# imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



## Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



## LTC 1059

TECHNOLOGY

OLOGY High Performance Switched Capacitor Universal Filter

### FEATURES

- All Filter Parameters *Guaranteed* Over Temperature
- Wide Center Frequency Range (0.1Hz to 40kHz)
- Low Noise, Wide Dynamic Range
- Guaranteed Operation for ±2.37V and ±5V Supply
- Low Power Consumption
- Guaranteed Clock-to-Center Frequency Accuracy of 0.8%
- *Guaranteed* Low Offset Voltages Over Temperature
- Very Low Center Frequency and Q Tempco
- Clock Input T<sup>2</sup>L or CMOS Compatible
- Separate Highpass (or Notch or Allpass), Bandpass, Lowpass Outputs

### **APPLICATIONS**

- Sinewave Oscillators
- Sweepable Bandpass/Notch Filters
- Full Audio Frequency Filters
- Tracking Filters

T, LTC and LT are registered trademarks of Linear Technology Corporation. LTCMOS trademark of Linear Technology Corporation.

## DESCRIPTION

The LTC<sup>®</sup>1059 consists of a general purpose, high performance, active filter building block and an uncommitted op amp. The filter building block together with an external clock and 2 to 5 resistors can produce various 2nd order functions which are available at its three output pins. Two out of three always provide lowpass and bandpass functions while the third output pin can produce notch or highpass or allpass. The center frequency of these functions can be tuned from 0.1Hz to 40kHz and is dependent on an external clock or an external clock and a resistor ratio. The filter can handle input frequencies up to 100kHz. The uncommitted op amp can be used to obtain additional allpass and notch functions, for gain adjustment or for cascading techniques.

Higher than 2nd order filter functions can be obtained by cascading the LTC1059 with the LTC1060 dual universal filter or the LTC1061 triple universal filter. Any classical filter realization (such as Butterworth, Cauer, Bessel and Chebyshev) can be formed.

The LTC1059 can be operated with single or dual supplies ranging from  $\pm 2.37V$  to  $\pm 8V$  (or 4.74V to 16V single supply).

The LTC1059 is manufactured by using Linear Technology's enhanced LTCMOS  $^{\rm TM}$  silicon gate process.

### TYPICAL APPLICATION



### **Center Frequency and Q Error**



### **ABSOLUTE MAXIMUM RATINGS**

(Note 1)

| Supply Voltage<br>Power Dissipation |                                          |
|-------------------------------------|------------------------------------------|
| •                                   |                                          |
| Operating Temperature Range         |                                          |
| LTC1059C                            | $-40^{\circ}C \le T_{A} \le 85^{\circ}C$ |
| LTC1059AM, LTC1059M                 | −55°C $\leq$ T <sub>A</sub> $\leq$ 125°C |
| Storage Temperature Range           | 65°C to 150°C                            |
| Lead Temperature (Soldering, 1      | 0 sec)300°C                              |

### PACKAGE/ORDER INFORMATION



Consult LTC Marketing for parts specified with wider operating temperature ranges.

### **ELECTRICAL CHARACTERISTICS** The • denotes the specifications which apply over the full operating

temperature range, otherwise specifications are at  $T_A = 25^{\circ}C$ .

| (Complete Filter) $V_S = \pm 5V$ , T | <sup>2</sup> L clock input level unless | otherwise specified. |
|--------------------------------------|-----------------------------------------|----------------------|
|--------------------------------------|-----------------------------------------|----------------------|

| PARAMETER                                                         | CONDITIONS                                                            |   | MIN TYP  | MAX        | UNITS  |
|-------------------------------------------------------------------|-----------------------------------------------------------------------|---|----------|------------|--------|
| Center Frequency Range, $f_0$ $f_0 \bullet Q \le 400$ kHz, Mode 1 |                                                                       |   | 0.1 - 40 | K          | Hz     |
|                                                                   | $f_0 \bullet Q \le 1.6 MHz$ , Mode 1                                  |   | 0.1 - 18 | K          | Hz     |
|                                                                   | $f_0 \bullet Q \le 250 \text{kHz}$ , Mode 3, $V_S = \pm 7.5 \text{V}$ |   | 0.1 - 20 | <          | Hz     |
|                                                                   | $f_0 \bullet Q \le 1$ MHz, Mode 3, $V_S = \pm 7.5$ V                  |   | 0.1 - 16 | K          | Hz     |
| Input Frequency Range                                             |                                                                       |   | 0 - 200  | (          | Hz     |
| Clock-to-Center Frequency Ratio                                   |                                                                       |   |          |            |        |
|                                                                   | Mode 1, 50:1, f <sub>CLK</sub> = 250kHz, Q = 10                       | • |          | 50 ± 0.8%  |        |
|                                                                   | Mode 1, 100:1, f <sub>CLK</sub> = 500kHz, Q = 10                      | • |          | 100 ± 0.8% |        |
| Q Accuracy                                                        | Mode 1, 50:1 or 100:1, f <sub>0</sub> = 5kHz                          |   |          |            |        |
|                                                                   | Q = 10                                                                | • | ±0.5     | 5          | %      |
| f <sub>0</sub> Temperature Coefficient                            | Mode 1, f <sub>CLK</sub> < 500kHz                                     |   | 5        |            | ppm/°C |
| Q Temperature Coefficient                                         | Mode 1, f <sub>CLK</sub> < 500kHz, Q = 10                             |   | 15       |            | ppm/°C |
| DC Offset V <sub>OS1</sub>                                        |                                                                       | • | 2        | 15         | mV     |
| V <sub>0S2</sub>                                                  | f <sub>CLK</sub> = 250kHz, 50:1, S <sub>A</sub> High (N Package)      | • | 3        | 30         | mV     |
| V <sub>0S2</sub>                                                  | f <sub>CLK</sub> = 250kHz, 50:1, S <sub>A</sub> High (S Package)      | • | 3        | 40         | mV     |
| V <sub>OS2</sub>                                                  | f <sub>CLK</sub> = 500kHz, 100:1, S <sub>A</sub> High (N Package)     | • | 6        | 60         | mV     |
| V <sub>0S2</sub>                                                  | f <sub>CLK</sub> = 500kHz, 100:1, S <sub>A</sub> High (S Package)     | • | 6        | 80         | mV     |
| V <sub>0S2</sub>                                                  | f <sub>CLK</sub> = 250kHz, 50:1, S <sub>A</sub> Low (N Package)       | • | 2        | 20         | mV     |
| V <sub>OS2</sub>                                                  | f <sub>CLK</sub> = 250kHz, 50:1, S <sub>A</sub> Low (S Package)       |   | 2        | 30         | mV     |
| V <sub>OS2</sub>                                                  | f <sub>CLK</sub> = 500kHz, 100:1, S <sub>A</sub> Low (N Package)      |   | 4        | 40         | mV     |
| V <sub>OS2</sub>                                                  | f <sub>CLK</sub> = 500kHz, 100:1, S <sub>A</sub> Low (S Package)      | • | 4        | 60         | mV     |
| V <sub>OS3</sub>                                                  | f <sub>CLK</sub> = 250kHz, 50:1 (N Package)                           | • | 2        | 20         | mV     |
| V <sub>OS3</sub>                                                  | f <sub>CLK</sub> = 250kHz, 50:1 (S Package)                           |   | 2        | 30         | mV     |
| V <sub>OS3</sub>                                                  | f <sub>CLK</sub> = 500kHz, 100:1 (N Package)                          |   | 4        | 40         | mV     |
| V <sub>OS3</sub>                                                  | f <sub>CLK</sub> = 500kHz, 100:1 (S Package)                          |   | 4        | 60         | mV     |



## **ELECTRICAL CHARACTERISTICS** The $\bullet$ denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $T_A = 25^{\circ}C$ .

(Complete Filter)  $V_S = \pm 5V$ , T<sup>2</sup>L Clock Input Level unless otherwise specified.

| PARAMETER                          | CONDITIONS                                 |   | MIN | ТҮР  | MAX      | UNITS    |
|------------------------------------|--------------------------------------------|---|-----|------|----------|----------|
| DC Lowpass Gain Accuracy           | Mode 1, R1 = R2 = 50kΩ                     | • |     | ±0.1 | 2        | %        |
| BP Gain Accuracy at f <sub>0</sub> | Mode 1, Q = 10, f <sub>0</sub> = 5kHz      |   |     | ±0.1 |          | %        |
| Clock Feedthrough                  | f <sub>CLK</sub> ≤ 1MHz                    |   |     | 10   |          | mV       |
| Max Clock Frequency                | Mode 1, Q < 5, V <sub>S</sub> $\ge \pm 5V$ |   |     | 2    |          | MHz      |
| Power Supply Current               |                                            | • |     | 3.5  | 5.5<br>7 | mA<br>mA |

### (Complete Filter) $V_S = \pm 2.37V$ unless otherwise specified.

| PARAMETER                       | CONDITIONS                                        | MIN TYP MAX     | UNITS |
|---------------------------------|---------------------------------------------------|-----------------|-------|
| Center Frequency Range          | f <sub>0</sub> • Q ≤ 120kHz, Mode 1, 50:1         | 0.1 - 12k       | Hz    |
|                                 | $f_0 \bullet Q \le 120 \text{kHz}$ , Mode 3, 50:1 | 0.1 - 10k       | Hz    |
| Input Frequency Range           |                                                   | 60k             | Hz    |
| Clock-to-Center Frequency Ratio |                                                   |                 |       |
|                                 | Mode 1, 50:1, f <sub>CLK</sub> = 250kHz, Q = 10   | $50 \pm 0.8\%$  |       |
|                                 | Mode 1, 100:1, f <sub>CLK</sub> = 250kHz, Q = 10  | $100 \pm 0.8\%$ |       |
| Q Accuracy                      | Mode 1, f <sub>CLK</sub> = 250kHz, Q = 10         |                 |       |
|                                 | 50:1 and 100:1                                    | ±2              | %     |
| Max Clock Frequency             |                                                   | 700             | kHz   |
| Power Supply Current            |                                                   | 1.5 2.5         | mA    |

#### (Internal Op Amps) The • denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $T_A = 25^{\circ}C$ .

| PARAMETER                                | CONDITIONS                                |   | MIN    | ТҮР  | MAX | UNITS |
|------------------------------------------|-------------------------------------------|---|--------|------|-----|-------|
| Supply Voltage Range                     |                                           |   | ±2.375 |      | ±8  | V     |
| Voltage Swings                           |                                           |   |        |      |     |       |
|                                          | $V_{S} = \pm 5V, R_{L} = 5k$ (Pins 1, 14) |   | ±3.8   | ±4.2 |     | V     |
|                                          | R <sub>L</sub> = 3.5k (Pins 2, 13)        | • | ±3.6   |      |     | V     |
| Input Offset Voltage                     |                                           | • |        | 1    | 15  | mV    |
| Input Bias Current                       |                                           |   |        | 3    |     | рА    |
| Output Short-Circuit Current Source/Sink | $V_{\rm S} = \pm 5 V (N \text{ Package})$ |   |        | 40/3 |     | mA    |
|                                          | $V_{S} = \pm 5V$ (S Package)              |   |        | 25/3 |     | mA    |
| DC Open Loop Gain                        | $V_{\rm S} = \pm 5 V$                     |   |        | 80   |     | dB    |
| GBW                                      | $V_{\rm S} = \pm 5 V$                     |   |        | 2    |     | MHz   |
| Slew Rate                                | $V_{S} = \pm 5V$                          |   |        | 7    |     | V/µs  |

Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.



### **TYPICAL PERFORMANCE CHARACTERISTICS**









1060 G03

Graph 4. Mode 1: Q Error vs Clock Frequency



Graph 7. Mode 1: (f<sub>CLK</sub>/f<sub>0</sub>) vs f<sub>CLK</sub> and Q 0.8  $V_S = \pm 5V$  $T_A = 25^{\circ}C$  $\frac{f_{CLK}}{2} = 50:1$ 0.6 DEVIATION FROM 50:1 (%) f<sub>0</sub> 0.4 Q = 500.2 Q = 20 Q = 100 -0.2 Q = -0.4 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 f<sub>CLK</sub> (MHz) 1059 G07

Graph 5. Mode 1: Measured Q vs f<sub>CLK</sub> and Temperature



Graph 8. Mode 1: (f<sub>CLK</sub>/f<sub>0</sub>) vs f<sub>CLK</sub> and Temperature



Graph 6. Mode 1: ( $f_{CLK}/f_0$ ) vs  $f_{CLK}$  and Q



Graph 9. Mode 1:  $(f_{CLK}/f_0)$  vs  $f_{CLK}$  and Temperature





### TYPICAL PERFORMANCE CHARACTERISTICS







Graph 13. Mode 1: (f<sub>CLK</sub>/f<sub>0</sub>) vs f<sub>CLK</sub> and Temperature



Graph 16. Mode 3: Q Error vs Clock Frequency



Graph 14. Mode 1: Notch Depth vs Clock Frequency



Graph 17. Mode 3 (R2 = R4): Q Error vs Clock Frequency



Graph 15. Mode 3: Deviation of  $(f_{CLK}/f_0)$  with Respect to Q = 10 Measurement



Graph 18. Mode 3 (R2 = R4): Measured Q vs f<sub>CLK</sub> and Temperature





### TYPICAL PERFORMANCE CHARACTERISTICS

Q = 20

1.0 1.2

f<sub>CLK</sub> (MHz)

1.4 1.6

1.8 2.0

1059 G25

10

0

0.2 0.4

<u>f<sub>CLK</sub></u> = 35.35:1

0.6 0.8

f<sub>0</sub>



3

2

1

0

±1 ±2

±3 ±4 ±5 ±6 ±7 ±8 ±9 +10

POWER SUPPLY VOLTAGE (±V)



1059fd

1059 626

1.2

### **BLOCK DIAGRAM**



### **APPLICATIONS INFORMATION**

The LTC1059 is compatible with the LTC1060. All the LTC1059 pins are functionally equivalent to the LTC1060 pins bearing the same title. For a detailed pin description and definition of various modes of operation refer to the LTC1060 data sheet. The LTC1059 is typically "faster" than the LTC1060 especially under single 5V (or  $\pm 2.5V$ ) supply operation. This becomes apparent through the Typical Performance Characteristics of the part. All the graphs shown in this data sheet have been drawn under the same test conditions as in the LTC1060 data sheet: they are also numbered in the same order. For complete discussion of the filter characteristics see the LTC1060 data sheet.

### PACKAGE DESCRIPTION





Information furnished by Linear Technology Corporation is believed to be accurate and reliable. However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of its circuits as described herein will not infringe on existing patent rights.

### PACKAGE DESCRIPTION



N Package

\*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.

MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH (0.254mm)

S Package 14-Lead Plastic Small Outline (Narrow .150 Inch)

(Reference LTC DWG # 05-08-1610)



Linear Technology Corporation 1630 McCarthy Blvd., Milpitas, CA 95035-7417

(408) 432-1900 • FAX: (408) 434-0507 • www.linear.com

LW/TP 0103 1K REV D • PRINTED IN USA

