: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Single and Dual Protected High Side Switches

feATURES

- Extremely Low RDS(ON) Switch: 0.07Ω
- No Parasitic Body Diode
- Built-In Short-Circuit Protection: 2A
- Built-In Thermal Overload Protection
- Operates from 2.7 V to 5.5 V
- Inrush Current Limited
- Ultralow Standby Current: $0.01 \mu \mathrm{~A}$
- Built-In Charge Pump
- Controlled Rise and Fall Times: $t_{R}=1 \mathrm{~ms}$
- Single Switch in 8-Pin SO Package
- Dual Switch in Narrow 16-Pin SO Package

APPLICATIONS

- Notebook Computer Power Management
- Power Supply/Load Protection
- Supply/Battery Switch-Over Circuits
- Circuit Breaker Function
- "Hot Swap" Board Protection
- Peripheral Power Protection

DESCRIPTIOn

The LTC ${ }^{\circledR} 1477 /$ LTC1478 protected high side switches provide extremely low $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ switching with built-in protection against short-circuitand thermal overload conditions. A built-in charge pump generates gate drive higher than the supply voltage to fully enhance the internal NMOS switch. This switch has no parasitic body diode and therefore no current flows through the switch when it is turned off and the output is forced above the input supply voltage. (DMOS switches have parasitic body diodes that become forward biased under these conditions.)
Two levels of protection are provided by the LTC1477/LTC1478. The first level of protection is shortcircuit current limit which is set at 2 A . The short-circuit current can be reduced to as low as 0.85 A by disconnecting portions of the power device (see Applications Information). The second level of protection is provided by thermal overload protection which limits the die temperature to approximately $130^{\circ} \mathrm{C}$.
The LTC1477 single is available in 8 -lead SO packaging. The LTC1478 dual is available in 16 -lead SO packaging.
$\boldsymbol{\mathcal { Y }}$, LTC and LT are registered trademarks of Linear Technology Corporation.

SImPLIFIGD BLOCK DIAGRAm

*NMOS SWITCHES WITH NO PARASITIC BODY DIODES

Switch Output Voltage

LTC1477/1478• TP02

ABSOLUTE MAXImUM RATINGS

Supply Voltage ... 7 V	Operating Temperature
Enable Input Voltage (7V) to (GND -0.3V)	LTC1477C/LTC1478C $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Output Voltage (OFF) (Note 1) (7V) to (GND -0.3V)	Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Output Short-Circuit Duration Indefinite	Lead Temperature (Soldering, 10 sec)................ $300^{\circ} \mathrm{C}$
unction Temperature $110^{\circ} \mathrm{C}$	

PACKAGE/ORDER INFORMATION

TOP VIEW	ORDER PART NUMBER	TOP VIEW	ORDER PART NUMBER
		$\mathrm{Av}_{1 \times} 2$	LTC1478CS
	LTC1477CS8	$\mathrm{AV}^{\text {ISS }}{ }^{3}$	
$\mathrm{V}_{\text {IV1 }} 2$			
		GND 5	
En $4 \square 5$ GND		$\mathrm{BV}_{\text {I3 }} 6$	
$\begin{gathered} \text { S8 PACKAGE } \\ 8 \text { LEAD PLASTIC SO } \\ \mathrm{T}_{\text {Jmax }}=110^{\circ} \mathrm{C}, \theta_{\mathrm{JJA}}=120^{\circ} \mathrm{C} / \mathrm{W} \end{gathered}$	S8 PART MARKING	$\mathrm{BV}_{\mathrm{IN2}} 7 \quad 10 \mathrm{BV}_{\mathbf{N 1} 1}$	
	1477	S PACKAGE 16-LEAD PLASTIC SO $\mathrm{T}_{\mathrm{JMAX}}=110^{\circ} \mathrm{C}, \theta_{\mathrm{JA}}=100^{\circ} \mathrm{C} / \mathrm{W}$	

Consult factory for Industrial and Military grade parts.

ELECTRICAL CHARACTERISTICS

$V_{\text {INS }}=V_{\text {IN1 }}=V_{\text {IN2 }}=V_{\text {IN3 }}=5 \mathrm{~V}$ (Note 2), $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted. Each channel of the LTC1478 is tested separately (Note 3).

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$\mathrm{V}_{\text {IN }}$	Supply Voltage Range			2.7		5.5	V
$\mathrm{IVIN}^{\text {l }}$	Supply Current	$\begin{aligned} & \text { Switch OFF, Enable }=0 \mathrm{~V} \\ & \text { Switch ON, Enable }=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=5 \mathrm{~V} \\ & \text { Switch ON, Enable }=3.3 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=3.3 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \bullet \\ & \bullet \\ & \bullet \end{aligned}$		$\begin{aligned} & 0.01 \\ & 120 \\ & 80 \end{aligned}$	$\begin{gathered} \hline 10 \\ 180 \\ 120 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
$\overline{R_{\text {ON }}}$	ON Resistance	$\begin{aligned} & V_{\text {INS }}=V_{\text {IN1 }}=V_{\text {IN2 }}=V_{\text {IN3 }}=5 \mathrm{~V}, I_{\text {OUT }}=1 \mathrm{~A} \\ & V_{\text {INS }}=V_{\text {IN1 }}=V_{\text {IN2 }}=V_{\text {IN3 }}=3.3 V, I_{\text {OUT }}=1 \mathrm{~A} \\ & V_{\text {INS }}=V_{\text {IN1 }}=5 \mathrm{~V}, V_{\text {IN2 }}=V_{\text {IN3 }}=\text { NC, } I_{\text {OUT }}=0.5 \mathrm{~A} \\ & V_{\text {INS }}=V_{\text {IN1 }}=3.3 V, V_{\text {IN2 }}=V_{\text {IN3 }}=N C, I_{\text {OUT }}=0.5 \mathrm{~A} \end{aligned}$			$\begin{aligned} & 0.07 \\ & 0.08 \\ & 0.12 \\ & 0.13 \end{aligned}$	$\begin{aligned} & 0.12 \\ & 0.12 \\ & 0.20 \\ & 0.20 \end{aligned}$	Ω Ω Ω Ω
ILKG	Output Leakage Current OFF	Switch OFF, Enable $=0 \mathrm{~V}$	\bullet			± 20	$\mu \mathrm{A}$
${ }_{\text {SC }}$	Short-Circuit Current Limit	$\begin{aligned} & V_{\text {INS }}=V_{\text {IN1 }}=V_{\text {IN2 }}=V_{\text {IN3 }}=5 \mathrm{~V}, V_{\text {OUT }}=0 \mathrm{~V} \text {, (Note 4) } \\ & V_{\text {INS }}=V_{\text {IN1 } 1}=5 \mathrm{~V}, V_{\text {IN2 }}=V_{\text {IN3 }}=\text { NC, } V_{\text {OUT }}=0 \mathrm{~V} \text {, (Note 4) } \end{aligned}$		$\begin{aligned} & 1.60 \\ & 0.68 \end{aligned}$	$\begin{aligned} & 2.00 \\ & 0.85 \end{aligned}$	$\begin{aligned} & 2.40 \\ & 1.02 \end{aligned}$	A
$\mathrm{V}_{\text {ENH }}$	Enable Input High Voltage	$3.0 \mathrm{~V} \leq \mathrm{V}_{\text {INS }} \leq 5.5 \mathrm{~V}$	\bullet	2.0			V
$\mathrm{V}_{\text {ENL }}$	Enable Input Low Voltage	$3.0 \mathrm{~V} \leq \mathrm{V}_{\text {INS }} \leq 5.5 \mathrm{~V}$	\bullet			0.8	V
IEN	Enable Input Current	$0 \mathrm{~V} \leq \mathrm{V}_{\text {EN }} \leq 5.5 \mathrm{~V}$	\bullet			± 1	$\mu \mathrm{A}$
$t_{\text {d }+R}$	Delay and Rise Time	$\mathrm{R}_{\text {OUT }}=100 \Omega, \mathrm{C}_{\text {OUT }}=1 \mu \mathrm{~F}$, to 90% of Final Value		0.50	1.00	2.00	ms

The denotes specifications which apply over the full operating temperature range.
Note 1: The $V_{\text {OUT }}$ pins must be connected together.
Note 2: The $\mathrm{V}_{\text {INS }}$ and $\mathrm{V}_{\text {IN1 }}$ pins must be connected together. The $\mathrm{V}_{\text {IN2 }}$ and $V_{\text {IN3 }}$ pins are typically connected to $V_{\text {INS }}$ and $V_{\text {IN } 1}$ pins but can be selectively disconnected to reduce the short-circuit current limit and
increase the ON resistance of the switch. The LTC1478 GND pins must be connected together. (See Pin Functions and Block Diagram for more detail.) Note 3: Other channel turned OFF, i.e. AEN and BEN = OV.
Note 4: The output is protected with fold-back current limit which reduces the short-circuit (OV) currents below peak permissible current levels at higher output voltages. (See Typical Performance Characteristics for further detail on output current versus output voltage).

TYPICAL PGRFORMANCE CHARACTERISTICS

LTC1477/1478•TPC01

LTC1477/1478• TPC04
Output Current (3.3V)

Switch Resistance

LTC1477/1478•TPC02

LTC1477/1478• TPC05
Inrush Current (5V)

Switch Resistance (5V)

LTC1477/1478•TPC03
Output Current (5V)

LTC1477/1478•TPC06
Inrush Current (3.3V)

PIn fUnCTIOnS

LTC1477

EN (Pin 4): The enable input is a high impedance CMOS gate with an ESD protection diode to ground and should not be forced below ground. This input has about 100 mV of built-in hysteresis to ensure clean switching.
$\mathrm{V}_{\text {INS }}, \mathrm{V}_{\text {IN1 }}$ (Pins 3,2): The $\mathrm{V}_{\text {INS }}$ supply pin must always be connected to the $\mathrm{V}_{\text {IN } 1}$ supply pin (see Block Diagram). The $V_{\text {INS }}$ supply pin provides power for the input control logic, the current limit and thermal shutdown circuitry; plus provides a sense connection to the input power supply. The gate of the NMOS switch is powered by a charge pump from the $\mathrm{V}_{\text {INS }}$ supply pin (see Block Diagram). The $\mathrm{V}_{\text {IN1 }}$ supply pin provides connection to the drain of $1 / 2$ of the output power device.
$\mathrm{V}_{\mathrm{IN} 2}, \mathrm{~V}_{\mathrm{IN3} 3}$ (Pins 7,6): The $\mathrm{V}_{\mathrm{IN} 2}$ and $\mathrm{V}_{\text {IN3 }}$ supply pins are typically tied to the $\mathrm{V}_{\text {INS }}$ and $\mathrm{V}_{\text {IN1 }}$ supply pins for lowest 0 N resistance; i.e., when all four V_{IN} pins are connected together the entire power device is connected (see Block Diagram). Each auxiliary supply pin, $\mathrm{V}_{\mathrm{IN} 2}$ and $\mathrm{V}_{\mathrm{IN} 3}$, is connected to the drain of $1 / 4$ of the power device. The $\mathrm{V}_{\text {IN2 }}$ and $V_{\text {IN3 }}$ pins can be selectively disconnected to reduce the short-circuit current limit at the expense of higher $\mathrm{R}_{\mathrm{DS}(\mathrm{ONN}}$. (See Applications Information section for more details.)
$\mathrm{V}_{\text {OUT }}$ (Pins 1,8): The output pins of the LTC1477 must always be tied together. The output is protected against accidental shortcircuits to ground by a current limit circuit which protects the system power supply and load against damage. A second level of protection is provided by thermal shutdown circuitry which limits the die temperature to $130^{\circ} \mathrm{C}$.

LTC1478

AEN, BEN (Pins 4,12): The enable inputs are high impedance CMOS gates with ESD protection diodes to ground and should not be forced below ground. These inputs have about 100 mV of built-in hysteresis to ensure clean switching.
$A V_{I N S}, \mathrm{AV}_{\mathrm{I} 1}, \mathrm{BV}_{\text {INS }}, \mathrm{BV}_{\text {IN1 }}$ (Pins 3,2; 11,10): The $\mathrm{AV}_{\text {INS }}$ or $\mathrm{BV}_{\text {INS }}$ supply pin must always be connected to the $\mathrm{AV}_{I N 1}$ or $\mathrm{BV}_{\text {IN1 }}$ supply pin (see Block Diagram). The $\mathrm{AV}_{\text {INS }}$ and $\mathrm{BV}_{\text {INS }}$ supply pins provide power for the input control logic, the current limit and thermal shutdown circuitry; plus, provides a sense connection to the input power supply. The gate of the NMOS switch is powered by a charge pump from the $A V_{\text {INS }}$ and $B V_{\text {INS }}$ supply pins (see Block Diagram). The $\mathrm{AV}_{\mid \mathbb{I N} 1}$ and $\mathrm{BV}_{\mid \mathbb{I N} 1}$ supply pins provide connection to the drain of $1 / 2$ of the output power device.
$\mathrm{AV}_{\mathrm{IN} 2}, \mathrm{AV}_{\mathrm{IN} 3}, \mathrm{BV}_{\mathrm{IN} 2}, \mathrm{BV}_{\mathrm{IN} 3}$, (Pins 15,14;7,6): The $\mathrm{AV}_{\mathrm{IN} 2}$, $\mathrm{AV}_{\mathrm{IN} 3}, \mathrm{BV}_{\mathrm{IN}^{\mathrm{N} 2}}$ and $\mathrm{BV} \mathrm{V}_{\mathrm{IN} 3}$ supply pins are typically tied to the $\mathrm{AV}_{\text {INS }}, \mathrm{AV}_{\mathrm{V}_{\mathrm{N} 1},}, \mathrm{BV}_{\text {INS }}$ and $\mathrm{BV}_{\mid \mathbb{N 1} 1}$ supply pins for lowest 0 N resistance; i.e., when all four $\mathrm{AV}_{\mathrm{IN}}, \mathrm{BV}_{\text {IN }}$ pins are connected together the entire power device is connected (see Block Diagram). Each auxiliary supply pin, $\mathrm{AV}_{\mathrm{IN2}}, \mathrm{AV}_{\text {IN3 }}$, $B V_{\text {IN2 }}$ and $\mathrm{BV}_{\mathbb{I N 3}}$, is connected to the drain of approximately $1 / 4$ of the corresponding power device. The $\mathrm{AV}_{\mathrm{IN2} 2}$, $\mathrm{AV}_{\mathrm{IN} 3}, \mathrm{BV}_{\mathrm{IN} 2}$ and $\mathrm{BV}_{\mathrm{IN} 3}$ pins can be selectively disconnected to reduce the short-circuit current limit at the expense of higher $\mathrm{R}_{\mathrm{DS}(0 \mathrm{ON}) \text {) (}}$ (See Applications Information section for more details.)
$\mathrm{AV}_{\text {OUT }}, \mathrm{BV}_{\text {OUT }}$ (Pins 1,$16 ; 8,9$): The outputs ofthe LTC1478 are protected against accidental short circuits to ground by a current limit circuit which protects the system power supplies and loads against damage. A second level of protection is provided by thermal shutdown circuitry which limits the die temperature to approximately $130^{\circ} \mathrm{C}$.

OPERATION

(LTC1477 or single channel of LTC1478)

Input TTL-CMOS Converter

The LTC1477 enable input is designed to accommodate a wide range of 3 V and 5 V logic families. The input threshold voltage is approximately 1.4 V with 100 mV of hysteresis. The input enables the bias generator, the gate charge pump and the protection circuitry. Therefore, when the enable input is turned off, the entire circuit is powered down and the supply current drops below $1 \mu \mathrm{~A}$.

Ramped Switch Control

The LTC1477 gate charge pump includes circuitry which ramps the NMOS switch on slowly (1ms typical rise time) but turns it off much more quickly (typically 20 $\mu \mathrm{s}$).

Bias, Oscillator and Gate Charge Pump

When the switch is enabled, a bias current generator and high frequency oscillator are turned on. The on-chip capacitive charge pump generates approximately 12 V of
gate drive for the internal low $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})} \mathrm{NMOS}$ switch from the power supply. No external 12 V supply is required to switch the output.

Switch Protection

Two levels of protection are designed into the power switch in the LTC1477. The switch is protected against accidental short circuits with a current limit circuit which limits the output current to typically 2A when the output is shorted to ground. The LTC1477 also has thermal shutdown set at approximately $130^{\circ} \mathrm{C}$ which limits the power dissipation to safe levels.

LTC1478 Operation

The LTC1478 dual protected switch can be thought of as two independent LTC1477 single protected switches. The inputsupply voltages may be from separate powersources. The ground connection, however, is common to both channels and must be connected to the same potential.

BLOCK DIAGRAM (ITC147 or single eramene ot trciare)

APPLICATIONS INFORMATION

Tailoring $\mathrm{I}_{\text {LIMIT }}$ and $\mathrm{R}_{\mathrm{DS}(\mathbf{O N})}$ for Load Requirements
The LTC1477 is designed to current limit at approximately 2A during a short circuit with all the $\mathrm{V}_{\text {IN }}$ pins connected to the input power supply. It is possible however, to reduce this current by selectively disconnecting two of the four power supply pins ($\mathrm{V}_{\mathbb{I N 2}}$ and $\mathrm{V}_{\mathbb{I N} 3}$). Table 1 lists the effects of disconnecting these pins on $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ and short-circuit current limit

Table 1. Effects of Disconnecting $\mathrm{V}_{\mathrm{IN} 2}$ and $\mathrm{V}_{\mathrm{IN} 3}$

	ALL $V_{\text {IN }}$ PINS CONNECTED	$V_{\text {IN3 }}$ DISCONNECTED	$V_{\text {IN2 }}$ AND VIN3 $^{\text {DISCONNECTED }}$
$\mathrm{R}_{\mathrm{DS}(0 \mathrm{~N})}$	0.07Ω	0.09Ω	0.12Ω
$\mathrm{I}_{\text {LIMIT }}$	2 A	1.5 A	0.85 A

Note: 5V Operation
Note that there is an inverse relationship between output current limit and switch resistance. This allows the tailor-

LTC1477/LTC 1478

APPLLCATIONS InFORMATION

ing of the switch parameters to the expected load current and system current limit requirements.
A couple of examples are helpful:

1. If a nominal load of 1 A was controlled by the switch configured to current limit at 2 A (all $\mathrm{V}_{\text {IN }}$ pins connected together), the $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ would be 0.07Ω and the voltage drop across the switch would be 70 mV . The power dissipated by the switch would only be 70 mW .
2. If a nominal load of 0.5 A was controlled by the switch configured to current limit at 0.85 A ($\mathrm{V}_{\text {IN2 }}$ and $\mathrm{V}_{\text {IN3 }}$ disconnected), the $R_{D S(O N)}$ would increase to 0.14Ω. But the voltage drop would remain at 70 mV and the switch power dissipation would drop to 35 mW .

Supply Bypassing

For best results, bypass the supply input pins with a single $1.0 \mu \mathrm{~F}$ capacitor as close as possible to the LTC1477. Sometimes, much larger capacitors are already available at the output of the power supply. In this case, it is still good practice to use a $0.1 \mu \mathrm{~F}$ capacitor as close as possible
to the LTC1477, especially if the power supply output capacitor is more than 2 inches away on the printed circuit board.

Output Capacitor

The output pin is designed to ramp on slowly, typically 1 ms rise time. Therefore, very large output capacitors can be driven without producing voltage spikes on the supply pins (see graphs in Typical Performance Characteristics). The output pin should have a $1 \mu \mathrm{~F}$ capacitor for noise reduction and smoothing.

Supply and Input Sequencing

The LTC1477 is designed to operate with continuous power (quiescent current drops to < $1 \mu \mathrm{~A}$ when disabled). If the power must be turned off, for example to enter a system "sleep" mode, the enable input must be turned off $100 \mu \mathrm{~s}$ before the input supply is turned off to ensure that the gate of the NMOS switch is completely discharged before power is removed. However, the input control and power can be applied simultaneously during power up.

TYPICAL APPLICATIONS

0.85A Protected Switch

1.5A Protected Switch

2A Protected Switch Driving a Large Capacitive Load

TYPICAL APPLICATIONS

Adding Short-Circuit Protection to an LT1301 Step-Up Switching Regulator ($0.01 \mu \mathrm{~A}$ Standby Current)

5 V to 3.3 V Selector Switch with Slope Control and $0.01 \mu \mathrm{~A}$ Standby Current

*ALLOW AT LEAST 100ms BETWEEN 5V AND 3.3V SWITCHING FOR DISCHARGE OF 100μ F OUTPUT CAPACITOR

Single Li-Ion Cell to 5V Converter/Switch with Load Disconnect Below 2.7V

Information furnished by Linear Technology Corporation is believed to be accurate and reliable. However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of its circuits as described herein will not infringe on existing patent rights.

LTC 1477/LTC1478

PACKAGE DESCRIPTIOी Dimension in inches (millimeters) unless otherwise noted.

S Package

16-Lead Plastic Small Outline (Narrow 0.150)
(LTC DWG \# 05-08-1610)

*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD
FLASH SHALL NOT EXCEED 0.010 " (0.254 mm) PER SIDE

related parts

PART NUMBER	DESCRIPTION	COMMENTS
LTC1153	Electronic Circuit Breaker	MOSFET Driver with Adjustable Reset Time
LTC1154	Single High Side Driver	MOSFET Driver with Switch Status Output
LTC1155	Dual High Side Driver	Dual MOSFET Driver with Protection
LTC1470	5 V and 3.3V $V_{\text {CC }}$ Switch	SafeSlot ${ }^{\text {TM }}$ Protected Switch in 8-Lead S0
LTC1471	Dual 5V and 3.3V VCC Switch	Dual Version of LTC1470 in 16-Lead S0
LTC1472	PCMCIA $V_{\text {CC }}$ and VPP Switches	Complete Single Channel SafeSlot Protection

SafeSlot is a trademark of Linear Technology Corporation.

