: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

FEATURES

- Maximum Offset Voltage of $3 \mu \mathrm{~V}$
- Maximum Offset Voltage Drift of $30 \mathrm{nV} /{ }^{\circ} \mathrm{C}$
- Small Footprint, Low Profile MS8/GN16 Packages
- Single Supply Operation: 2.7 V to $\pm 5.5 \mathrm{~V}$
- Noise: $1.5 \mu \mathrm{~V}_{\mathrm{P}-\mathrm{p}}(0.01 \mathrm{~Hz}$ to 10 Hz Typ)
- Voltage Gain: 140 dB (Typ)
- PSRR: 130dB (Typ)
- CMRR: 130 dB (Typ)
- Supply Current: 0.75 mA (Typ) per Amplifier
- Extended Common Mode Input Range
- Output Swings Rail-to-Rail
- Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
- Available in $3 \mathrm{~mm} \times 3 \mathrm{~mm} \times 0.8 \mathrm{~mm}$ DFN Package

APPLCATIO C

- Thermocouple Amplifiers
- Electronic Scales
- Medical Instrumentation
- Strain Gauge Amplifiers
- High Resolution Data Acquisition
- DC Accurate RC Active Filters
- Low Side Current Sense

DESCRIPTIO

The LTC ${ }^{\circledR}$ 2051/LTC2052 are dual/quad zero-drift operational amplifiers available in the MS8 and SO-8/GN16 and S14 packages. For spacelimited applications, the LTC2051 is available in a $3 \mathrm{~mm} \times 3 \mathrm{~mm} \times 0.8 \mathrm{~mm}$ dual fine pitch leadless package (DFN). They operate from a single 2.7 V supply and support $\pm 5 \mathrm{~V}$ applications. The current consumption is $750 \mu \mathrm{~A}$ per op amp.
The LTC2051/LTC2052, despite their miniature size, feature uncompromising DC performance. The typical input offset voltage and offset drift are $0.5 \mu \mathrm{~V}$ and $10 \mathrm{nV} /{ }^{\circ} \mathrm{C}$. The almost zero DCoffset and drift are supported with a power supply rejection ratio (PSRR) and common mode rejection ratio (CMRR) of more than 130 dB .
The input common mode voltage ranges from the negative supply up to typically 1V from the positive supply. The LTC2051/LTC2052 also have an enhanced output stage capable of driving loads as low as $2 \mathrm{k} \Omega$ to both supply rails. The open-loop gain is typically 140dB. The LTC2051/ LTC2052 also feature a $1.5 \mu \mathrm{~V}_{\text {P-p }}$ DC to 10 Hz noise and a 3 MHz gain-bandwidth product.

[^0]
TYPICAL APPUCATION

High Performance Low Cost Instrumentation Amplifier

Input Referred Noise 0.1 Hz to 10 Hz

ABSO LUTE MAXIMUM RATI国 (Note 1) $^{\text {1 }}$

Total Supply Voltage (V^{+}to V^{-})	Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LTC2051/LTC2052 ... 7V	Specified Temperature Range (Note 3) $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LTC2051HV/LTC2052HV 12V	Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Input Voltage (Note 5) ($\mathrm{V}^{+}+0.3 \mathrm{~V}$) to ($\mathrm{V}^{-}-0.3 \mathrm{~V}$)	DD Package $-65^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Output Short-Circuit Duration Indefinite	Lead Temperature (Soldering, 10 sec) $300^{\circ} \mathrm{C}$

Total Supply Voltage (V^{+}to V^{-})
LTC2051/LTC2052 7V
LTC2051HV/LTC2052HV 12V
Input Voltage (Note 5) $\left(V^{+}+0.3 V\right)$ to $\left(V^{-}-0.3 V\right)$
Output Short-Circuit Duration \qquad Indefinite

Operating Temperature Range

$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Storage Temperature Range
$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec) $300^{\circ} \mathrm{C}$

PACKAG E/O RDER InFO RMATIO

Consult LTC Marketing for parts specified with wider operating temperature ranges.

PACKAGE/ORDER INFORMATION

AVAILABLE OPTIONS

PART NUM BER	AMPS/PACKAGE	SPECIFIED TEMP RANGE	SPECIFIED VOLTAGE	PACKAGE
LTC2051CDD	2	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	3V, 5V	DD
LTC2051CS8	2	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	3V, 5V	SO-8
LTC2051CMS8	2	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	3V, 5V	8-Lead MSOP
LTC2051CMS10	2	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	3V, 5V	10-Lead MSOP
LTC2051HVCDD	2	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	$3 \mathrm{~V}, 5 \mathrm{~V}, \pm 5 \mathrm{~V}$	DD
LTC2051HVCS8	2	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	$3 \mathrm{~V}, 5 \mathrm{~V}, \pm 5 \mathrm{~V}$	SO-8
LTC2051HVCMS8	2	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	$3 \mathrm{~V}, 5 \mathrm{~V}, \pm 5 \mathrm{~V}$	8-Lead MSOP
LTC2051HVCMS10	2	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	$3 \mathrm{~V}, 5 \mathrm{~V}, \pm 5 \mathrm{~V}$	10-Lead MSOP
LTC2051IDD	2	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	$3 \mathrm{~V}, 5 \mathrm{~V}$	DD
LTC2051IS8	2	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	3V, 5V	S0-8
LTC2051IMS8	2	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	3V, 5V	8-Lead MSOP
LTC2051IMS10	2	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	3V, 5V	10-Lead MSOP
LTC2051HVIDD	2	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	$3 \mathrm{~V}, 5 \mathrm{~V}, \pm 5 \mathrm{~V}$	DD
LTC2051HVIS8	2	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	$3 \mathrm{~V}, 5 \mathrm{~V}, \pm 5 \mathrm{~V}$	S0-8
LTC2051HVIMS8	2	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	$3 \mathrm{~V}, 5 \mathrm{~V}, \pm 5 \mathrm{~V}$	8-Lead MSOP
LTC2051HVIMS10	2	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	$3 \mathrm{~V}, 5 \mathrm{~V}, \pm 5 \mathrm{~V}$	10-Lead MSOP
LTC2051HS8	2	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	3V, 5V	S0-8
LTC2051HMS8	2	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	3V, 5V	8-Lead MSOP
LTC2051HVHS8	2	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	$3 \mathrm{~V}, 5 \mathrm{~V}, \pm 5 \mathrm{~V}$	S0-8
LTC2051HVHMS8	2	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	$3 \mathrm{~V}, 5 \mathrm{~V}, \pm 5 \mathrm{~V}$	8-Lead MSOP
LTC2052CS	4	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	3V, 5V	14-Lead SO
LTC2052CGN	4	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	3V, 5V	16-Lead SSOP
LTC2052HVCS	4	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	$3 \mathrm{~V}, 5 \mathrm{~V}, \pm 5 \mathrm{~V}$	14-Lead SO
LTC2052HVCGN	4	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	$3 \mathrm{~V}, 5 \mathrm{~V}, \pm 5 \mathrm{~V}$	16-Lead SSOP

AVAILABLE OPTIONS

PART NUMBER	AMPS/PACKAGE	SPECIFIED TEMP RANGE	SPECIFIED VOLTAGE	PACKAGE
LTC2052IS	4	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	$3 \mathrm{~V}, 5 \mathrm{~V}$	14 -Lead SO
LTC2052IGN	4	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	$3 \mathrm{~V}, 5 \mathrm{~V}$	16 -Lead SSOP
LTC2052HVIS	4	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	$3 \mathrm{~V}, 5 \mathrm{~V}, \pm 5 \mathrm{~V}$	14 -Lead SO
LTC2052HVIGN	4	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	$3 \mathrm{~V}, 5 \mathrm{~V}, \pm 5 \mathrm{~V}$	16 -Lead SSOP
LTC2052HS	4	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	$3 \mathrm{~V}, 5 \mathrm{~V}$	$14-\mathrm{Lead} \mathrm{SO}$
LTC2052HGN	4	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	$3 \mathrm{~V}, 5 \mathrm{~V}$	16 -Lead SSOP
LTC2052HVHS	4	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	$3 \mathrm{~V}, 5 \mathrm{~V}, \pm 5 \mathrm{~V}$	14 -Lead SO
LTC2052HVHGN	4	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	$3 \mathrm{~V}, 5 \mathrm{~V}, \pm 5 \mathrm{~V}$	16 -Lead SSOP

ELECTRICAL CHARACTERISTICS (LTC2051/LTC2052, LTC2051HV/LTC2052HV) The • denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. $\mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}, 5 \mathrm{~V}$ unless otherwise noted. (Note 3)

PARAMETER	CONDITIONS		LTC2051C/LTC2052C LTC2051I/LTC2052I		LTC2051H/LTC2052H			UNITS
				MAX	MIN	TYP	MAX	
Input Offset Voltage	(Note 2)		± 0.5	± 3		± 0.5	± 3	$\mu \mathrm{V}$
Average Input Offset Drift	(Note 2)	\bullet	0.01	± 0.03		0.01	± 0.05	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Long-Term Offset Drift			50			50		$\mathrm{nV} / \sqrt{\mathrm{mo}}$
Input Bias Current (Note 4)	$\begin{aligned} & V_{S}=3 \mathrm{~V} \\ & V_{S}=3 \mathrm{~V} \end{aligned}$	\bullet	± 8	$\begin{gathered} \pm 50 \\ \pm 100 \end{gathered}$		± 8	$\begin{gathered} \pm 50 \\ \pm 3000 \end{gathered}$	pA pA
	$\begin{aligned} & V_{S}=5 \mathrm{~V} \\ & V_{S}=5 \mathrm{~V} \end{aligned}$	\bullet	± 25	$\begin{gathered} \pm 75 \\ \pm 150 \end{gathered}$		± 25	$\begin{gathered} \pm 75 \\ \pm 3000 \end{gathered}$	pA pA
Input Offset Current (Note 4)	$\begin{aligned} & V_{S}=3 V \\ & V_{S}=3 V \end{aligned}$	\bullet		$\begin{aligned} & \pm 100 \\ & \pm 150 \end{aligned}$			$\begin{aligned} & \pm 100 \\ & \pm 700 \\ & \hline \end{aligned}$	pA $p A$
	$\begin{aligned} & V_{S}=5 \mathrm{~V} \\ & V_{S}=5 \mathrm{~V} \end{aligned}$	\bullet		$\begin{aligned} & \pm 150 \\ & \pm 200 \end{aligned}$			$\begin{aligned} & \pm 150 \\ & \pm 700 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{pA} \end{aligned}$
Input Noise Voltage	$\mathrm{R}_{S}=100 \Omega$, DC to 10 Hz		1.5			1.5		$\mu V_{\text {P-P }}$
Common Mode Rejection Ratio	$\begin{aligned} & V_{C M}=G N D \text { to } \mathrm{V}^{+}-1.3, \\ & V_{S}=3 V \end{aligned}$	\bullet	115 130 110 130		$\begin{aligned} & 115 \\ & 110 \end{aligned}$	$\begin{aligned} & \hline 130 \\ & 130 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
	$\begin{aligned} & V_{C M}=G N D \text { to } \mathrm{V}^{+}-1.3, \\ & V_{S}=5 \mathrm{~V} \end{aligned}$	\bullet	120 130 115 130		$\begin{aligned} & 120 \\ & 115 \end{aligned}$	$\begin{aligned} & 130 \\ & 130 \end{aligned}$		dB $d B$
Power Supply Rejection Ratio		\bullet	120 130 115 130		$\begin{aligned} & 120 \\ & 115 \end{aligned}$	$\begin{aligned} & 130 \\ & 130 \end{aligned}$		dB $d B$
Large-Signal Voltage Gain	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k}, \mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}$	\bullet	120 140 115 140		$\begin{aligned} & 120 \\ & 115 \end{aligned}$	$\begin{aligned} & 140 \\ & 140 \end{aligned}$		dB $d B$
	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k}, \mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}$	\bullet	125 140 120 140		$\begin{aligned} & \hline 125 \\ & 120 \end{aligned}$	$\begin{aligned} & \hline 140 \\ & 140 \end{aligned}$		dB dB
Output Voltage Swing High	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \text { to } \mathrm{GND} \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \text { to } \mathrm{GND} \\ & \hline \end{aligned}$		$\begin{array}{ll} \mathrm{V}^{+}-0.15 & \mathrm{~V}^{+}-0.06 \\ \mathrm{~V}^{+}-0.05 & \mathrm{~V}^{+}-0.02 \end{array}$		$\begin{aligned} & \mathrm{V}^{+}-0.11 \\ & \mathrm{~V}^{+}-0.0 \end{aligned}$	$\begin{aligned} & \mathrm{V}^{+}-0.06 \\ & \mathrm{~V}^{+}-0.02 \\ & \hline \end{aligned}$		V
Output Voltage Swing Low	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \text { to } \mathrm{GND} \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \text { to } \mathrm{GND} \\ & \hline \end{aligned}$	\bullet	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \end{aligned}$		$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \end{aligned}$	mV mV
Slew Rate			2			2		V/us
Gain Bandwidth Product			3			3		MHz
Supply Current (Per Amplifier)	No Load, $\mathrm{V}_{\text {S }}=3 \mathrm{~V}, \mathrm{~V}_{\text {SHDN }}=\mathrm{V}_{1 H}$	\bullet	0.75	1.0		0.75	1.1	mA
	No Load, $\mathrm{V}_{S}=5 \mathrm{~V}, \mathrm{~V}_{\text {SHDN }}=\mathrm{V}_{\text {IH }}$	\bullet	0.85	1.2		0.85	1.3	mA
Supply Current, Shutdown	$\begin{aligned} & V_{\text {SHDN }}=V_{\mathrm{IL}}, V_{S}=3 \mathrm{~V} \\ & V_{\text {SHDN }}=V_{\mathrm{IL}}, V_{S}=5 \mathrm{~V} \end{aligned}$	\bullet	$\begin{aligned} & 2 \\ & 4 \end{aligned}$	$\begin{gathered} \hline 5 \\ 10 \end{gathered}$		$\begin{aligned} & 2 \\ & 4 \end{aligned}$	$\begin{gathered} 5 \\ 10 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$

ELECTRICAL CHARACTERISTICS

(LTC2051/LTC2052, LTC2051HV/LTC2052HV) The • denotes the
specifications which apply over the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. $\mathrm{V}_{S}=3 \mathrm{~V}, 5 \mathrm{~V}$ unless otherwise noted. (Note 3)

PARAMETER	CONDITIONS		LTC2051C/LTC2052C LTC2051I/LTC2052\|			LTC2051H/LTC2052H			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	
Shutdown Pin Input Low Voltage (V_{IL}) Shutdown Pin Input High Voltage (V_{IH})		\bullet	$\mathrm{V}^{+}-0.5$		$\mathrm{V}^{-}+0.5$	$\mathrm{V}^{+}-0.5$		$\mathrm{V}^{-}+0.5$	V
Shutdown Pin Input Current	$\begin{aligned} & V_{S H D N}=V_{I L}, V_{S}=3 \mathrm{~V} \\ & V_{S H D N}=V_{I L}, V_{S}=5 \mathrm{~V} \end{aligned}$			$\begin{aligned} & \hline-1 \\ & -2 \end{aligned}$	$\begin{aligned} & \hline-3 \\ & -5 \end{aligned}$		$\begin{aligned} & \hline-1 \\ & -2 \end{aligned}$	$\begin{aligned} & -3 \\ & -5 \end{aligned}$	$\overline{\mu \mathrm{A}}$ $\mu \mathrm{A}$
Internal Sampling Frequency				7.5			7.5		kHz

(LTC2051HV/LTC2052HV) The \bullet denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. $\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}$ unless otherwise noted. (Note 3)

PARAMETER	CONDITIONS		LTC2051C/LTC2052C LTC2051I/LTC2052I			LTC2051H/LTC2052H			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	
Input Offset Voltage	(Note 2)			± 1	± 3		± 1	± 3	$\mu \mathrm{V}$
Average Input Offset Drift	(Note 2)	\bullet		0.01	± 0.03		0.01	± 0.05	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Long-Term Offset Drift				50			50		$\mathrm{nV} / \sqrt{\mathrm{mo}}$
Input Bias Current (Note 4)		\bullet		± 90	$\begin{aligned} & \pm 150 \\ & \pm 300 \end{aligned}$		± 90	$\begin{array}{r} \pm 150 \\ \pm 3000 \end{array}$	pA pA
Input Offset Current (Note 4)		\bullet			$\begin{aligned} & \pm 300 \\ & \pm 500 \end{aligned}$			$\begin{aligned} & \pm 300 \\ & \pm 700 \end{aligned}$	pA pA
Input Noise Voltage	$\mathrm{R}_{\text {S }}=100 \Omega$, DC to 10 Hz			1.5			1.5		$\mu \mathrm{V}_{\text {P-P }}$
Common Mode Rejection Ratio	$\mathrm{V}_{\text {CM }}=\mathrm{V}^{-}$to $\mathrm{V}^{+}-1.3$	\bullet	$\begin{aligned} & 125 \\ & 120 \end{aligned}$	$\begin{aligned} & 130 \\ & 130 \end{aligned}$		$\begin{aligned} & 125 \\ & 120 \end{aligned}$	$\begin{aligned} & 130 \\ & 130 \end{aligned}$		dB dB
Power Supply Rejection Ratio		\bullet	$\begin{aligned} & \hline 120 \\ & 115 \end{aligned}$	$\begin{aligned} & 130 \\ & 130 \end{aligned}$		$\begin{aligned} & \hline 120 \\ & 115 \end{aligned}$	$\begin{aligned} & \hline 130 \\ & 130 \end{aligned}$		dB dB
Large-Signal Voltage Gain	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$	\bullet	$\begin{aligned} & 125 \\ & 120 \end{aligned}$	$\begin{aligned} & 140 \\ & 140 \end{aligned}$		$\begin{aligned} & 125 \\ & 120 \end{aligned}$	$\begin{aligned} & 140 \\ & 140 \end{aligned}$		dB $d B$
Maximum Output Voltage Swing	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \text { to } \mathrm{GND} \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \text { to } \mathrm{GND} \end{aligned}$	\bullet	$\begin{aligned} & \pm 4.75 \\ & \pm 4.90 \end{aligned}$	$\begin{aligned} & \pm 4.92 \\ & \pm 4.98 \end{aligned}$		$\begin{aligned} & \pm 4.50 \\ & \pm 4.85 \end{aligned}$	$\begin{aligned} & \pm 4.92 \\ & \pm 4.98 \end{aligned}$		V
Slew Rate				2			2		V/us
Gain Bandwidth Product				3			3		MHz
Supply Current (Per Amplifier)	No Load, $\mathrm{V}_{\text {SHDN }}=\mathrm{V}_{\text {IH }}$	\bullet		1	1.5		1	1.5	mA
Supply Current, Shutdown	$\mathrm{V}_{\text {SHDN }}=\mathrm{V}_{\text {IL }}$	\bullet		15	30		15	30	$\mu \mathrm{A}$
Shutdown Pin Input Low Voltage (VIL) Shutdown Pin Input High Voltage (V_{IH})		\bullet	$V^{+}-0.5$		$\mathrm{V}^{-}+0.5$	$V^{+}-0.5$		$\mathrm{V}^{-}+0.5$	V
Shutdown Pin Input Current	$\mathrm{V}_{\text {SHDN }}=\mathrm{V}_{\text {IL }}$	\bullet		-7	-15		-7	-15	$\mu \mathrm{A}$
Internal Sampling Frequency				7.5			7.5		kHz

Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.
Note 2: These parameters are guaranteed by design. Thermocouple effects preclude measurements of these voltage levels during automated testing.
Note 3: All versions of the LTC2051/LTC2052 are designed, characterized and expected to meet the extended temperature limits of $-40^{\circ} \mathrm{C}$ and $125^{\circ} \mathrm{C}$. The LTC2051C/LTC2052C/LTC2051HVC/LTC2052HVC are guaranteed to meet the temperature limits of $0^{\circ} \mathrm{C}$ and $70^{\circ} \mathrm{C}$. The LTC2051//LTC2052I/ LTC2051HVI/LTC2052HVI are guaranteed to meet temperature limits of $40^{\circ} \mathrm{C}$ and $85^{\circ} \mathrm{C}$. The LTC2051H/LTC2051HVH and LTC2052H/LTC2052HVH
are guaranteed to meet the temperature limits of $-40^{\circ} \mathrm{C}$ and $125^{\circ} \mathrm{C}$.
Note 4: The bias current measurement accuracy depends on the proximity of the negative supply bypass capacitors to the device under test. Because of this, only the bias current of channel B (LTC2051) and channels A and B (LTC2052) are 100% tested to the data sheet specifications. The bias currents of the remaining channels are 100% tested to relaxed limits, however, their values are guaranteed by design to meet the data sheet limits.
Note 5: This param eter is guaranteed to meet specified performance through design and characterization. It has not been tested.
Note 6: The θ_{JA} specified for the DD package is with minimal PCB heat spreading metal. Using expanded metal area on all layers of a board reduces this value.

TYPICAL PERFO RMAחCE CHARACTERISTICS

Output Voltage Swing

 vs Load Resistance

Output Swing
vs Output Current, $\pm 5 \mathrm{~V}$ Supply

20512 G07

20512 G02

Output Swing vs Output Current

Output Swing

vs Load Resistance $\pm 5 \mathrm{~V}$

20512 G06

Gain/Phase vs Frequency

Bias Current vs Temperature

TYPICAL PERFO RMAחCE CHARACTERISTICS

0512 G10

20512 G13

20512 G15

Sampling Frequency vs Temperature

20512 G14
Supply Current (Per Amplifier) vs Temperature

LTC2051/LTC2052

apPLCATIONS INFORMATION

Shutdown

The LTC2051 includes a shutdown pin in the 10-lead MSOP. When this active low pin is high or allowed to float, the device operates normally. When the shutdown pin is pulled low, the device enters shutdown mode; supply current drops to $3 \mu \mathrm{~A}$, all clocking stops and the output assumes a high impedance state.

Clock Feedthrough, Input Bias Current

TheLTC2051/LTC2052 use autozeroing circuitry to achieve an almost zero DC offset over temperature, common mode voltage and power supply voltage. The frequency of the clock used for autozeroing is typically 7.5 kHz . The term clock feedthrough is broadly used to indicate visibility of this clock frequency in the op amp output spectrum. There are typically two types of clock feedthrough in autozeroed op amps like the LTC2051/LTC2052.

The first form of clock feedthough is caused by the settling of the internal sampling capacitor and is input referred; that is, it is multiplied by the closed-loop gain of the op amp. This form of clock feedthrough is independent of the magnitude of the input source resistance or the magnitude of the gain setting resistors. The LTC2051/LTC2052 have a residue clock feedthrough of less than $1 \mu V_{\text {RMS }}$ input referred at 7.5 kHz .

The second form of clock feedthrough is caused by the small amount of charge injection occurring during the sampling and holding of the op amps input offset voltage. The current spikes are multiplied by the impedance seen at the input terminals of the op amp, appearing at the output multiplied by the closed-loop gain of the op amp.

To reduce this form of clock feedthrough, use smaller valued gain setting resistors and minimize the source resistance at the input. If the resistance seen at the inputs is less than 10 k , this form of clock feedthrough is less than $1 \mu \mathrm{~V}_{\mathrm{RMS}}$ input referred at 7.5 kHz , or less than the amount of residue clock feedthrough from the first form previously described.

Placing a capacitor across the feedback resistor reduces either form of clock feedthrough by limiting the bandwidth of the closed-loop gain.
Input bias current is defined as the DC current into the input pins of the op amp. The same current spikes that cause the second form of clock feedthrough previously described, when averaged, dominate the DC input bias current of the op amp below $70^{\circ} \mathrm{C}$.

At temperatures above $70^{\circ} \mathrm{C}$, the leakage of the ESD protection diodes on the inputs increase the input bias currents of both inputs in the positive direction, while the current caused by the charge injection stays relatively constant. At elevated temperatures (above $85^{\circ} \mathrm{C}$) the leakage current begins to dominate and both the negative and positive pin's input bias currents are in the positive direction (into the pins).

Input Pins, ESD Sensitivity

ESD voltages above 700 V on the input pins of the op amp will cause the input bias currents to increase (more DC current into the pins). At these voltages, it is possible to damage the device to a point where the input bias current exceeds the maximums specified in this data sheet.

TYPICAL APPUCATIO

The dual chopper op amp buffers the inputs of A1 and corrects its offset voltage and offset voltage drift. With the RC values shown, the power-up warm-up time is typically 20 seconds. The step response of the composite amplifier does not present settling tails. The LT ${ }^{\circledR} 1677$ should be used when extremely low noise, $\mathrm{V}_{\text {OS }}$ and $\mathrm{V}_{\text {OS }}$ drift are
needed and the input source resistance is low. (For instance a 350Ω strain gauge bridge.) The LT1012 or equivalent should be used when low bias current (100pA) is also required in conjunction with DC to 10 Hz low noise, low $V_{O S}$ and $V_{O S}$ drift. The measured typical input offset voltages are less than $1 \mu \mathrm{~V}$.

TYPICAL APPLCATION

Obtaining Ultralow $\mathrm{V}_{0 S}$ Drift and Low Noise

A1	R1	R2	R3	R4	R5	C1	C2	$\bar{e}_{\text {IN }}(\mathrm{DC}-1 \mathrm{~Hz}$)	$\overline{\mathrm{e}}_{\text {IN }}(\mathrm{DC}-10 \mathrm{~Hz}$)
LT1677	2.49k	3.01k	340k	10k	100k	$0.01 \mu \mathrm{~F}$	$0.001 \mu \mathrm{~F}$	$0.15 \mu V_{\text {P-P }}$	$0.2 \mu \mathrm{~V}_{\text {P-P }}$
LT1012	750Ω	57Ω	250k	10k	100k	$0.01 \mu \mathrm{~F}$	$0.001 \mu \mathrm{~F}$	$0.3 \mu \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$	$0.4 \mu \mathrm{~V}_{\text {P-P }}$

PACKAGE DESCRIPTIO

DD Package
8-Lead Plastic DFN ($3 \mathrm{~mm} \times 3 \mathrm{~mm}$)
(Reference LTC DWG \# 05-08-1698)

0.200 REF

NOTE:

1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE M0-229 VARIATION OF (WEED-1) 2. DRAWING NOT TO SCALE
2. ALL DIMENSIONS ARE IN MILLIMETERS
3. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE

MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15 mm ON ANY SIDE
5. EXPOSED PAD SHALL BE SOLDER PLATED
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION

ON TOP AND BOTTOM OF PACKAGE

BOTTOM VIEW—EXPOSED PAD

RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS

PACKAGE DESCRIPTIO

MS8 Package
 8-Lead Plastic MSOP

(Reference LTC DWG \# 05-08-1660)

MS Package
10-Lead Plastic MSOP
(Reference LTC DWG \# 05-08-1661)

PACKAGE DESCRIPTIO

S8 Package

8-Lead Plastic Small Outline (Narrow . 150 Inch)
(Reference LTC DWG \# 05-08-1610)

GN Package
16-Lead Plastic SSOP (Narrow . 150 Inch)
(Reference LTC DWG \# 05-08-1641)

S Package

14-Lead Plastic Small Outline (Narrow . 150 Inch)
(Reference LTC DWG \# 05-08-1610)

TYPICAL APPUCATION

Paralleling Amplifiers to Improve Noise

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LTC1051/LTC1053	Precision Zero-Drift Op Amp	Dual/Quad
LTC1151	± 15 V Zero-Drift Op Amp	Dual High Voltage Operation $\pm 18 \mathrm{~V}$
LTC1152	Rail-to-Rail Input and Output Zero-Drift Op Amp	Single Zero-Drift Op Amp with Rail-to-Rail Input and Output and Shutdown
LTC2050	Zero-Drift Op Amp in SOT-23	Single Supply Operation 2.7V to $\pm 5 \mathrm{~V}$, Shutdown
LTC2053	Zero-Drift Precision Instrumentation Amp	MS8, 116dB CMRR, Two External Resistors Set Gain
LTC6800	Rail-to-Rail Input and Output Instrumentation Amp	Low Cost, MS8, Two External Resistors Set Gain

[^0]: $\overline{\mathbf{B Y}}$, LT, LTC and LTM are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners.

