## : ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!


## Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

## feftures

- All Filter Parameters Guaranteed Over Temperature
- Wide Center Frequency Range (0.1Hz to 40kHz)
- Low Noise, Wide Dynamic Range
- Guaranteed Operation for $\pm 2.37 \mathrm{~V}$ and $\pm 5 \mathrm{~V}$ Supply
- Low Power Consumption
- Guaranteed Clock-to-Center Frequency Accuracy of 0.8\%
- Guaranteed Low Offset Voltages Over Temperature
- Very Low Center Frequency and Q Tempco
- Clock Input T²L or CMOS Compatible
- Separate Highpass (or Notch or Allpass), Bandpass, Lowpass Outputs


## APPLICATIONS

- Sinewave Oscillators
- Sweepable Bandpass/Notch Filters
- Full Audio Frequency Filters
- Tracking Filters
$\overline{\mathbf{L Y}}$, LTC and LT are registered trademarks of Linear Technology Corporation.
LTCMOS trademark of Linear Technology Corporation.


## DESCRIPTIOn

The LTC ${ }^{\circledR} 1059$ consists of a general purpose, high performance, active filter building block and an uncommitted op amp. The filter building block together with an external clock and 2 to 5 resistors can produce various 2nd order functions which are available at its three output pins. Two out of three always provide lowpass and bandpass functions while the third output pin can produce notch or highpass or allpass. The center frequency of these functions can be tuned from 0.1 Hz to 40 kHz and is dependent on an external clock or an external clock and a resistor ratio. The filter can handle input frequencies up to 100 kHz . The uncommitted op amp can be used to obtain additional allpass and notch functions, for gain adjustment or for cascading techniques.
Higher than 2nd order filter functions can be obtained by cascading the LTC1059 with the LTC1060 dual universal filter or the LTC1061 triple universal filter. Any classical filter realization (such as Butterworth, Cauer, Bessel and Chebyshev) can be formed.
The LTC1059 can be operated with single or dual supplies ranging from $\pm 2.37 \mathrm{~V}$ to $\pm 8 \mathrm{~V}$ (or 4.74 V to 16 V single supply).
The LTC1059 is manufactured by using Linear Technology's enhanced LTCMOS ${ }^{\text {TM }}$ silicon gate process.

## TYPICAL APPLICATION

Wide Range 2nd Order Bandpass/Notch Filter with $\mathbf{Q}=10$


## Center Frequency and Q Error



## ABSOLUTE MAXIMUM RATINGS

(Note 1)
Supply Voltage ....................................................... 18V
Power Dissipation ............................................. 500mW
Operating Temperature Range
LTC1059C $\qquad$ $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$
LTC1059AM, LTC1059M ........... $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}$ Storage Temperature Range $\qquad$ $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec ) $\qquad$

PACKAGE/ORDER INFORMATION

|  | ORDER PART NUMBER |
| :---: | :---: |
|  | LTC1059CN <br> LTC1059CS |
|  |  |
| S1 4 |  |
| $\mathrm{SA}_{\mathrm{A}} 5$ |  |
| $\mathrm{V}^{+} 6$ 9 9 50/100/HOLD |  |
| LSh 7 7 8 CLK |  |
| n PACKAGE SPACKAGE |  |
| LEAD PDIP |  |
| $\begin{aligned} & \mathrm{T}_{\text {JMAX }}=110^{\circ} \mathrm{C}, \theta_{\mathrm{JA}}=130^{\circ} \mathrm{C} \mathrm{C}(\mathrm{~N}) \\ & \mathrm{T}_{\text {JMAX }}=110^{\circ} \mathrm{C}, \theta_{\mathrm{JAA}}=110^{\circ} \mathrm{C} / \mathrm{W}(\mathrm{~S}) \end{aligned}$ |  |
| J PACKAGE <br> 14-LEAD CERDIP <br> $\mathrm{T}_{\mathrm{JMax}}=150^{\circ} \mathrm{C}, \theta_{\mathrm{JA}}=80^{\circ} \mathrm{C} / \mathrm{W}$ <br> OBSOLETE PACKAGE <br> Consider the N or S Package for Alternate Source | LTC1059ACJ |
|  | LTC1059AM J |
|  | LTC1059ANJ |
|  | LTC1059CJ |
|  | LTC1059MJ |

Consult LTC Marketing for parts specified with wider operating temperature ranges.

ELECTRICAL CHARACTGRISTICS The • denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
(Complete Filter) $\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{~T}^{2} \mathrm{~L}$ clock input level unless otherwise specified.

| PARAMETER | CONDITIONS |  | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Center Frequency Range, $\mathrm{f}_{0}$ | $\begin{aligned} & f_{0} \bullet Q \leq 400 \mathrm{kHz} \text {, Mode } 1 \\ & f_{0} \bullet Q \leq 1.6 \mathrm{MHz} \text {, Mode } 1 \\ & f_{0} \bullet Q \leq 250 \mathrm{kHz} \text {, Mode } 3, V_{S}= \pm 7.5 \mathrm{~V} \\ & f_{0} \bullet Q \leq 1 \mathrm{MHz} \text {, Mode } 3, V_{S}= \pm 7.5 \mathrm{~V} \end{aligned}$ |  |  | $\begin{aligned} & 0.1-40 \mathrm{k} \\ & 0.1-18 \mathrm{k} \\ & 0.1-20 \mathrm{k} \\ & 0.1-16 \mathrm{k} \end{aligned}$ |  | $\begin{aligned} & \mathrm{Hz} \\ & \mathrm{~Hz} \\ & \mathrm{~Hz} \\ & \mathrm{~Hz} \end{aligned}$ |
| Input Frequency Range |  |  |  | 0-200k |  | Hz |
| Clock-to-Center Frequency Ratio | Mode 1, 50:1, $\mathrm{f}_{\text {CLK }}=250 \mathrm{kHz}, \mathrm{Q}=10$ <br> Mode 1, 100:1, fCLK $=500 \mathrm{kHz}, \mathrm{Q}=10$ | $\bullet$ |  |  | $\begin{aligned} & 0 \pm 0.8 \% \\ & 10 \pm 0.8 \% \end{aligned}$ |  |
| Q Accuracy | $\begin{aligned} & \text { Mode } 1,50: 1 \text { or } 100: 1, f_{0}=5 \mathrm{kHz} \\ & Q=10 \end{aligned}$ | $\bullet$ |  | $\pm 0.5$ | 5 | \% |
| $\mathrm{f}_{0}$ Temperature Coefficient Q Temperature Coefficient | Mode 1, $\mathrm{f}_{\text {CLK }}<500 \mathrm{kHz}$ <br> Mode 1, $\mathrm{f}_{\mathrm{CLK}}<500 \mathrm{kHz}, \mathrm{Q}=10$ |  |  | $\begin{gathered} 5 \\ 15 \\ \hline \end{gathered}$ |  | $\begin{aligned} & \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ & \mathrm{ppm} /{ }^{\circ} \mathrm{C} \end{aligned}$ |
| DC Offset $V_{\text {os1 }}$ <br>  $V_{\text {os2 }}$ <br>  $V_{\text {os3 }}$ <br>  $V_{\text {OS3 }}$ <br>  $V_{\text {OS3 }}$ <br>  $V_{\text {OS3 }}$ | $\mathrm{f}_{\mathrm{CLK}}=250 \mathrm{kHz}, 50: 1, \mathrm{~S}_{\mathrm{A}}$ High (N Package) <br> $\mathrm{f}_{\mathrm{CLK}}=250 \mathrm{kHz}, 50: 1, \mathrm{~S}_{\mathrm{A}}$ High (S Package) <br> $\mathrm{f}_{\text {CLK }}=500 \mathrm{kHz}, 100: 1, \mathrm{~S}_{\mathrm{A}}$ High (N Package) <br> $\mathrm{f}_{\text {CLK }}=500 \mathrm{kHz}, 100: 1, \mathrm{~S}_{\mathrm{A}}$ High (S Package) <br> $\mathrm{f}_{\mathrm{CLK}}=250 \mathrm{kHz}, 50: 1, \mathrm{~S}_{\mathrm{A}}$ Low (N Package) <br> $\mathrm{f}_{\mathrm{CLK}}=250 \mathrm{kHz}, 50: 1, \mathrm{~S}_{\mathrm{A}}$ Low (S Package) <br> $\mathrm{f}_{\mathrm{CLK}}=500 \mathrm{kHz}, 100: 1, \mathrm{~S}_{\mathrm{A}}$ Low (N Package) <br> $\mathrm{f}_{\mathrm{CLK}}=500 \mathrm{kHz}, 100: 1, \mathrm{~S}_{\mathrm{A}}$ Low (S Package) <br> $\mathrm{f}_{\mathrm{CLK}}=250 \mathrm{kHz}$, 50:1 ( N Package) <br> $\mathrm{f}_{\mathrm{CLK}}=250 \mathrm{kHz}$, 50:1 (S Package) <br> $\mathrm{f}_{\mathrm{CLK}}=500 \mathrm{kHz}, 100: 1$ (N Package) <br> $\mathrm{f}_{\text {CLK }}=500 \mathrm{kHz}, 100: 1$ (S Package) | $\stackrel{\bullet}{\bullet}$ |  | $\begin{aligned} & \hline 2 \\ & 3 \\ & 3 \\ & 6 \\ & 6 \\ & 2 \\ & 2 \\ & 4 \\ & 4 \\ & 2 \\ & 2 \\ & 4 \\ & 4 \end{aligned}$ | $\begin{aligned} & 15 \\ & 30 \\ & 40 \\ & 60 \\ & 80 \\ & 20 \\ & 30 \\ & 40 \\ & 60 \\ & 20 \\ & 30 \\ & 40 \\ & 60 \end{aligned}$ | mV <br> mV |

ELECTRICAL CHARACTERISTICS The • denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
(Complete Filter) $V_{S}= \pm 5 V, T^{2}$ L Clock Input Level unless otherwise specified.

| PARAMETER | CONDITIONS | MIN | TYP | MAX |
| :--- | :--- | :---: | :---: | :---: |
| UNITS |  |  |  |  |
| DC Lowpass Gain Accuracy | Mode $1, \mathrm{R} 1=\mathrm{R} 2=50 \mathrm{k} \Omega$ | $\bullet$ | $\pm 0.1$ | 2 |
| BP Gain Accuracy at $\mathrm{f}_{0}$ | Mode $1, \mathrm{Q}=10, \mathrm{f}_{0}=5 \mathrm{kHz}$ | $\%$ |  |  |
| Clock Feedthrough | $\mathrm{f}_{\text {CLK }} \leq 1 \mathrm{MHz}$ |  | $\pm 0.1$ | $\%$ |
| Max Clock Frequency | Mode $1, \mathrm{Q}<5, \mathrm{~V}_{\mathrm{S}} \geq \pm 5 \mathrm{~V}$ |  | 10 | mV |
| Power Supply Current |  |  | 2 | MHz |
|  |  | -3.5 | 5.5 | mA |

(Complete Filter) $\mathrm{V}_{\mathrm{S}}= \pm 2.37 \mathrm{~V}$ unless otherwise specified.

| PARAMETER | CONDITIONS | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Center Frequency Range | $\begin{aligned} & f_{0} \bullet Q \leq 120 \mathrm{kHz} \text {, Mode 1, } 50: 1 \\ & f_{0} \bullet Q \leq 120 \mathrm{kHz} \text {, Mode 3, } 50: 1 \end{aligned}$ |  | $\begin{aligned} & 0.1-12 k \\ & 0.1-10 k \end{aligned}$ |  | Hz Hz |
| Input Frequency Range |  |  | 60k |  | Hz |
| Clock-to-Center Frequency Ratio | Mode 1, 50:1, $\mathrm{f}_{\text {CLK }}=250 \mathrm{kHz}, \mathrm{Q}=10$ <br> Mode 1, 100:1, $\mathrm{f}_{\mathrm{CLK}}=250 \mathrm{kHz}, \mathrm{Q}=10$ |  | $\begin{array}{r} 50 \pm 0.8 \% \\ 100 \pm 0.8 \% \end{array}$ |  |  |
| Q Accuracy | Mode 1, $\mathrm{f}_{\text {CLK }}=250 \mathrm{kHz}, \mathrm{Q}=10$ 50:1 and 100:1 |  | $\pm 2$ |  | \% |
| Max Clock Frequency |  |  | 700 |  | kHz |
| Power Supply Current |  |  | 1.5 | 2.5 | mA |

(Internal Op Amps) The • denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

| PARAMETER | CONDITIONS |  | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Supply Voltage Range |  |  | $\pm 2.375$ |  | $\pm 8$ | V |
| Voltage Swings | $\begin{aligned} & V_{S}= \pm 5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=5 \mathrm{k}(\text { Pins } 1,14) \\ & \mathrm{R}_{\mathrm{L}}=3.5 \mathrm{k} \text { (Pins } 2,13 \text { ) } \end{aligned}$ | $\bullet$ | $\begin{aligned} & \pm 3.8 \\ & \pm 3.6 \end{aligned}$ | $\pm 4.2$ |  | V V |
| Input Offset Voltage |  | $\bullet$ |  | 1 | 15 | mV |
| Input Bias Current |  |  |  | 3 |  | pA |
| Output Short-Circuit Current Source/Sink | $V_{S}= \pm 5 \mathrm{~V}$ (N Package) <br> $V_{S}= \pm 5 \mathrm{~V}$ (S Package) |  |  | $\begin{aligned} & 40 / 3 \\ & 25 / 3 \end{aligned}$ |  | $\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$ |
| DC Open Loop Gain | $V_{S}= \pm 5 \mathrm{~V}$ |  |  | 80 |  | dB |
| GBW | $V_{S}= \pm 5 \mathrm{~V}$ |  |  | 2 |  | MHz |
| Slew Rate | $\mathrm{V}_{S}= \pm 5 \mathrm{~V}$ |  |  | 7 |  | V/us |

Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.

## TYPICAL PGRFORmANCE CHARACTERISTICS

Graph 1. Mode 1:
(fclu/fo) Deviation vs $\mathbf{Q}$


Graph 4. Mode 1: Q Error vs Clock Frequency


Graph 7. Mode 1: $\left(\mathrm{f}_{\mathrm{CLK}} / \mathrm{f}_{0}\right)$ vs f CLK and Q


Graph 2. Mode 1:
(fclk/fo) Deviation vs Q


1060 G02
Graph 5. Mode 1: Measured Q vs ficlk and Temperature


Graph 8. Mode 1: (fick/fo) vs fcLk and Temperature


Graph 3. Mode 1: Q Error vs Clock Frequency


1060 G03
Graph 6. Mode 1: (flck/fo) vs fick and Q


1059 G06
Graph 9. Mode 1: (fick/fo) vs fCLK and Temperature


## TYPICAL PGRFORMANCE CHARACTGRISTICS



## TYPICAL PGRFORmANCE CHARACTERISTICS

Graph 19. Mode $3(\mathrm{R} 2=\mathrm{R} 4)$ :
(fclk/fo) vs $\mathrm{f}_{\mathrm{CLK}}$ and Q


Graph 22. Mode $3(\mathbf{R 2}=\mathrm{R} 4)$ :
(fCLK/fo) vs $\mathrm{f}_{\mathrm{CLK}}$ and Temperature


Graph 20. Mode $3(\mathbf{R 2}=\mathbf{R 4})$ :
( $\mathrm{f}_{\mathrm{CLK}} / \mathrm{f}_{\mathrm{O}}$ ) vs $\mathrm{f}_{\mathrm{CLK}}$ and Q


Graph 23. Mode 3 ( $\mathbf{R 2}=\mathbf{R 4}$ ):
( $\mathrm{f}_{\mathrm{CLL}} / \mathrm{f}_{0}$ ) vs $\mathrm{f}_{\mathrm{CLK}}$ and Temperature


Graph 21. Mode 3 ( $\mathrm{R} 2=\mathrm{R} 4$ ):
( $\mathrm{f}_{\mathrm{CLL}} / \mathrm{f}_{0}$ ) vs $\mathrm{f}_{\mathrm{CLK}}$ and Temperature


Graph 24. Mode 3 ( $\mathbf{R 2}=\mathbf{R 4}$ ):
( $\mathrm{f}_{\mathrm{CLL}} / \mathrm{f}_{0}$ ) vs $\mathrm{f}_{\mathrm{CLK}}$ and Temperature


Graph 25. Mode 1c ( $\mathrm{R} 5=0$ ), Mode 2 (R2 = R4): Q Error vs Clock Frequency


Graph 26. Supply Current vs Supply Voltage


## BLOCK DIAGRAM



## APPLICATIONS INFORMATION

The LTC1059 is compatible with the LTC1060. All the LTC1059 pins are functionally equivalent to the LTC1060 pins bearing the same title. For a detailed pin description and definition of various modes of operation refer to the LTC1060 data sheet. The LTC1059 is typically "faster" than the LTC1060 especially under single 5 V (or $\pm 2.5 \mathrm{~V}$ ) supply
operation. This becomes apparent through the Typical Performance Characteristics of the part. All the graphs shown in this data sheet have been drawn under the same test conditions as in the LTC1060 data sheet; they are also numbered in the same order. For complete discussion of the filter characteristics see the LTC1060 data sheet.

## PACKAGE DESCRIPTION

J Package
14-Lead CERDIP (Narrow . 300 Inch, Hermetic)
(Reference LTC DWG \# 05-08-1110)


OBSOLETE PACKAGE

## N Package

14-Lead PDIP (Narrow . 300 Inch)
(Reference LTC DWG \# 05-08-1510)


## 1. DIMENSIONS ARE $\frac{\text { INCHES }}{\text { MILLIMETERS }}$

N14 1002
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH ( 0.254 mm )

## S Package

14-Lead Plastic Small Outline (Narrow . 150 Inch)
(Reference LTC DWG \# 05-08-1610)


