A = -40^{\circ}\text{C}$ to 85°C	•		0.9	1.5 1.8 2.0	mA mA mA
I _{SET}	I _{SET} Pin Current (Note 10)	LT1815S6/LT1816A T _A = 0°C to 70°C T _A = -40°C to 85°C	•	-150 -175 -200	-100		μΑ μΑ μΑ

Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.

Note 2: Differential inputs of $\pm 6V$ are appropriate for transient operation only, such as during slewing. Large sustained differential inputs can cause excessive power dissipation and may damage the part.

ELECTRICAL CHARACTERISTICS

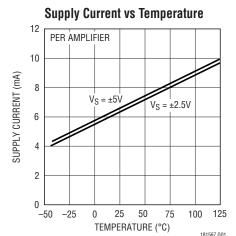
Note 3: A heat sink may be required to keep the junction temperature below absolute maximum when the output is shorted indefinitely.

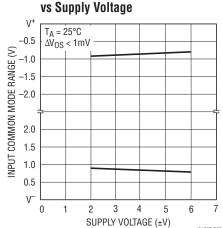
Note 4: Input offset voltage is pulse tested and is exclusive of warm-up drift

Note 5: Slew rate is measured between ±2V at the output with ±3V input for ±5V supplies and 2V_{P-P} at the output with a 3V_{P-P} input for single 5V supplies.

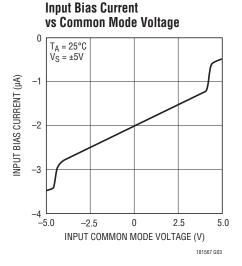
Note 6: Full-power bandwidth is calculated from the slew rate: FPBW = $SR/2\pi V_P$

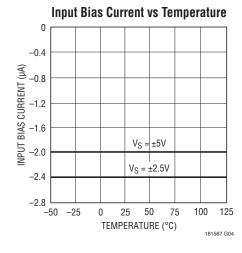
Note 7: This parameter is not 100% tested.

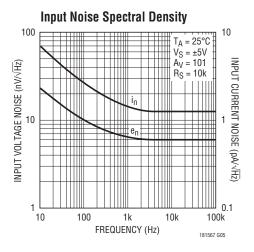

Note 8: The LT1815C/LT1816C/LT1817C are guaranteed to meet specified performance from 0°C to 70°C and are designed, characterized and


expected to meet the extended temperature limits, but are not tested at -40°C and 85°C. The LT1815I/LT1816I/LT1817I are guaranteed to meet the extended temperature limits.

Note 9: Thermal resistance (θ_{JA}) varies with the amount of PC board metal connected to the package. The specified values are for short traces connected to the leads. If desired, the thermal resistance can be substantially reduced by connecting Pin 2 of the TSOT-23, Pin 4 of the SO-8 and MS8, Pin 5 of the MS10 or the underside metal of the DD package to a large metal area.

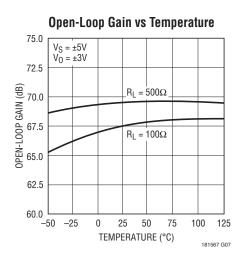

Note 10: A resistor of 40k or less is required between the I_{SET} and V^- pins of the LT1815S6 and the LT1816AMS. See the Applications Information section for information on selecting a suitable resistor.

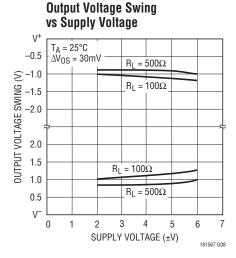

TYPICAL PERFORMANCE CHARACTERISTICS

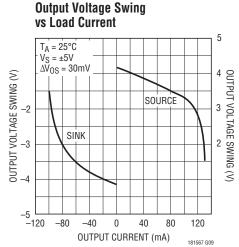


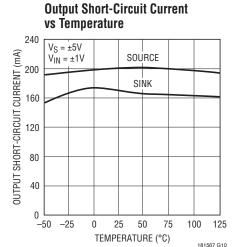


Input Common Mode Range

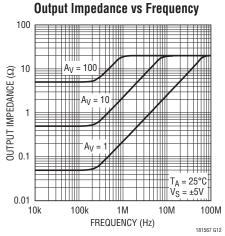


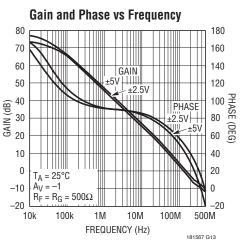


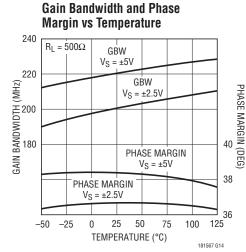


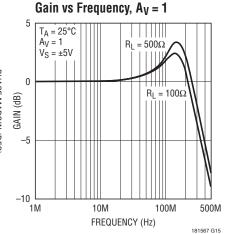


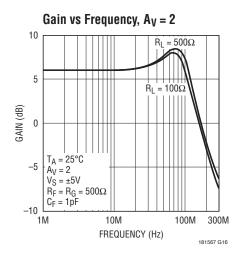
TYPICAL PERFORMANCE CHARACTERISTICS

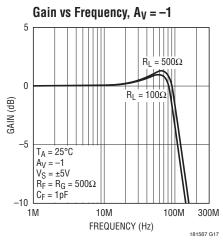


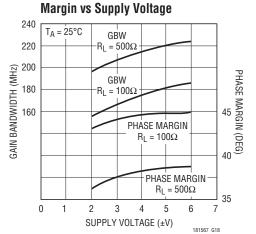


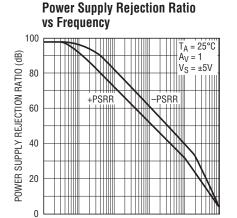








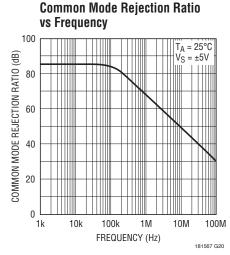


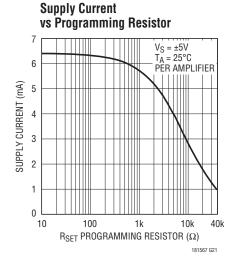

TYPICAL PERFORMANCE CHARACTERISTICS

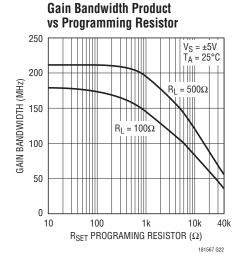
Gain Bandwidth and Phase

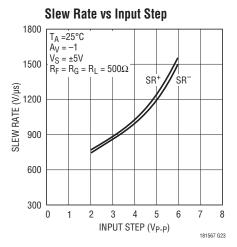
100k

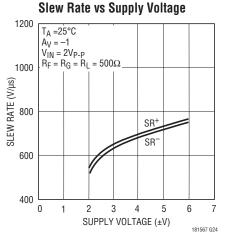
1M

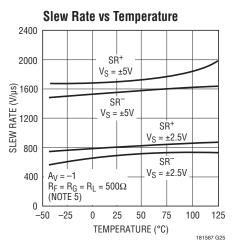

FREQUENCY (Hz)

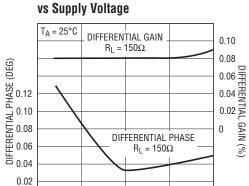

10M


100M


10k

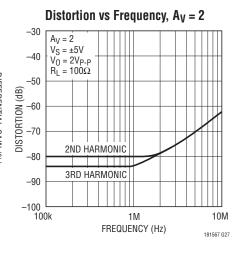

1k

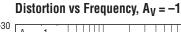


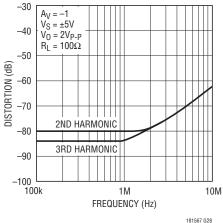


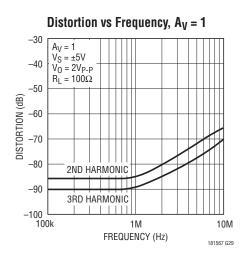
TYPICAL PERFORMANCE CHARACTERISTICS

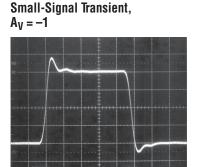
8

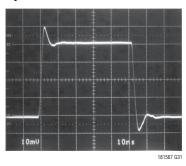

TOTAL SUPPLY VOLTAGE (V)

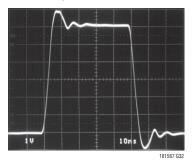

10

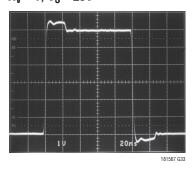

12


6


Differential Gain and Phase






Small-Signal Transient, $A_V = 1$

Large-Signal Transient, $A_V = 1$, $V_S = \pm 5V$

181567 G30

APPLICATIONS INFORMATION

Layout and Passive Components

As with all high speed amplifiers, the LT1815/LT1816/LT1817 require some attention to board layout. A ground plane is recommended and trace lengths should be minimized, especially on the negative input lead.

Low ESL/ESR bypass capacitors should be placed directly at the positive and negative supply (0.01 μ F ceramics are recommended). For high drive current applications, additional 1 μ F to 10 μ F tantalums should be added.

The parallel combination of the feedback resistor and gain setting resistor on the inverting input combine with the input capacitance to form a pole that can cause peaking or even oscillations. If feedback resistors greater than 1k are used, a parallel capacitor of value:

$$C_F > R_G \cdot C_{IN}/R_F$$

should be used to cancel the input pole and optimize dynamic performance. For applications where the DC noise gain is 1 and a large feedback resistor is used, C_F should be greater than or equal to C_{IN} . An example would be an I-to-V converter.

Input Considerations

The inputs of the LT1815/LT1816/LT1817 amplifiers are connected to the base of an NPN and PNP bipolar transistor in parallel. The base currents are of opposite polarity and provide first-order bias current cancellation. Due to variation in the matching of NPN and PNP beta, the polarity of the input bias current can be positive or negative. The offset current, however, does not depend on beta matching and is tightly controlled. Therefore, the use of balanced source resistance at each input is recommended for applications where DC accuracy must be maximized. For example, with a 100Ω source resistance at each input, the 800nA maximum offset current results in only $80\mu V$ of extra offset, while without balance the $8\mu A$ maximum input bias current could result in a 0.8mV offset contribution.

The inputs can withstand differential input voltages of up to 6V without damage and without needing clamping or series resistance for protection. This differential input voltage generates a large internal current (up to 80mA), which results in the high slew rate. In normal transient

closed-loop operation, this does not increase power dissipation significantly because of the low duty cycle of the transient inputs. Sustained differential inputs, however, will result in excessive power dissipation and therefore this device should not be used as a comparator.

Capacitive Loading

The LT1815/LT1816/LT1817 are optimized for high bandwidth and low distortion applications. They can drive a capacitive load of 10pF in a unity-gain configuration and more with higher gain. When driving a larger capacitive load, a resistor of 10Ω to 50Ω should be connected between the output and the capacitive load to avoid ringing or oscillation. The feedback should still be taken from the output so that the resistor will isolate the capacitive load to ensure stability.

Slew Rate

The slew rate of the LT1815/LT1816/LT1817 is proportional to the differential input voltage. Therefore, highest slew rates are seen in the lowest gain configurations. For example, a 5V output step in a gain of 10 has a 0.5V input step, whereas in unity gain there is a 5V input step. The LT1815/LT1816/LT1817 are tested for a slew rate in a gain of -1. Lower slew rates occur in higher gain configurations.

Programmable Supply Current (LT1815/LT1816A)

In order to operate the LT1815S6 or LT1816A at full speed (and full supply current), connect the I_{SET} pin to the negative supply through a resistance of 75Ω or less.

To adjust or program the supply current and speed of the LT1815S6 or LT1816A, connect an external resistor (R_{SET}) between the I_{SET} pin and the negative supply, as shown in Figure 1. The amplifiers are fully functional with $0 \le R_{SET} \le 40k$. Figures 2 and 3 show how the gain bandwidth and supply current vary with the value of the programming resistor R_{SET} . In addition, the Electrical Characteristics section of the data sheet specifies maximum supply current and offset voltage, as well as minimum gain bandwidth and output current at the maximum R_{SET} value of 40k.

LINEAR TECHNOLOGY

APPLICATIONS INFORMATION

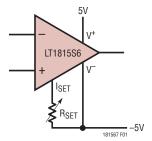


Figure 1. Programming Resistor Between I_{SET} and V⁻

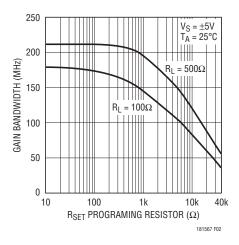


Figure 2. Gain Bandwidth Product vs R_{SET} Programming Resistor

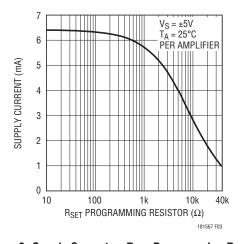


Figure 3. Supply Current vs R_{SET} Programming Resistor

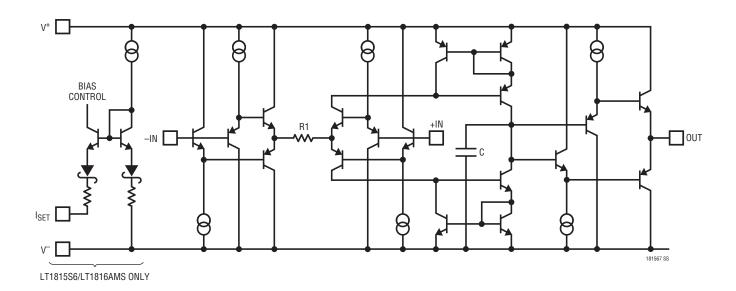
Power Dissipation

The LT1815/LT1816/LT1817 combine high speed and large output drive in small packages. It is possible to exceed the maximum junction temperature specification (150°C) under certain conditions. Maximum junction temperature (T_J) is calculated from the ambient temperature (T_A) , power dissipation per amplifier (P_D) and number of amplifiers (n) as follows:

$$T_J = T_A + (n \cdot P_D \cdot \theta_{JA})$$

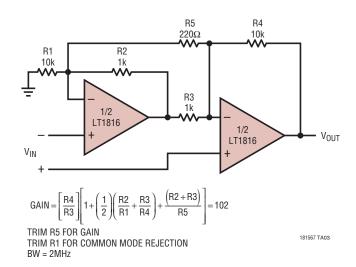
Power dissipation is composed of two parts. The first is due to the quiescent supply current and the second is due to on-chip dissipation caused by the load current. The worst-case load induced power occurs when the output voltage is at one-half of either supply voltage (or the maximum swing if less than one-half the supply voltage). Therefore, P_{DMAX} is:

$$\begin{split} &P_{DMAX} = (V^+ - V^-) \bullet (I_{SMAX}) + (V^+/2)^2/R_L \quad or \\ &P_{DMAX} = (V^+ - V^-) \bullet (I_{SMAX}) + (V^+ - V_{OMAX}) \bullet (V_{OMAX}/R_L) \\ &Example: LT1816IS8 \ at \ 85^{\circ}C, \ V_S = \pm 5V, \ R_L = 100\Omega \\ &P_{DMAX} = (10V) \bullet (11.5\text{mA}) + (2.5V)^2/100\Omega = 178\text{mW} \\ &T_{JMAX} = 85^{\circ}C + (2 \bullet 178\text{mW}) \bullet (150^{\circ}C/W) = 138^{\circ}C \end{split}$$


Circuit Operation

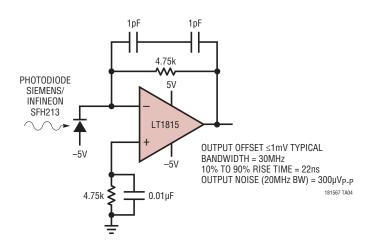
The LT1815/LT1816/LT1817 circuit topology is a true voltage feedback amplifier that has the slewing behavior of a current feedback amplifier. The operation of the circuit can be understood by referring to the Simplified Schematic. Complementary NPN and PNP emitter followers buffer the inputs and drive an internal resistor. The input voltage appears across the resistor, generating current that is mirrored into the high impedance node.

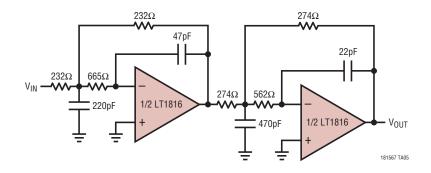
Complementary followers form an output stage that buffers the gain node from the load. The input resistor, input stage transconductance and the capacitor on the high impedance node determine the bandwidth. The slew rate is determined by the current available to charge the gain node capacitance. This current is the differential input voltage divided by R1, so the slew rate is proportional to the input step. Highest slew rates are therefore seen in the lowest gain configurations.



SIMPLIFIED SCHEMATIC (One Amplifier)

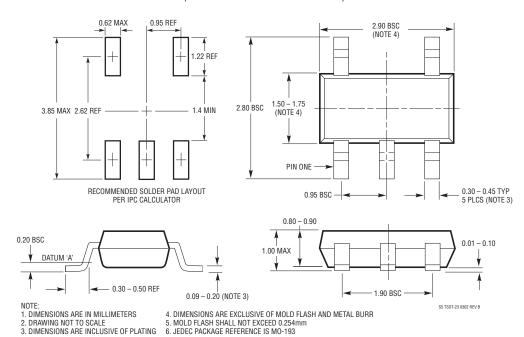
TYPICAL APPLICATIONS


Two Op Amp Instrumentation Amplifier

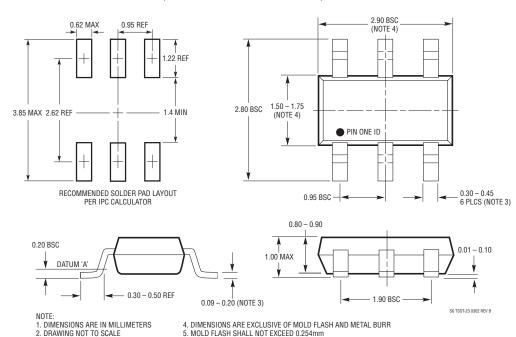

LINEAR TECHNOLOGY

TYPICAL APPLICATIONS

Photodiode Transimpedance Amplifier



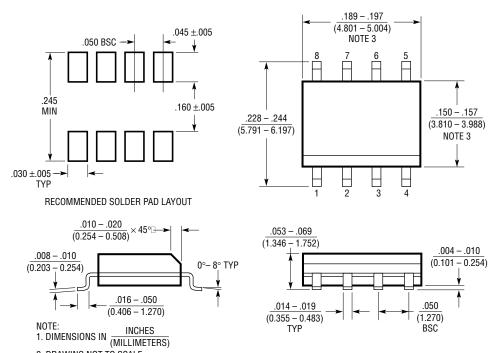
4MHz, 4th Order Butterworth Filter


S5 Package 5-Lead Plastic TSOT-23

(Reference LTC DWG # 05-08-1635)

S6 Package 6-Lead Plastic TSOT-23

(Reference LTC DWG # 05-08-1636)

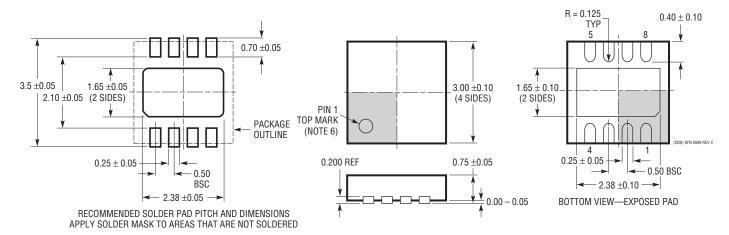


6. JEDEC PACKAGE REFERENCE IS MO-193

3. DIMENSIONS ARE INCLUSIVE OF PLATING

S8 Package 8-Lead Plastic Small Outline (Narrow .150 Inch)

(Reference LTC DWG # 05-08-1610)

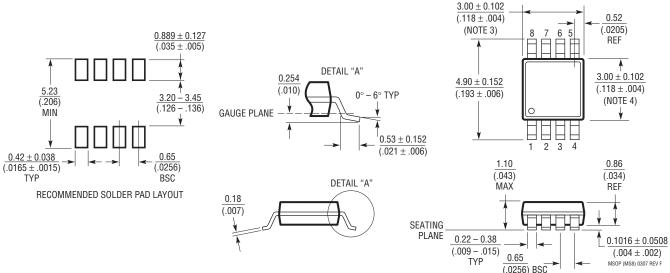

2. DRAWING NOT TO SCALE

3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)

S08 0303

DD Package 8-Lead Plastic DFN (3mm×3mm)

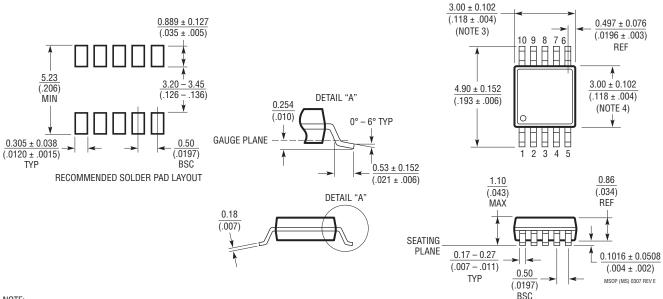
(Reference LTC DWG # 05-08-1698 Rev C)


NOTE:

- 1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE MO-229 VARIATION OF (WEED-1)
- 2. DRAWING NOT TO SCALE
- 3. ALL DIMENSIONS ARE IN MILLIMETERS
- 4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE
- 5. EXPOSED PAD SHALL BE SOLDER PLATED
- SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON TOP AND BOTTOM OF PACKAGE

MS8 Package 8-Lead Plastic MSOP

(Reference LTC DWG # 05-08-1660 Rev F)



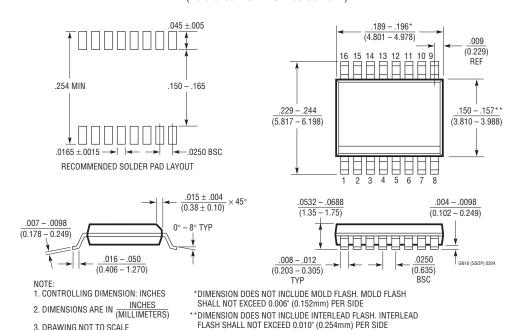
NOTE:

- 1. DIMENSIONS IN MILLIMETER/(INCH)
- 2. DRAWING NOT TO SCALE
- 3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE
- 4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS. INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE
- 5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMINĠ) SHÁLL BE 0.102mm (.004") MAX

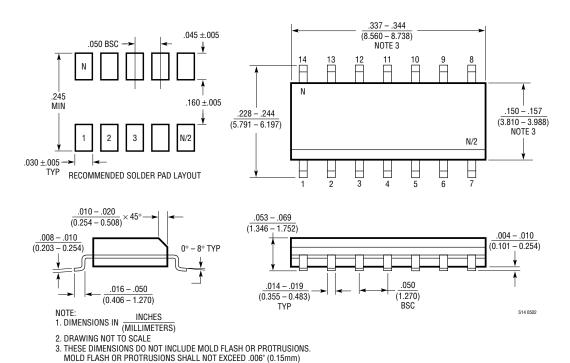
MS Package 10-Lead Plastic MSOP

(Reference LTC DWG # 05-08-1661 Rev E)

NOTE:


- 1. DIMENSIONS IN MILLIMETER/(INCH)
- 2. DRAWING NOT TO SCALE
- DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE
- 4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS. INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE
- 5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX

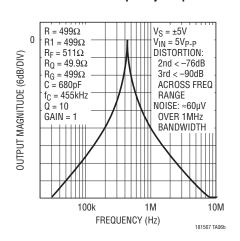
3. DRAWING NOT TO SCALE


GN Package 16-Lead Plastic SSOP (Narrow .150 Inch)

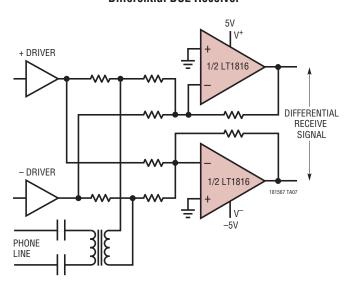
(Reference LTC DWG # 05-08-1641)

S Package 14-Lead Plastic Small Outline (Narrow .150 Inch)

(Reference LTC DWG # 05-08-1610)



TYPICAL APPLICATION


Bandpass Filter with Independently Settable Gain, Q and f_C

V_{IN} R_{G} $R_{$

455kHz Filter Frequency Response

Differential DSL Receiver

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LT1363/LT1364/LT1365	Single/Dual/Quad 70MHz, 1V/ns, C-Load™ Op Amps	Wide Supply Range: ±2.5V to ±15V
LT1395/LT1396/LT1397	5/LT1396/LT1397 Single/Dual/Quad 400MHz Current Feedback Amplifiers 4.6mA Supply Current, 800V/µs, 80mA Output Current	
LT1806/LT1807	Single/Dual 325MHz, 140V/µs Rail-to-Rail I/O Op Amps	Low Noise: 3.5nV/√Hz
LT1809/LT1810	Single/Dual 180MHz, 350V/µs Rail-to-Rail I/O Op Amps	Low Distortion: 90dBc at 5MHz
LT1812/LT1813/LT1814	Single/Dual/Quad 3mA, 100MHz, 750V/µs Op Amps	Low Power: 3.6mA Max at ±5V

C-Load is a trademark of Linear Technology Corporation.

