: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

LTC1799

Resistor Set SOT-23 Oscillator

feATURES

- One External Resistor Sets the Frequency
- Fast Start-Up Time: <1ms
- 1kHz to 33MHz Frequency Range
- Frequency Error $\leq 1.5 \% 5 \mathrm{kHz}$ to 20 MHz ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)
- Frequency Error $\leq 2 \% 5 \mathrm{kHz}$ to 20 MHz ($\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$)
- $\pm 40 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ Temperature Stability
- 0.05\%/V Supply Stability
- $50 \% \pm 1 \%$ Duty Cycle 1 kHz to 2 MHz
- $50 \% \pm 5 \%$ Duty Cycle 2 MHz to 20 MHz
- 1 mA Typical Supply Current
- 100Ω CMOS Output Driver
- Operates from a Single 2.7V to 5.5V Supply
- Low Profile (1 mm) SOT-23 (ThinSOTTM Package)

APPLICATIONS

- Low Cost Precision Oscillator
- Charge Pump Driver
- Switching Power Supply Clock Reference
- Clocking Switched Capacitor Filters
- Fixed Crystal Oscillator Replacement
- Ceramic Oscillator Replacement
- Small Footprint Replacement for Econ Oscillators
©T, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks and ThinSOT is a trademark of Linear Technology Corporation. All other trademarks are the property of their respective owners. Protected by U.S. Patents including 6342817 and 6614313.

DESCRIPTIOn

The LTC ${ }^{-1799}$ is a precision oscillator that is easy to use and occupies very little PC board space. The oscillator frequency is programmed by a single external resistor ($\mathrm{R}_{\text {SET }}$). The LTC1799 has been designed for high accuracy operation ($\leq 1.5 \%$ frequency error) without the need for external trim components.

The LTC1799 operates with a single 2.7 V to 5.5 V power supply and provides a rail-to-rail, 50% duty cycle square wave output. The CMOS output driver ensures fast rise/ fall times and rail-to-rail switching. The frequency-setting resistor can vary from 3 k to 1 M to select a master oscillator frequency between 100 kHz and 33 MHz (5 V supply). The three-state DIV input determines whether the master clock is divided by 1,10 or 100 before driving the output, providing three frequency ranges spanning 1 kHz to 33 MHz (5V supply). The LTC1799 features a proprietary feedback loop that linearizes the relationship between $R_{\text {SET }}$ and frequency, eliminating the need for tables to calculate frequency. The oscillator can be easily programmed using the simple formula outlined below:

$$
\mathrm{f}_{\text {osC }}=10 \mathrm{MHz} \cdot\left(\frac{10 \mathrm{k}}{\mathrm{~N} \cdot \mathrm{R}_{\text {SET }}}\right), \mathrm{N}= \begin{cases}100, & \text { DIV Pin }=\mathrm{V}^{+} \\ 10, & \text { DIV Pin }=\text { Open } \\ 1, & \text { DIV Pin }=\text { GND }\end{cases}
$$

TYPICAL APPLICATION

Basic Connection

TSOT-23 Actual Size
تer

Typical Distribution of Frequency Error, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\left(5 \mathrm{kHz} \leq \mathrm{f}_{\mathrm{OSC}} \leq 20 \mathrm{MHz}, \mathrm{V}^{+}=5 \mathrm{~V}\right)$

absolute maximum ratings

PIn CONFIGURATION

(Note 1)
Supply Voltage (V^{+}) to GND -0.3 V to 6 V
DIV to GND -0.3 V to $\left(\mathrm{V}^{+}+0.3 \mathrm{~V}\right)$
SET to GND.................................... -0.3 V to $\left(\mathrm{V}^{+}+0.3 \mathrm{~V}\right)$
Operating Temperature Range
LTC1799C \qquad $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LTC1799 $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LTC1799H .. $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10 sec). \qquad

ORDER IOFORMAT|Oी http://www.linear.com/product/LTC1799\#orderinfo

LEAD FREE FINISH	TAPE AND REEL	PART MARKING*	PACKAGE DESCRIPTION	TEMPERATURE RANGE
LTC1799CS5\#PBF	LTC1799CS5\#TRPBF	LTND	5-Lead Plastic TSOT-23	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LTC1799IS5\#PBF	LTC1799IS5\#TRPBF	LTNE	5-Lead Plastic TSOT-23	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LTC1799HS5\#PBF	LTC1799HS5\#TRPBF	LTND	5 -Lead Plastic TS0T-23	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$

Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container. Consult LTC Marketing for information on non-standard lead based finish parts.
For more information on lead free part marking, go to: http://www.linear.com/leadfree/
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/. Some packages are available in 500 unit reels through designated sales channels with \#TRMPBF suffix.

ELECTRICAL CHARACTERISTICS The • denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. $\mathrm{V}^{+}=2.7 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=5 \mathrm{k}, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$, unless otherwise noted. All voltages are with respect to GND.

SYMBOL	PARAMETER	CONDITIONS			MIN	TYP	MAX	UNITS
$\overline{\Delta f}$	Frequency Accuracy (Notes 2, 3)	$\mathrm{V}^{+}=5 \mathrm{~V}$	$\begin{aligned} & 5 \mathrm{kHz} \leq f \leq 20 \mathrm{MHz} \\ & 5 \mathrm{kHz} \leq \mathrm{f} \leq 20 \mathrm{MHz}, \text { LTC1799C } \\ & 5 \mathrm{kHz} \leq f \leq 20 \mathrm{MHz}, \text { LTC1799//H } \\ & 1 \mathrm{kHz} \leq f \leq 5 \mathrm{kHz} \\ & 20 \mathrm{MHz} \leq f \leq 33 \mathrm{MHz} \end{aligned}$	\bullet		$\begin{aligned} & \pm 0.5 \\ & \\ & \pm 2.5 \\ & \pm 2.5 \end{aligned}$	$\begin{gathered} \pm 1.5 \\ \pm 2 \\ \pm 2.5 \end{gathered}$	\% $\%$ $\%$ $\%$ $\%$
		$\mathrm{V}^{+}=3 \mathrm{~V}$	$5 \mathrm{kHz} \leq \mathrm{f} \leq 10 \mathrm{MHz}$ $5 \mathrm{kHz} \leq \mathrm{f} \leq 10 \mathrm{MHz}$, LTC1799C $5 \mathrm{kHz} \leq \mathrm{f} \leq 10 \mathrm{MHz}$, LTC1799I/H $1 \mathrm{kHz} \leq \mathrm{f} \leq 5 \mathrm{kHz}$ $10 \mathrm{MHz} \leq f \leq 20 \mathrm{MHz}$	\bullet		$\begin{aligned} & \pm 0.5 \\ & \\ & \pm 2.5 \\ & \pm 2.5 \end{aligned}$	$\begin{gathered} \pm 1.5 \\ \pm 2 \\ \pm 2.5 \end{gathered}$	\% $\%$ $\%$ $\%$ $\%$
$\mathrm{R}_{\text {SET }}$	Frequency-Setting Resistor Range	$\|\Delta f\|<1.5 \%$	$\begin{aligned} & \mathrm{V}^{+}=5 \mathrm{~V} \\ & \mathrm{~V}^{+}=3 \mathrm{~V} \end{aligned}$		$\begin{gathered} 5 \\ 10 \end{gathered}$		$\begin{aligned} & 200 \\ & 200 \end{aligned}$	$\mathrm{k} \Omega$ $\mathrm{k} \Omega$
$\mathrm{f}_{\text {MAX }}$	Maximum Frequency	$\|\Delta f\|<2.5 \%$, Pin $4=0 \mathrm{~V}$				$\begin{aligned} & 33 \\ & 20 \end{aligned}$		$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$
$\mathrm{f}_{\text {MIN }}$	Minimum Frequency	\| \mid f $\mid<2.5 \%$, Pin $4=V^{+}$				1		kHz
$\Delta f / \Delta T$	Freq Drift Over Temp (Note 3)	$\mathrm{R}_{\text {SET }}=31.6 \mathrm{k}$		\bullet		± 0.004		$\% /{ }^{\circ} \mathrm{C}$
$\Delta \mathrm{t} / \Delta \mathrm{V}$	Freq Drift Over Supply (Note 3)	$\mathrm{V}^{+}=3 \mathrm{~V}$ to 5V, R RET $=31.6 \mathrm{k}$		\bullet		0.05	0.1	\%/V
	Timing Jitter (Note 4)	$\begin{aligned} & \text { Pin } 4=V^{+} \\ & \text {Pin } 4=0 \text { pen } \\ & \text { Pin } 4=0 V \end{aligned}$				$\begin{gathered} 0.06 \\ 0.13 \\ 0.4 \end{gathered}$		\% $\%$ $\%$

ELECTRICAL CHARACTERISTICS The \bullet denotes the speciiciations which apply over the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. $\mathrm{V}^{+}=2.7 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=5 \mathrm{k}, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$, unless otherwise noted. All voltages are with respect to GND.

SYMBOL	PARAMETER	CONDITIONS				MIN	TYP	MAX	UNITS
	Long-Term Stability of Output Frequency	Pin $4=\mathrm{V}^{+}$or Open (DIV Either by 100 or 10) Pin $4=0 V$ (DIV by 1), R RET $=5 \mathrm{k}$ to 200 k					300		$\mathrm{ppm} / \sqrt{\mathrm{kHr}}$
	Duty Cycle (Note 7)				0	$\begin{aligned} & 49 \\ & 45 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 51 \\ & 55 \end{aligned}$	$\begin{aligned} & \hline \% \\ & \% \end{aligned}$
V^{+}	Operating Supply Range				\bullet	2.7		5.5	V
Is	Power Supply Current	$\mathrm{R}_{\text {SET }}=200 \mathrm{k}$, Pin $4=\mathrm{V}^{+}, \mathrm{R}_{\mathrm{L}}=\infty$		$\mathrm{V}^{+}=5 \mathrm{~V}$	\bullet		0.7	1.1	mA
		$\mathrm{R}_{\text {SET }}=10 \mathrm{k}$, Pin $4=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\infty$		$\begin{aligned} & \mathrm{V}^{+}=5 \mathrm{~V} \\ & \mathrm{~V}^{+}=3 \mathrm{~V} \end{aligned}$	0			2.4 2	mA
$\mathrm{V}_{\text {IH }}$	High Level DIV Input Voltage				\bullet	$\mathrm{V}^{+}-0.4$			V
$\mathrm{V}_{\text {IL }}$	Low Level DIV Input Voltage				\bullet			0.5	V
IDIV	DIV Input Current (Note 5)	$\begin{array}{\|l} \text { Pin } 4=V^{+} \\ \text {Pin } 4=0 V \end{array}$		$\begin{aligned} & \mathrm{V}^{+}=5 \mathrm{~V} \\ & \mathrm{~V}^{+}=5 \mathrm{~V} \end{aligned}$		-8	$\begin{gathered} 5 \\ -5 \end{gathered}$	8	$\mu \mathrm{A}$ $\mu \mathrm{A}$
V_{OH}	High Level Output Voltage (Note 5)	$\begin{aligned} & \mathrm{V}^{+}=5 \mathrm{~V}, \\ & \text { LTC1799C/I } \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-4 \mathrm{~mA} \end{aligned}$			$\begin{aligned} & 4.8 \\ & 4.5 \end{aligned}$	$\begin{gathered} 4.95 \\ 4.8 \end{gathered}$		V
		$\begin{aligned} & \mathrm{V}^{+}=5 \mathrm{~V}, \\ & \text { LTC1799H } \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-4 \mathrm{~mA} \end{aligned}$			$\begin{aligned} & 4.75 \\ & 4.40 \end{aligned}$	$\begin{aligned} & 4.95 \\ & 4.75 \end{aligned}$		V
		$\begin{aligned} & \mathrm{V}^{+}=3 \mathrm{~V}, \\ & \text { LTC1799C/I } \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-4 \mathrm{~mA} \\ & \hline \end{aligned}$			$\begin{aligned} & 2.7 \\ & 2.2 \end{aligned}$	$\begin{aligned} & 2.9 \\ & 2.6 \end{aligned}$		V
		$\begin{aligned} & \mathrm{V}^{+}=3 \mathrm{~V}, \\ & \text { LTC1799H } \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-4 \mathrm{~mA} \\ & \hline \end{aligned}$		0	$\begin{aligned} & 2.65 \\ & 2.10 \end{aligned}$	$\begin{aligned} & 2.90 \\ & 2.55 \end{aligned}$		V
$\overline{\mathrm{V}} \mathrm{L}$	Low Level Output Voltage (Note 5)	$\begin{aligned} & \mathrm{V}^{+}=5 \mathrm{~V}, \\ & \text { LTC1799C/I } \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA} \end{aligned}$				$\begin{gathered} 0.05 \\ 0.2 \end{gathered}$	$\begin{gathered} 0.15 \\ 0.4 \end{gathered}$	V
		$\begin{aligned} & \mathrm{V}^{+}=5 \mathrm{~V}, \\ & \text { LTC1799H } \end{aligned}$	$\begin{array}{\|l} \mathrm{I}_{0 \mathrm{~L}}=1 \mathrm{~mA} \\ \mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA} \end{array}$		0		$\begin{aligned} & 0.05 \\ & 0.25 \end{aligned}$	$\begin{aligned} & \hline 0.20 \\ & 0.50 \end{aligned}$	V
		$\begin{aligned} & \mathrm{V}^{+}=3 \mathrm{~V}, \\ & \text { LTC1799C/I } \end{aligned}$	$\begin{aligned} & \mathrm{I}_{0 \mathrm{~L}}=1 \mathrm{~mA} \\ & \mathrm{I}_{0 \mathrm{~L}}=4 \mathrm{~mA} \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & 0.1 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 0.3 \\ & 0.7 \end{aligned}$	V
		$\begin{aligned} & \mathrm{V}^{+}=3 \mathrm{~V}, \\ & \text { LTC1799H } \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA} \end{aligned}$		0		$\begin{aligned} & \hline 0.10 \\ & 0.45 \end{aligned}$	$\begin{aligned} & 0.35 \\ & 0.80 \end{aligned}$	V
tr_{r}	OUT Rise Time (Note 6)	$\mathrm{V}^{+}=5 \mathrm{~V}$	Pin $4=\mathrm{V}^{+}$or Floating, $\mathrm{RL}=\infty$ Pin $4=0 \mathrm{~V}, \mathrm{RL}=\infty$				$\begin{gathered} 14 \\ 7 \end{gathered}$		ns ns
		$\mathrm{V}^{+}=3 \mathrm{~V}$	Pin $4=V^{+}$or Floating, $\mathrm{RL}=\infty$ Pin $4=0 \mathrm{~V}, \mathrm{RL}=\infty$				$\begin{aligned} & \hline 19 \\ & 11 \end{aligned}$		ns ns
t_{f}	OUT Fall Time (Note 6)	$\mathrm{V}^{+}=5 \mathrm{~V}$	Pin $4=\mathrm{V}^{+}$or Floating, $\mathrm{RL}=\infty$ Pin $4=0 \mathrm{~V}, \mathrm{RL}=\infty$				$\begin{gathered} 13 \\ 6 \end{gathered}$		ns
		$\mathrm{V}^{+}=3 \mathrm{~V}$	Pin $4=\mathrm{V}^{+}$or Floating, $\mathrm{RL}=\infty$ Pin $4=0 \mathrm{~V}, \mathrm{RL}=\infty$				$\begin{aligned} & 19 \\ & 10 \end{aligned}$		ns

Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.
Note 2: Frequencies near 100 kHz and 1MHz may be generated using two different values of R SET (see the Table 1 in the Applications Information section). For these frequencies, the error is specified under the following assumption: $10 \mathrm{k}<\mathrm{R}_{\text {SET }} \leq 100 \mathrm{k}$. The frequency accuracy for $\mathrm{f}_{\text {OSC }}=20 \mathrm{MHz}$ is guaranteed by design and test correlation.
Note 3: Frequency accuracy is defined as the deviation from the fosc equation.

Note 4: Jitter is the ratio of the peak-to-peak distribution of the period to the mean of the period. This specification is based on characterization and is not 100% tested.
Note 5: To conform with the Logic IC Standard convention, current out of a pin is arbitrarily given as a negative value.
Note 6: Output rise and fall times are measured between the 10\% and 90\% power supply levels. These specifications are based on characterization.
Note 7: Guaranteed by 5V test.

TYPICAL PGRFORMAOCE CHARACTERISTICS

Output Resistance
vs Supply Voltage

LTC1799 Output Operating at $20 \mathrm{MHz}, \mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}$

LTC1799 Output Operating at $10 \mathrm{MHz}, \mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}$

PIn functions

V^{+}(Pin 1): Voltage Supply $\left(2.7 \mathrm{~V} \leq \mathrm{V}^{+} \leq 5.5 \mathrm{~V}\right)$. This supply must be kept free from noise and ripple. It should be bypassed directly to a ground plane with a $0.1 \mu \mathrm{~F}$ capacitor.

GND (Pin 2): Ground. Should be tied to a ground plane for best performance.
SET (Pin 3): Frequency-Setting Resistor Input. The value of the resistor connected between this pin and V^{+}determines the oscillator frequency. The voltage on this pin is held by the LTC1799 to approximately 1.13 V below the V^{+}voltage. For best performance, use a precision metal film resistor with a value between 10 k and 200k and limit the capacitance on this pin to less than 10pF.

DIV (Pin 4): Divider-Setting Input. This three-state input selects among three divider settings, determining the value of N in the frequency equation. Pin 4 should be tied to GND for the $\div 1$ setting, the highest frequency range.

Floating Pin 4 divides the master oscillator by 10. Pin 4 should be tied to V^{+}for the $\div 100$ setting, the lowest frequency range. To detect a floating DIV pin, the LTC1799 attempts to pull the pin toward midsupply. This is realized with two internal current sources, one tied to V^{+}and Pin 4 and the other one tied to ground and Pin 4. Therefore, driving the DIV pin high requires sourcing approximately $5 \mu \mathrm{~A}$. Likewise, driving DIV low requires sinking $5 \mu \mathrm{~A}$. When Pin 4 is floated, preferably it should be bypassed by a 1 nF capacitor to ground or it should be surrounded by a ground shield to prevent excessive coupling from other PCB traces.

OUT (Pin 5): Oscillator Output. This pin can drive $5 \mathrm{k} \Omega$ and/or 10pF loads. Larger loads may cause inaccuracies due to supply bounce at high frequencies. Transients will not cause latchup if the current into/out of the OUT pin is limited to 50 mA .

BLOCK DIAGRAM

theory of operation

As shown in the Block Diagram, the LTC1799's master oscillator is controlled by the ratio of the voltage between the V^{+}and SET pins and the current entering the SET pin ($I_{\text {RES }}$). The voltage on the SET pin is forced to approximately 1.13V below V^{+}by the PMOS transistor and its gate bias voltage. This voltage is accurate to $\pm 7 \%$ at a particular input current and supply voltage (see Figure 1). The effective input resistance is approximately 2 k .

A resistor $\mathrm{R}_{\text {SET }}$, connected between the V^{+}and SET pins, "locks together" the voltage $\left(\mathrm{V}^{+}-\mathrm{V}_{\text {SET }}\right)$ and current, $\mathrm{I}_{\mathrm{RES}}$, variation. This provides the LTC1799's high precision. The master oscillation frequency reduces to:

$$
f_{\mathrm{MO}}=10 \mathrm{MHz} \cdot\left(\frac{10 \mathrm{k} \Omega}{\mathrm{R}_{\mathrm{SET}}}\right)
$$

The LTC1799 is optimized for use with resistors between 10k and 200k, corresponding to master oscillator frequencies between 0.5 MHz and 10 MHz . Accurate frequencies up to $20 \mathrm{MHz}\left(\mathrm{R}_{\text {SET }}=5 \mathrm{k}\right)$ are attainable if the supply voltage is greater than 4 V .
To extend the output frequency range, the master oscillator signal may be divided by 1,10 or 100 before driving OUT
(Pin 5). The divide-by value is determined by the state of the DIV input (Pin 4). Tie DIV to GND or drive it below 0.5 V to select $\div 1$. This is the highest frequency range, with the master output frequency passed directly to OUT. The DIV pin may be floated or driven to midsupply to select $\div 10$, the intermediate frequency range. The lowest frequency range, $\div 100$, is selected by tying DIV to V^{+}or driving it to within 0.4 V of V^{+}. Figure 2 shows the relationship between $\mathrm{R}_{\text {SET }}$, divider setting and output frequency, including the overlapping frequency ranges near 100 kHz and 1 MHz .

The CMOS output driver has an on resistance that is typically less than 100Ω. In the $\div 1$ (high frequency) mode, the rise and fall times are typically 7ns with a 5V supply and 11 ns with a 3 V supply. These times maintain a clean square wave at 10 MHz (20 MHz at 5 V supply). In the $\div 10$ and $\div 100$ modes, where the output frequency is much lower, slew rate control circuitry in the output driver increases the rise/fall times to typically 14 ns for a 5 V supply and $19 n s$ for a 3 V supply. The reduced slew rate lowers EMI (electromagnetic interference) and supply bounce.

Figure 2. R Ret vs Desired Output Frequency

APPLICATIONS INFORMATION

SELECTING THE DIVIDER SETTING AND RESISTOR

The LTC1799's master oscillator has a frequency range spanning 0.1MHz to 33MHz. However, accuracy may suffer if the master oscillator is operated at greater than 10MHz with a supply voltage lower than 4V. A programmable divider extends the frequency range to greater than three decades. Table 1 describes the recommended frequencies for each divider setting. Note that the ranges overlap; at some frequencies there are two divider/resistor combinations that result in the desired frequency.

In general, any given oscillator frequency (fosc) should be obtained using the lowest master oscillator frequency. Lower master oscillator frequencies use less power and are more accurate. For instance, f OSc $=100 \mathrm{kHz}$ can be obtained by either R $\mathrm{R}_{\text {SET }}=10 \mathrm{k}, \mathrm{N}=100$, master oscillator $=10 \mathrm{MHz}$ or R SET $=100 \mathrm{k}, \mathrm{N}=10$, master oscillator $=$ 1 MHz . The $\mathrm{R}_{\text {SET }}=100 \mathrm{k}$ is preferred for lower power and better accuracy.

Table 1. Frequency Range vs Divider Setting

| DIVIDER SETTING | FREQUENCY RANGE |
| :--- | :--- | :---: |
| $\div 1 \Rightarrow \quad$ DIV (Pin 4) $=$ GND | $>500 \mathrm{kHz}^{*}$ |
| $\div 10 \Rightarrow \quad$ DIV (Pin 4) $=$ Floating | 50 kHz to 1 MHz |
| $\div 100 \Rightarrow \quad$ DIV (Pin 4) $=\mathrm{V}^{+}$ | $<100 \mathrm{kHz}$ |

*At master oscillator frequencies greater than $10 \mathrm{MHz}\left(\mathrm{R}_{\text {SET }}<10 \mathrm{k} \Omega\right.$), the LTC1799 may suffer reduced accuracy with a supply voltage less than 4V.

After choosing the proper divider setting, determine the correct frequency-setting resistor. Because of the linear correspondence between oscillation period and resistance, a simple equation relates resistance with frequency.

$$
\begin{aligned}
& \mathrm{R}_{\text {SET }}=10 \mathrm{k} \cdot\left(\frac{10 \mathrm{MHz}}{\mathrm{~N} \bullet \mathrm{f}_{\text {OSC }}}\right), \mathrm{N}=\left\{\begin{array}{l}
100 \\
10 \\
1
\end{array}\right. \\
& \left(\begin{array}{l}
\text { RSETMIN }
\end{array}=3 \mathrm{k}(5 \mathrm{~V} \text { Supply }), 5 \mathrm{k}(3 \mathrm{~V} \text { Supply }),\right. \\
& \left.\mathrm{R}_{\text {SETMAX }}=1 \mathrm{M}\right)
\end{aligned}
$$

Any resistor, $\mathrm{R}_{\text {SET }}$, tolerance adds to the inaccuracy of the oscillator, fosc.

ALTERNATIVE METHODS OF SETTING THE OUTPUT FREQUENCY OF THE LTC1799

The oscillator may be programmed by any method that sources a current into the SET pin (Pin 3). The circuit in Figure 3 sets the oscillator frequency using a programmable current source and in the expression for fosc, the resistor $\mathrm{R}_{\text {SET }}$ is replaced by the ratio of $1.13 \mathrm{~V} / \mathrm{I}_{\text {CONTROL }}$. As already explained in the "Theory of Operation," the voltage difference between V^{+}and SET is approximately 1.13 V , therefore, the Figure 3 circuit is less accurate than if a resistor controls the oscillator frequency.

Figure 4 shows the LTC1799 configured as a VCO. A voltage source is connected in series with an external 10k resistor. The output frequency, $\mathrm{f}_{\mathrm{OSC}}$, will vary with $\mathrm{V}_{\text {CONTROL }}$, that is the voltage source connected between V^{+}and the SET pin. Again, this circuit decouples the relationship between the input current and the voltage between V^{+} and SET; the frequency accuracy will be degraded. The oscillator frequency, however, will monotonically increase with decreasing $\mathrm{V}_{\text {CONTROL }}$.

400 kHz TO 21MHz (APPROXIMATE, SEE TEXT)

Figure 3. Current Controlled Oscillator

Figure 4. Voltage Controlled Oscillator

APPLICATIONS INFORMATION

POWER SUPPLY REJECTION

Low Frequency Supply Rejection (Voltage Coefficient)

Figure 5 shows the output frequency sensitivity to power supply voltage at several different temperatures. The LTC1799 has a conservative guaranteed voltage coefficient of $0.1 \% / \mathrm{V}$ but, as Figure 5 shows, the typical supply sensitivity is lower.

Figure 5. Supply Sensitivity

High Frequency Power Supply Rejection

The accuracy of the LTC1799 may be affected when its power supply generates significant noise with frequency contents in the vicinity of the programmed value of f osc. If a switching power supply is used to power up the LTC1799, and if the ripple of the power supply is more than a few tens of millivolts, make sure the switching frequency and its harmonics are not related to the output frequency of the LTC1799. Otherwise, the oscillator may show an additional 0.1% to 0.2% of frequency error.
If the LTC1799 is powered by a switching regulator and the switching frequency or its harmonics coincide with the output frequency of the LTC1799, the jitter of the oscillator output may be affected. This phenomenon will become noticeable if the switching regulator exhibits ripples beyond 30 mV .

START-UP TIME

The start-up time and settling time to within 1% of the final value can be estimated by $\mathrm{t}_{\text {START }} \cong \mathrm{R}_{\text {SET }}(2.8 \mu \mathrm{~s} / \mathrm{k} \Omega)$ $+20 \mu \mathrm{~s}$. Note the start-up time depends on R RET and it is independent from the setting of the divider pin. For instance with R ${ }_{\text {SET }}=50 \mathrm{k}$, the LTC1799 will settle with 1% of its 200 kHz final value $(\mathrm{N}=10)$ in approximately $160 \mu \mathrm{~s}$. Figure 6 shows start-up times for various $\mathrm{R}_{\text {SET }}$ resistors.

Figure 7 shows an application where a second set resistor $R_{\text {SET2 }}$ is connected in parallel with set resistor $\mathrm{R}_{\text {SET } 1}$ via switch S1. When switch S1 is open, the output frequency of the LTC1799 depends on the value of the resistor R SET1 . When switch S1 is closed, the output frequency of the LTC1799 depends on the value of the parallel combination of $R_{\text {SET } 1}$ and $R_{S E T 2}$.
The start-up time and settling time of the LTC1799 with switch S1 open (or closed) is described by tstaRt shown above. Once the LTC1799 starts and settles, and switch S1 closes (or opens), the LTC1799 will settle to its new output frequency within approximately $25 \mu \mathrm{~s}$.

Figure 6. Start-Up Time

Figure 7

APPLICATIONS INFORMATION

Jitter

The typical jitter is listed in the Electrical Characteristics and shown in the Typical Performance Characteristics. These specifications assume that the capacitance on SET (Pin 3) is limited to less than 10pF, as suggested in the Pin Functions description. If this requirement is not met, the jitter will increase. For more information, contact Linear Technology Applications group.

A Ground Referenced Voltage Controlled Oscillator

The LTC1799 output frequency can also be programmed by steering current in or out of the SET pin, as conceptually shown in Figure 8. This technique can degrade accuracy as the ratio of $\left(\mathrm{V}^{+}-\mathrm{V}_{\text {SET }}\right) / I_{\text {RES }}$ is no longer uniquely dependent of the value of RSET , as shown in the LTC1799 Block Diagram. This loss of accuracy will become noticeable when the magnitude of $I_{P R O G}$ is comparable to $I_{\text {RES }}$. The frequency variation of the LTC1799 is still monotonic.

Figure 9 shows how to implement the concept shown in Figure 8 by connecting a second resistor, R_{IN}, between the SET pin and a ground referenced voltage source, $\mathrm{V}_{\text {IN }}$.

For a given power supply voltage in Figure 9, the output frequency of the LTC1799 is a function of $\mathrm{V}_{\text {IN }}, \mathrm{R}_{\text {IN }}, \mathrm{R}_{\text {SET }}$ and $\left(\mathrm{V}^{+}-\mathrm{V}_{\text {SET }}\right)=\mathrm{V}_{\text {RES }}$:

$$
\begin{align*}
& \mathrm{f}_{\text {OSC }}=\frac{10 \mathrm{MHz}}{\mathrm{~N}} \cdot \frac{10 \mathrm{k}}{\mathrm{R}_{\text {IN }} \| \mathrm{R}_{\text {SET }}} \cdot \\
& {\left[1+\frac{\left(V_{\text {IN }}-V^{+}\right)}{V_{\text {RES }}} \cdot\left(\frac{1}{1+\frac{R_{\text {II }}}{R_{S E T}}}\right)\right]} \tag{1}
\end{align*}
$$

Figure 8. Concept for Programming via Current Steering

When $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}^{+}$, the output frequency of the LTC1799 assumes the highest value and it is set by the parallel combination of $R_{I N}$ and $R_{S E T}$. Also note, the output frequency, $f_{\text {OSC }}$, is independent of the value of $\mathrm{V}_{\text {RES }}=\left(\mathrm{V}^{+}-\mathrm{V}_{\text {SET }}\right)$ so the accuracy of $f_{0 S c}$ is within the data sheet limits.
When V_{IN} is less than V^{+}, and especially when V_{IN} approaches the ground potential, the oscillator frequency, $f_{\text {OSc }}$, assumes its lowest value and its accuracy is affected by the change of $\mathrm{V}_{\text {RES }}=\left(\mathrm{V}^{+}-\mathrm{V}_{\text {SET }}\right)$. At $25^{\circ} \mathrm{C} \mathrm{V}_{\text {RES }}$ varies by $\pm 8 \%$, assuming the variation of V^{+}is $\pm 5 \%$. The temperature coefficient of $\mathrm{V}_{\text {RES }}$ is $0.02 \% /{ }^{\circ} \mathrm{C}$.

By manipulating the algebraic relation for $f_{\text {OSc }}$ above, a simple algorithm can be derived to setthe values of external resistors $R_{S E T}$ and $R_{I N}$, as shown in Figure 9.

1. Choose the desired value of the maximum oscillator frequency, $\mathrm{f}_{\mathrm{OSC}(\mathrm{MAX})}$, occurring at maximum input voltage $\mathrm{V}_{\text {IN(MAX) }} \leq \mathrm{V}^{+}$.
2. Set the desired value of the minimum oscillator frequency, $\mathrm{f}_{\mathrm{OSC}}$ (MIN), occurring at minimum input voltage $V_{\operatorname{IN}(\mathrm{MIN})} \geq 0$.
3. Choose $\mathrm{V}_{\text {RES }}=1.1$ and calculate the ratio of $\mathrm{R}_{\text {IN }} / R_{\text {SET }}$ from the following:

$$
\frac{R_{I N}}{R_{S E T}}=
$$

$$
\begin{equation*}
\frac{\left(V_{\operatorname{IN(MAX)}}-V^{+}\right)-\left(\frac{f_{0 S C}(\mathrm{MAX})}{}\right)\left(V_{\text {IN(MIN) }}-V^{+}\right)}{V_{\mathrm{RSC}(\mathrm{MIN})}\left[\frac{\left(\mathrm{f}_{\mathrm{OSC}(\mathrm{MAX})}\right)}{f_{\mathrm{OSC}(\mathrm{MIN})}}-1\right]}-1 \tag{2}
\end{equation*}
$$

Figure 9. Implementation of Concept Shown in Figure 8

APPLICATIONS InFORMATION

Once $R_{I N} / R_{\text {SET }}$ is known, calculate $R_{S E T}$ from:

$\left[\frac{\left(V_{\text {IN(MAX) }}-V^{+}\right)+V_{R E S}\left(1+\frac{R_{I N}}{R_{S E T}}\right)}{V_{\text {RES }}\left(\frac{R_{\text {IN }}}{R_{S E T}}\right)}\right]$

Maximum VCO Modulation Bandwidth

The maximum VCO modulation bandwidth is 10 kHz ; that is, the LTC1799 will respond to changes in $V_{\text {IN }}$ at a rate up to 25 kHz . In lower frequency applications however, the modulation frequency may need to be limited to a lower rate to prevent an increase in output jitter. This lower limit
is the master oscillator frequency divided by 20, ($\mathrm{f}_{\mathrm{osc}} / 20$). In general, for minimum output jitter the modulation frequency should be limited to $\mathrm{f}_{0} \mathrm{sc} / 20$ or 10 kHz , whichever is less. For best performance at all frequencies, the value for $\mathrm{f}_{\text {Osc }}$ should be the master oscillator frequency $(\mathrm{N}=1)$ when $\mathrm{V}_{\text {IN }}$ is at the lowest level.

Table 2. Variation of $V_{\text {RES }}$ for Various Values of $\mathrm{R}_{\text {IN }}| | \mathrm{R}_{\text {SET }}$

$\mathbf{R}_{\text {IN }} \\| \mathbf{R}_{\mathbf{S E T}}\left(\mathbf{V}_{\text {IN }}=\mathbf{V}^{+}\right)$	$\mathbf{V}_{\text {RES }}, \mathbf{V}^{+}=\mathbf{3 V}$	$\mathbf{V}_{\text {RES }}, \mathbf{V}^{+}=5 \mathbf{V}$
10 k	0.98 V	1.06 V
20 k	1.03 V	1.11 V
40 k	1.09 V	1.17 V
80 k	1.13 V	1.21 V
160 k	1.16 V	1.24 V

$\mathrm{V}_{\text {RES }}=$ Voltage across RSET
Note: All of the calculations above assume $\mathrm{V}_{\text {RES }}=1.1 \mathrm{~V}$, although $\mathrm{V}_{\text {RES }} \approx 1.1 \mathrm{~V}$. For completeness, Table 2 shows the variation of $\mathrm{V}_{\text {RES }}$ against various parallel combinations of $R_{\text {IN }}$ and $R_{S E T}\left(V_{I N}=V^{+}\right)$. Calculate first with $V_{\text {RES }} \approx 1.1 \mathrm{~V}$, then use Table 2 to get a better approximation of $V_{\text {RES }}$, then recalculate the resistor values using the new value for $V_{\text {RES }}$.

TYPICAL APPLICATION

Low Power 80 Hz to 8 kHz Sine Wave Generator ($\mathrm{I}_{\mathrm{o}}<4 \mathrm{~mA}$)

$\left(\frac{\mathrm{f} 0 \mathrm{SC}}{64} \cdot 3\right)$

PACKAGE DESCRIPTION

Please refer to http://www.linear.com/product/LTC1799\#packaging for the most recent package drawings.

REVISION HISTORY (Revision history begins at Rev c)

REV	DATE	DESCRIPTION	PAGE NUMBER
C	$1 / 11$	Revised part number in Maximum VCO Modulation Bandwidth section.	10
D	$07 / 16$	Updated $\mathrm{T}_{\mathrm{Jmax}}\left(150^{\circ} \mathrm{C}\right)$	2

TYPICAL APPLICATIONS

Shutting Down the LTC1799

Temperature-to-Frequency Converter

$R_{T}: Y S I 44011800765-4974$

