: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

feATURES

- Supply Current $150 \mu \mathrm{~A}$ (Max per Amplifier) Guaranteed from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
- Offset Voltage $3 \mu \mathrm{~V}$ (Max, $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$)
- Offset Voltage Drift $30 \mathrm{nV} /{ }^{\circ} \mathrm{C}$ (Max, $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$)
- Guaranteed Specifications from $-55^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ (LTC2054MP)
- Common Mode Input Range from V^{-}to $\mathrm{V}^{+}-0.5 \mathrm{~V}$
- Output Swings Rail-to-Rail
- Voltage Gain: 140dB (Typ)
- PSRR and CMRR: 130dB (Typ)
- Input Bias Current: 1pA (Typ, $25^{\circ} \mathrm{C}$)
- Noise: $1.6 \mu \mathrm{~V}$ P-p $(0.01 \mathrm{~Hz}$ to 10 Hz Typ)
- Supply Operation:
2.7V to 6V (LTC2054/LTC2055)
2.7V to $\pm 5.5 \mathrm{~V}$ (LTC2054HV/LTC2055HV)
- Low Profile (1mm) TSOT-23, MS8 and
$3 \mathrm{~mm} \times 3 \mathrm{~mm} \times 0.8 \mathrm{~mm}$ DFN Packages

APPLICATIONS

- Thermocouple Amplifiers
- Electronic Scales
- Medical Instrumentation
- Strain Gauge Amplifiers
- High Resolution Data Acquisition
- DC Accurate RC Active Filters
- Low Side Current Sense
- Battery-Powered Systems

DESCRIPTIOn

The LTC®2054/LTC2055 are low power, low noise, single/ dual, zero-drift operational amplifiers with an extended temperature version (LTC2054MP) that has guaranteed specifications from $-55^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$. They are available in TSOT-23 (ThinSOT™) and MS8 packages. For space limited applications, the LTC2055 is also available in a $3 \mathrm{~mm} \times 3 \mathrm{~mm} \times 0.8 \mathrm{~mm}$ dual fine pitch leadless package (DFN). They operate from a single 2.7 V minimum supply and support $\pm 5 \mathrm{~V}$ applications. The current consumption is typically $150 \mu \mathrm{~A}$ for the LTC2054 and $130 \mu \mathrm{~A} / \mathrm{amp}$ for the LTC2055.
The LTC2054/LTC2055, despite their miniature size, feature uncompromising DC performance. The maximum input offset voltage and offset drift are $3.0 \mu \mathrm{~V}$ and $30 \mathrm{nV} /{ }^{\circ} \mathrm{C}$ over the $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ industrial temperature range. The almost zero DC offset and drift are supported with a power supply rejection ratio (PSRR) and common mode rejection ratio (CMRR) of 130 dB (typ).
The input common mode voltage ranges from the negative supply up to typically 0.5 V below the positive supply. The open-loop gain is typically 140dB. The LTC2054/LTC2055 also feature a $1.6 \mu \mathrm{~V}_{\mathrm{P}-\mathrm{P}} \mathrm{DC}$ to 10 Hz noise and a 500 kHz gain-bandwidth product.
$\overline{\mathbf{\Sigma T}}$, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear Technology Corporation. ThinSOT is a trademark of Linear Technology Corporation. All other trademarks are the property of their respective owners.

TYPICAL APPLICATION

LTC2054/LTC2055

ABSOLUTE MAXIMUUM RATINGS (Note 1)

Total Supply Voltage (V^{+}to V^{-}) LTC2054/LTC2055 7V
LTC2054HV/LTC2055HV. 12 V
Input Voltage $\left(\mathrm{V}^{+}+0.3 \mathrm{~V}\right)$ to $\left(\mathrm{V}^{-}-0.3 \mathrm{~V}\right)$
Output Short-Circuit Duration IndefiniteSpecified Temperature Range (Note 2)LTC2054C/LTC2055C$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LTC2054I/LTC2055I $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LTC2054H/LTC2055H $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LTC2054MP $-55^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
DD Package $-65^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$Lead Temperature (Soldering, 10 sec)TSOT23 and MS8 Packages$300^{\circ} \mathrm{C}$

PIn COnfiguration

ORDER INFORMATION

LEAD FREE FINISH	TAPE AND REEL	PART MARKING*	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE
LTC2054CS5\#PBF	LTC2054CS5\#TRPBF	LTAGB	5-Lead Plastic TSOT-23	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LTC2054HVCS5\#PBF	LTC2054HVCS5\#TRPBF	LTAGD	5-Lead Plastic TSOT-23	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LTC2054IS5\#PBF	LTC2054IS5\#TRPBF	LTAGB	5-Lead Plastic TSOT-23	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LTC2054HVIS5\#PBF	LTC2054HVIS5\#TRPBF	LTAGD	5-Lead Plastic TSOT-23	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LTC2054HS5\#PBF	LTC2054HS5\#TRPBF	LTAGB	5-Lead Plastic TSOT-23	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LTC2054HVHS5\#PBF	LTC2054HVHS5\#TRPBF	LTAGD	5-Lead Plastic TSOT-23	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LTC2055CDD\#PBF	LTC2055CDD\#TRPBF	LBCW	8-Lead ($3 \mathrm{~mm} \times 3 \mathrm{~mm}$) Plastic DFN	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LTC2055HVCDD\#PBF	LTC2055HVCDD\#TRPBF	LBCX	8-Lead ($3 \mathrm{~mm} \times 3 \mathrm{~mm}$) Plastic DFN	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LTC2055IDD\#PBF	LTC2055IDD\#TRPBF	LBCW	8-Lead ($3 \mathrm{~mm} \times 3 \mathrm{~mm}$) Plastic DFN	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LTC2055HVIDD\#PBF	LTC2055HVIDD\#TRPBF	LBCX	8-Lead ($3 \mathrm{~mm} \times 3 \mathrm{~mm}$) Plastic DFN	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LTC2055HDD\#PBF	LTC2055HDD\#TRPBF	LBCW	8-Lead ($3 \mathrm{~mm} \times 3 \mathrm{~mm}$) Plastic DFN	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LTC2055HVHDD\#PBF	LTC2055HVHDD\#TRPBF	LBCX	8-Lead ($3 \mathrm{~mm} \times 3 \mathrm{~mm}$) Plastic DFN	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LTC2055CMS8\#PBF	LTC2054CMS8\#TRPBF	LTBCR	8-Lead Plastic MSOP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LTC2055HVCMS8\#PBF	LTC2055HVCMS8\#TRPBF	LTBCT	8-Lead Plastic MSOP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LTC2055IMS8\#PBF	LTC2055IMS8\#TRPBF	LTBCR	8-Lead Plastic MSOP	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

ORDER INFORMATION

LEAD FREE FINISH	TAPE AND REEL	PART MARKING*	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE
LTC2055HVIMS8\#PBF	LTC2055HVIMS8\#TRPBF	LTBCT	8-Lead Plastic MSOP	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LTC2055HMS8\#PBF	LTC2055HMS8\#TRPBF	LTBCR	8-Lead Plastic MSOP	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LTC2055HVHMS8\#PBF	LTC2055HVHMS8\#TRPBF	LTBCT	8-Lead Plastic MSOP	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LTC2054MPS5\#PBF	LTC2054MPS5\#TRPBF	LTFFF	5-Lead Plastic TS0T-23	$-55^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
LTC2054HVMPS5\#PBF	LTC2054HVMPS5\#TRPBF	LTFFG	5-Lead Plastic TS0T-23	$-55^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container. Consult LTC Marketing for information on non-standard lead based finish parts.
For more information on lead free part marking, go to: http://www.linear.com/leadfree/
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/

ELECTRICAL CHARACTERISTICS
(LTC2054/LTC2055) The • denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} . \mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}, 5 \mathrm{~V}$ unless otherwise noted. (Note 2)

SYMBOL	PARAMETER	CONDITIONS		$\begin{aligned} & \text { LTC2054C/LTC2055C } \\ & \text { LTC2054I/LTC2055I } \end{aligned}$			LTC2054H/LTC2055H			UNITS
				MIN	TYP	MAX	MIN	TYP	MAX	
I_{S}	Supply Current (LTC2054)	No Load	\bullet		140	175		140	180	$\mu \mathrm{A}$
I_{S}	Supply Current Per Amplifier (LTC2055)	No Load	\bullet		130	150		130	155	$\mu \mathrm{A}$
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	(Note 3)			± 0.5	± 3		± 0.5	± 3	$\mu \mathrm{V}$
$\Delta \mathrm{V}_{0 S} / \Delta \mathrm{T}$	Average Input Offset Drift	(Note 3)	\bullet		0.02	± 0.03		0.02	± 0.05	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
	Long-Term Offset Drift				50			50		$\mathrm{nV} / \sqrt{\mathrm{mo}}$
I_{B}	Input Bias Current	(Note 4)	\bullet		± 1	± 150		± 1	± 3000	pA pA
10 S	Input Offset Current	(Note 4)	\bullet		± 2	± 300		± 2	± 700	pA pA
e_{n}	Input Noise Voltage	$\begin{aligned} & R_{S}=100 \Omega, D C \text { to } 1 \mathrm{~Hz} \\ & R_{S}=100 \Omega, D C \text { to } 10 \mathrm{~Hz} \end{aligned}$			$\begin{aligned} & 0.6 \\ & 1.6 \end{aligned}$			$\begin{aligned} & \hline 0.6 \\ & 1.6 \end{aligned}$		$\begin{aligned} & \mu V_{\text {P-P }} \\ & \mu \mathrm{V}_{\text {P-P }} \end{aligned}$
CMRR	Common Mode Rejection Ratio	$\begin{aligned} & V_{C M}=G N D \text { to } \mathrm{V}^{+}-0.7 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=3 \mathrm{~V} \end{aligned}$	\bullet	$\begin{aligned} & 115 \\ & 110 \end{aligned}$	130		$\begin{aligned} & 115 \\ & 110 \end{aligned}$	130		dB dB
		$\begin{aligned} & V_{C M}=G N D \text { to } \mathrm{V}^{+}-0.7 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=5 \mathrm{~V} \end{aligned}$	\bullet	$\begin{aligned} & 120 \\ & 115 \end{aligned}$	130		$\begin{aligned} & 120 \\ & 115 \end{aligned}$	130		dB dB
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{S}=2.7 \mathrm{~V}$ to 6 V	\bullet	$\begin{aligned} & 120 \\ & 115 \end{aligned}$	130		$\begin{aligned} & 120 \\ & 115 \end{aligned}$	130		dB dB
AVOL	Large-Signal Voltage Gain	$\mathrm{R}_{\mathrm{L}}=100 \mathrm{k}, \mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=\mathrm{V}_{\text {S }} / 2$	\bullet	$\begin{aligned} & 120 \\ & 115 \end{aligned}$	135		120	135		dB dB
		$\mathrm{R}_{\mathrm{L}}=100 \mathrm{k}, \mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=\mathrm{V}_{\mathrm{S}} / 2$	\bullet	$\begin{aligned} & 125 \\ & 120 \end{aligned}$	140		$\begin{aligned} & 125 \\ & 120 \end{aligned}$	140		dB dB
V OUT	Output Voltage Swing High	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \text { to } \mathrm{GND}, \mathrm{~V}_{\mathrm{S}}=3 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \text { to } \mathrm{GND}, \mathrm{~V}_{\mathrm{S}}=3 \mathrm{~V} \\ & \hline \end{aligned}$	\bullet	$\begin{aligned} & 2.87 \\ & 2.85 \\ & \hline \end{aligned}$	2.89		$\begin{aligned} & 2.87 \\ & 2.84 \\ & \hline \end{aligned}$	2.89		V
		$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \text { to } \mathrm{GND}, \mathrm{~V}_{\mathrm{S}}=5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \text { to } \mathrm{GND}, \mathrm{~V}_{\mathrm{S}}=5 \mathrm{~V} \end{aligned}$	\bullet	$\begin{aligned} & 4.80 \\ & 4.75 \end{aligned}$	4.83		$\begin{aligned} & 4.80 \\ & 4.70 \end{aligned}$	4.83		V
		$\begin{aligned} & R_{L}=100 \mathrm{k} \text { to } \mathrm{GND}, \mathrm{~V}_{\mathrm{S}}=3 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \text { to } \mathrm{GND}, \mathrm{~V}_{\mathrm{S}}=3 \mathrm{~V} \end{aligned}$	\bullet	$\begin{gathered} 2.98 \\ 2.975 \end{gathered}$	2.99		$\begin{aligned} & 2.98 \\ & 2.97 \end{aligned}$	2.99		V
		$\begin{aligned} & R_{L}=100 \mathrm{k} \text { to } \mathrm{GND}, \mathrm{~V}_{\mathrm{S}}=5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \text { to } \mathrm{GND}, \mathrm{~V}_{\mathrm{S}}=5 \mathrm{~V} \end{aligned}$	\bullet	$\begin{aligned} & 4.985 \\ & 4.980 \end{aligned}$	4.99		$\begin{aligned} & 4.985 \\ & 4.970 \end{aligned}$	4.99		V
20545fc										

LTC2054/LTC2055

ELECTRICAL CHARACTERISTICS (LTC2054/LC2055) The • denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. $\mathrm{V}_{S}=3 \mathrm{~V}, 5 \mathrm{~V}$ unless otherwise noted. (Note 2)

SYMBOL	PARAMETER	CONDITIONS		$\begin{aligned} & \hline \text { LTC2054C/LTC2055C } \\ & \text { LTC2054I/LTC2055I } \end{aligned}$			LTC2054H/LTC2055H			UNITS
				MIN	TYP	MAX	MIN	TYP	MAX	
$\mathrm{V}_{\text {OUT }}$	Output Voltage Swing Low	$\begin{aligned} & R_{L}=5 \mathrm{k} \text { to } \mathrm{GND}, \mathrm{~V}_{\mathrm{S}}=3 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \text { to } \mathrm{GND}, \mathrm{~V}_{\mathrm{S}}=3 \mathrm{~V} \end{aligned}$	\bullet		2	$\begin{gathered} 8 \\ 10 \end{gathered}$		3	$\begin{gathered} 8 \\ 10 \end{gathered}$	mV mV
		$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \text { to } \mathrm{GND}, \mathrm{~V}_{\mathrm{S}}=5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \text { to } \mathrm{GND}, \mathrm{~V}_{\mathrm{S}}=5 \mathrm{~V} \end{aligned}$	\bullet		2	$\begin{gathered} 8 \\ 10 \end{gathered}$		3	$\begin{gathered} \hline 8 \\ 10 \end{gathered}$	mV mV
		$\begin{aligned} & R_{L}=100 \mathrm{k} \text { to } \mathrm{GND}, \mathrm{~V}_{\mathrm{S}}=3 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \text { to } \mathrm{GND}, \mathrm{~V}_{\mathrm{S}}=3 \mathrm{~V} \end{aligned}$	\bullet		2	$\begin{gathered} 8 \\ 10 \end{gathered}$		3	$\begin{gathered} 8 \\ 10 \end{gathered}$	mV mV
		$\begin{aligned} & R_{L}=100 \mathrm{k} \text { to } \mathrm{GND}, \mathrm{~V}_{\mathrm{S}}=5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \text { to } \mathrm{GND}, \mathrm{~V}_{\mathrm{S}}=5 \mathrm{~V} \end{aligned}$	\bullet		2	$\begin{gathered} \hline 8 \\ 10 \end{gathered}$		3	$\begin{gathered} \hline 8 \\ 10 \end{gathered}$	mV mV
SR	Slew Rate				0.5			0.5		$\mathrm{V} / \mathrm{\mu s}$
GBW	Gain Bandwidth Product				500			500		kHz
$\mathrm{f}_{\text {S }}$	Internal Sampling Frequency				1			1		kHz

(LTC2054HV/LTC2055HV) The \bullet denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. $\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}$ unless otherwise noted. (Note 2)

SYMBOL	PARAMETER	CONDITIONS		LTC2054HVC/LTC2055HVC LTC2054HVI/LTC2055HVI			LTC2054HVH/LTC2055HVH			UNITS
				MIN	TYP	MAX	MIN	TYP	MAX	
IS	Supply Current	No Load (LTC2054)	\bullet		175	210		175	215	$\mu \mathrm{A}$
$\mathrm{I}_{\text {S }}$	Supply Current (Per Amplifier)	No Load (LTC2055)	\bullet		150	180		150	185	$\mu \mathrm{A}$
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	(Note 3)			± 0.5	± 5		± 0.5	± 5	$\mu \mathrm{V}$
$\Delta \mathrm{V}_{0 S} / \Delta \mathrm{T}$	Average Input Offset Drift	(Note 3)	\bullet		0.025	± 0.03		0.025	± 0.05	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
	Long-Term Offset Drift				50			50		$\mathrm{nV} / \sqrt{\mathrm{mo}}$
I_{B}	Input Bias Current	(Note 4)	\bullet		± 3	± 150		± 3	± 3000	pA pA
los	Input Offset Current	(Note 4)	\bullet		± 6	± 300			± 700	pA pA
e_{n}	Input Noise Voltage	$\begin{aligned} & R_{S}=100 \Omega, D C \text { to } 1 \mathrm{~Hz} \\ & R_{S}=100 \Omega, D C \text { to } 10 \mathrm{~Hz} \end{aligned}$			$\begin{aligned} & 0.6 \\ & 1.6 \end{aligned}$			$\begin{aligned} & 0.6 \\ & 1.6 \end{aligned}$		$\mu V_{\text {P-P }}$ $\mu V_{\text {P-P }}$
CMRR	Common Mode Rejection Ratio	$\mathrm{V}_{\text {CM }}=$ GND to $\mathrm{V}^{+}-0.9$	\bullet	$\begin{aligned} & 120 \\ & 115 \end{aligned}$	130		$\begin{aligned} & 120 \\ & 115 \end{aligned}$	130		dB dB
PSRR	Power Supply Rejection Ratio	$V_{S}=2.7 \mathrm{~V}$ to 11V	\bullet	$\begin{aligned} & 120 \\ & 115 \end{aligned}$	130		$\begin{aligned} & 120 \\ & 115 \end{aligned}$	130		dB $d B$
AVOL	Large-Signal Voltage Gain	$\mathrm{R}_{\mathrm{L}}=100 \mathrm{k}, \mathrm{V}_{\text {OUT }}=\mathrm{GND}$	\bullet	$\begin{aligned} & 125 \\ & 120 \end{aligned}$	140		$\begin{aligned} & 125 \\ & 120 \end{aligned}$	140		dB dB
$\overline{V_{\text {OUT }}}$	Maximum Output Voltage Swing	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \text { to } \mathrm{GND} \\ & \mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \text { to } \mathrm{GND} \\ & \hline \end{aligned}$	\bullet	$\begin{aligned} & \pm 4.78 \\ & \pm 4.75 \end{aligned}$	± 4.82		$\begin{aligned} & \pm 4.78 \\ & \pm 4.70 \end{aligned}$	± 4.82		V
		$\begin{aligned} & \hline \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \text { to } \mathrm{GND} \\ & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \text { to } \mathrm{GND} \\ & \hline \end{aligned}$	\bullet	$\begin{aligned} & \pm 4.98 \\ & \pm 4.975 \end{aligned}$	± 4.99		$\begin{aligned} & \pm 4.98 \\ & \pm 4.97 \end{aligned}$	± 4.99		V
SR	Slew Rate				0.5			0.5		$\mathrm{V} / \mathrm{\mu s}$
GBW	Gain Bandwidth Product				500			500		kHz
f_{S}	Internal Sampling Frequency				1			1		kHz

LTC2054/LTC2055

ELECFRAPL CHPRACTERISTICS (LTC2054MP) The • denotes the specifications which apply over the full

 operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} . \mathrm{V}_{S}=3 \mathrm{~V}$, 5 V unless otherwise noted. (Note 2)| SYMBOL | PARAMETER | CONDITIONS | | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Is | Supply Current | No Load | - | | 145 | 190 | $\mu \mathrm{A}$ |
| $\mathrm{V}_{\text {OS }}$ | Input Offset Voltage | (Note 3)
 (Note 3) $-55^{\circ} \mathrm{C}$ to $135^{\circ} \mathrm{C}$ | \bullet | | | $\begin{gathered} \pm 10 \\ \pm 8 \end{gathered}$ | ${ }_{\mu \mathrm{V}}^{\mu \mathrm{V}}$ |
| $\Delta \mathrm{V}_{\text {OS }} / \Delta \mathrm{T}$ | Average Input Offset Drift | (Note 3) | \bullet | | 0.04 | ± 0.1 | $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ |
| | Long-Term Offset Drift | | | | 50 | | $\mathrm{nV} / \sqrt{\mathrm{mo}}$ |
| I_{B} | Input Bias Current | (Note 4) | \bullet | | ± 1 | ± 12 | pA |
| IOS | Input Offset Current | (Note 4) | \bullet | | ± 2 | ± 5 | pA |
| e_{n} | Input Noise Voltage | $\begin{aligned} & R_{S}=100 \Omega, D C \text { to } 1 \mathrm{~Hz} \\ & R_{S}=100 \Omega, D C \text { to } 10 \mathrm{~Hz} \end{aligned}$ | | | $\begin{aligned} & 0.6 \\ & 1.6 \end{aligned}$ | | $\mu V_{\text {P-P }}$
 $\mu \mathrm{V}_{\mathrm{P}-\mathrm{P}}$ |
| CMRR | Common Mode Rejection Ratio | $\begin{aligned} & V_{C M}=G N D \text { to } \mathrm{V}^{+}-0.7 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=3 \mathrm{~V} \end{aligned}$ | \bullet | $\begin{aligned} & 115 \\ & 105 \end{aligned}$ | 130 | | $\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$ |
| | | $\begin{aligned} & V_{C M}=\mathrm{GND} \text { to } \mathrm{V}^{+}-0.7 \mathrm{~V} \\ & V_{S}=5 \mathrm{~V} \end{aligned}$ | \bullet | $\begin{aligned} & 120 \\ & 110 \end{aligned}$ | 130 | | dB $d B$ |
| PSRR | Power Supply Rejection Ratio | $\mathrm{V}_{S}=2.7 \mathrm{~V}$ to 6 V | \bullet | $\begin{aligned} & 120 \\ & 110 \end{aligned}$ | 130 | | dB dB |
| $\mathrm{A}_{\mathrm{VOL}}$ | Large-Signal Voltage Gain | $\mathrm{R}_{\mathrm{L}}=100 \mathrm{k}, \mathrm{V}_{S}=3 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=\mathrm{V}_{S} / 2$ | \bullet | $\begin{aligned} & 120 \\ & 110 \end{aligned}$ | 135 | | $\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$ |
| | | $\mathrm{R}_{\mathrm{L}}=100 \mathrm{k}, \mathrm{V}_{S}=5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=\mathrm{V}_{S} / 2$ | \bullet | $\begin{aligned} & 125 \\ & 115 \end{aligned}$ | 140 | | dB $d B$ |
| V OUT | Output Voltage Swing High | $\begin{aligned} & R_{L}=5 \mathrm{k} \text { to } \mathrm{GND}, \mathrm{~V}_{\mathrm{S}}=3 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \text { to } \mathrm{GND}, \mathrm{~V}_{\mathrm{S}}=3 \mathrm{~V} \end{aligned}$ | \bullet | $\begin{aligned} & 2.87 \\ & 2.84 \end{aligned}$ | 2.89 | | V |
| | | $\begin{aligned} & R_{L}=5 \mathrm{k} \text { to } \mathrm{GND}, \mathrm{~V}_{S}=5 \mathrm{~V} \\ & R_{L}=5 \mathrm{k} \text { to } G N D, V_{S}=5 \mathrm{~V} \end{aligned}$ | \bullet | $\begin{aligned} & 4.80 \\ & 4.70 \end{aligned}$ | 4.83 | | V |
| | | $\begin{aligned} & R_{L}=100 \mathrm{k} \text { to } \mathrm{GND}, \mathrm{~V}_{S}=3 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \text { to } \mathrm{GND}, \mathrm{~V}_{S}=3 \mathrm{~V} \end{aligned}$ | \bullet | $\begin{aligned} & 2.98 \\ & 2.97 \end{aligned}$ | 2.99 | | V |
| | | $\begin{aligned} & R_{L}=100 \mathrm{k} \text { to } \mathrm{GND}, \mathrm{~V}_{S}=5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \text { to } \mathrm{GND}, \mathrm{~V}_{S}=5 \mathrm{~V} \end{aligned}$ | \bullet | $\begin{aligned} & 4.985 \\ & 4.970 \end{aligned}$ | 4.99 | | V |
| $\mathrm{V}_{\text {OUT }}$ | Output Voltage Swing Low | $\begin{aligned} & \mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \text { to } \mathrm{GND}, \mathrm{~V}_{\mathrm{S}}=3 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \text { to } \mathrm{GND}, \mathrm{~V}_{\mathrm{S}}=3 \mathrm{~V} \end{aligned}$ | \bullet | | 3 | $\begin{gathered} 8 \\ 10 \end{gathered}$ | $\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$ |
| | | $\begin{aligned} & R_{L}=5 \mathrm{k} \text { to } \mathrm{GND}, V_{S}=5 \mathrm{~V} \\ & R_{L}=5 \mathrm{k} \text { to } G N D, V_{S}=5 \mathrm{~V} \end{aligned}$ | \bullet | | 3 | $\begin{gathered} 8 \\ 10 \end{gathered}$ | mV mV |
| | | $\begin{aligned} & R_{L}=100 \mathrm{k} \text { to } \mathrm{GND}, \mathrm{~V}_{S}=3 \mathrm{~V} \\ & R_{L}=100 \mathrm{k} \text { to } \mathrm{GND}, \mathrm{~V}_{S}=3 \mathrm{~V} \end{aligned}$ | \bullet | | 3 | $\begin{gathered} \hline 8 \\ 10 \end{gathered}$ | $\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$ |
| | | $\begin{aligned} & R_{L}=100 \mathrm{k} \text { to } \mathrm{GND}, \mathrm{~V}_{S}=5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \text { to } \mathrm{GND}, \mathrm{~V}_{S}=5 \mathrm{~V} \end{aligned}$ | \bullet | | 3 | $\begin{gathered} 8 \\ 10 \end{gathered}$ | $\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$ |
| SR | Slew Rate | | | | 0.5 | | V/us |
| GBW | Gain Bandwidth Product | | | | 500 | | kHz |
| f_{S} | Internal Sampling Frequency | | | | 1 | | kHz |

LTC2054/LTC2055

ELECTRICAL CHARACTERISTICS (LTc2054HVMP) The • denotes the speciifications which apply over the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} . \mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}$ unless otherwise noted. (Note 2)

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Is	Supply Current	No Load	\bullet		175	220	$\mu \mathrm{A}$
$\mathrm{V}_{0 S}$	Input Offset Voltage	(Note 3)	\bullet			± 10	$\mu \mathrm{V}$
$\Delta \mathrm{V}_{\text {OS }} / \Delta \mathrm{T}$	Average Input Offset Drift	(Note 3)	\bullet		0.05	± 0.1	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
	Long-Term Offset Drift				50		$\mathrm{nV} / \sqrt{\mathrm{mo}}$
I_{B}	Input Bias Current	(Note 4)	\bullet		± 3	± 12	pA nA
IOS	Input Offset Current	(Note 4)	\bullet		± 6	± 5	pA nA
e_{n}	Input Noise Voltage	$\begin{aligned} & R_{S}=100 \Omega, D C \text { to } 1 \mathrm{~Hz} \\ & R_{S}=100 \Omega, D C \text { to } 10 \mathrm{~Hz} \end{aligned}$			$\begin{aligned} & 0.6 \\ & 1.6 \end{aligned}$		$\begin{aligned} & \mu V_{\text {P-P }} \\ & \mu \mathrm{V}_{\text {P-P }} \end{aligned}$
CMRR	Common Mode Rejection Ratio	$\mathrm{V}_{\text {CM }}=\mathrm{GND}$ to $\mathrm{V}^{+}-0.9$	\bullet	$\begin{aligned} & 120 \\ & 110 \end{aligned}$	130		dB dB
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{S}=2.7 \mathrm{~V}$ to 11V	\bullet	$\begin{aligned} & 120 \\ & 110 \end{aligned}$	130		dB dB
AVOL	Large-Signal Voltage Gain	$\mathrm{R}_{\mathrm{L}}=100 \mathrm{k}, \mathrm{V}_{\text {OUT }}=\mathrm{GND}$	\bullet	$\begin{aligned} & 125 \\ & 115 \end{aligned}$	140		dB dB
$V_{\text {OUT }}$	Maximum Output Voltage Swing	$\begin{aligned} & R_{L}=5 \mathrm{k} \text { to } \mathrm{GND} \\ & \mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \text { to } \mathrm{GND} \end{aligned}$	\bullet	$\begin{gathered} \pm 4.78 \\ \pm 4.675 \end{gathered}$	± 4.82		V
		$\begin{aligned} & R_{L}=100 \mathrm{k} \text { to } \mathrm{GND} \\ & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \text { to } \mathrm{GND} \end{aligned}$	\bullet	$\begin{gathered} \pm 4.98 \\ \pm 4.965 \end{gathered}$	± 4.99		V
SR	Slew Rate				0.5		$\mathrm{V} / \mathrm{\mu s}$
GBW	Gain Bandwidth Product				500		kHz
$\mathrm{f}_{\text {S }}$	Internal Sampling Frequency				1		kHz

Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.
Note 2: The LTC2054/LTC2055 are designed, characterized and expected to meet the extended temperature limits of $-40^{\circ} \mathrm{C}$ and $125^{\circ} \mathrm{C}$. The LTC2054C/ LTC2055C/LTC2054HVC/LTC2055HVC are guaranteed to meet the temperature limits of $0^{\circ} \mathrm{C}$ and $70^{\circ} \mathrm{C}$. The LTC2054I/LTC2055I/LTC2054HVI/ LTC2055HVI are guaranteed to meet temperature limits of $-40^{\circ} \mathrm{C}$ and $85^{\circ} \mathrm{C}$. The LTC2054H/LTC2055H and LTC2054HVH/LTC2055HVH are guaranteed to meet the temperature limits of $-40^{\circ} \mathrm{C}$ and $125^{\circ} \mathrm{C}$. The LTC2054MP/LTC2054HVMP are guaranteed to meet the temperature limits of $-55^{\circ} \mathrm{C}$ and $150^{\circ} \mathrm{C}$.

Note 3: These parameters are guaranteed by design. Thermocouple effects preclude measurements of these voltage levels during automated testing.
Note 4: Limit is determined by high speed automated test capability. See Typical Characteristic curves for actual typical performance. For tighter specifications, please consult Linear Technology Marketing.
Note 5: The θ_{JA} specified for the DD package is with minimal PCB heat spreading metal. Using expanded metal area on all layers of a board reduces this value.

TYPICAL PERFORMANCE CHARACTERISTICS

20545 G07

Input Bias Current vs Temperature

LTC2054/LTC2055

TYPICAL PERFORMANCE CHARACTERISTICS

Electrical Characteristics
Test Circuit

DC-10Hz Noise Test Circuit

LTC2054/LTC2055

APPLICATIONS InFORMATION

Clock Feedthrough, Input Bias Current

The LTC2054 and LTC2055 use auto-zeroing circuitry to achieve an almost zero DC offset over temperature, common mode voltage, and power supply voltage. The frequency of the clock used for auto-zeroing is typically 1.0 kHz . The term "clock feedthrough" is broadly used to indicate visibility of this clock frequency in the op amp output spectrum. There are typically two types of clock feedthrough in auto-zeroed op amps like the LTC2054/ LTC2055.

The first form of clock feedthrough is caused by the settling of the internal sampling capacitor and is input referred; that is, it is multiplied by the closed loop gain of the op amp. This form of clock feedthrough is independent of the magnitude of the input source resistance or the magnitude of the gain setting resistors. The LTC2054/LTC2055 have an input referred residue clock feedthrough of less then $0.2 \mu \mathrm{~V}_{\text {RMS }}$ at 1.0 kHz .

The second form of clock feedthrough is caused by the small amount of charge injection occurring during the sampling and holding of the op amp's input offset voltage. The current spikes are multiplied by the impedance seen at the input terminals of the op amp, and the resulting voltage spikes appear at the output multiplied by the closed loop gain of the op amp. To reduce this form of clock feedthrough, use smaller valued gain setting resistors and minimize the source resistance at the input. If the resistance seen at the inputs is less than $10 \mathrm{k} \Omega$, this form of clock feedthrough is less than the amount of residue clock feedthrough from the first form described above.

Placing a capacitor across the feedback resistor reduces either form of clock feedthrough by limiting the bandwidth of the closed loop gain.

Input bias current is defined as the DC current into the input pins of the op amp. The same current spikes that

DC to 10 Hz Noise

APPLICATIONS INFORMATION

cause the second form of clock feedthrough described above, when averaged, dominate the DC input bias current of the op amp below $70^{\circ} \mathrm{C}$.

Attemperatures above $70^{\circ} \mathrm{C}$, the leakage of the ESD protection diodes on the inputs increases the input bias currents of both inputs in the positive direction, while the current caused by the charge injection stays relatively constant. At elevated temperatures (above $70^{\circ} \mathrm{C}$) the leakage current begins to dominate and both the negative and positive pins' input bias currents are in the positive direction (into the pins).

Extended Common Mode Range

The LTC2054/LTC2055 input stage is designed to allow nearly rail-to-rail input common mode signals. In addition, signals that extend beyond the allowed input common mode range do not cause output phase inversion.

Voltage Follower with Input Exceeding the Common Mode Range

Extended Common Mode Range

Simple Differential Bridge Amplifier

LTC2054/LTC2055

TYPICAL APPLICATIONS
Ground Referred Precision Current Sources

Instrumentation Amplifier with 100V Common Mode Input Voltage

Gain of 1001 Single Supply Instrumentation Amplifier

FOR 0.1\% RESISTORS, CMRR = 54dB
20545 TA05

PACKAGE DESCRIPTION
DD Package
8-Lead Plastic DFN ($3 \mathrm{~mm} \times 3 \mathrm{~mm}$)
(Reference LTC DWG \# 05-08-1698 Rev C)

RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED

NOTE:

1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE M0-229 VARIATION OF (WEED-1)
2. DRAWING NOT TO SCALE
3. ALL DIMENSIONS ARE IN MILLIMETERS
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE

MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15 mm ON ANY SIDE
5. EXPOSED PAD SHALL BE SOLDER PLATED
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION

ON TOP AND BOTTOM OF PACKAGE

LTC2054/LTC2055

PACKAGE DESCRIPTION
MS8 Package
8-Lead Plastic MSOP
(Reference LTC DWG \# 05-08-1660 Rev F)

PACKAGE DESCRIPTION

S5 Package

5-Lead Plastic TSOT-23
(Reference LTC DWG \# 05-08-1635)

2. DRAWING NOT TO SCALE
3. DIMENSIONS ARE INCLUSIVE OF PLATING
4. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR
5. MOLD FLASH SHALL NOT EXCEED 0.254 mm
6. JEDEC PACKAGE REFERENCE IS MO-193

LTC2054/LTC2055

TYPICAL APPLICATIONS

Low Power, Bidirectional 60V Precision Hi Side Current Sense

Ultra-Precision, Wide Dynamic Range 10Hz Bandwidth Photodiode Amplifier

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LTC1049	Low Power Zero-Drift Op Amp	Low Supply Current $200 \mu \mathrm{~A}$
LTC1050	Precision Zero-Drift Op Amp	Single Supply Operation 4.75V to 16V, Noise Tested and Guaranteed
LTC1051/LTC1053	Precision Zero-Drift Op Amp	Dual/Quad Version of the LTC1050
LTC1150	$\pm 15 \mathrm{~V}$ Zero-Drift Op Amp	High Voltage Operation $\pm 18 \mathrm{~V}$
LTC1152	Rail-to-Rail Input and Output Zero-Drift Op Amp	Single Zero-Drift Op Amp with Rail-to-Rail Input and Output and Shutdown
LT1677	Low Noise Rail-to-Rail Input and Output Precision Op Amp	$\mathrm{V}_{0 S}=90 \mu \mathrm{VV}, \mathrm{V}_{S}=2.7 \mathrm{~V}$ to 44V
LT1884/LT1885	Rail-to-Rail Output Precision Op Amp	V $_{\text {OS }}=50 \mu \mathrm{VV}$, I $_{\mathrm{B}}=400 \mathrm{pA}, \mathrm{V}_{S}=2.7 \mathrm{~V}$ to 40V
LTC2050	Zero-Drift Op Amp	Enhanced Output Drive Capability
LTC2051/LTC2052	Dual/Quad Zero-Drift Op Amp	Dual/Quad Version of the LTC2050 in MS8/GN16 Package
LTC2053	Zero-Drift Instrumentation Amp	Rail-to-Rail Input

