

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Multi-Sensor High Accuracy Digital Temperature Measurement System

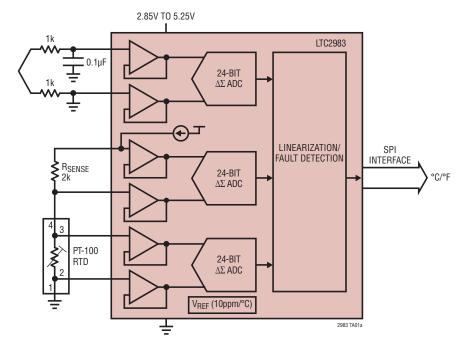
FEATURES

- Directly Digitize RTDs, Thermocouples, Thermistors and Diodes
- Single 2.85V to 5.25V Supply
- Results Reported in °C or °F
- 20 Flexible Inputs Allow Interchanging Sensors
- Automatic Thermocouple Cold Junction Compensation
- Built-In Standard and User-Programmable Coefficients for Thermocouples, RTDs and Thermistors
- Configurable 2-, 3- or 4-Wire RTD Configurations
- Measures Negative Thermocouple Voltages
- Automatic Burn Out, Short-Circuit and Fault Detection
- Buffered Inputs Allow External Protection
- Simultaneous 50Hz/60Hz Rejection
- Includes 15ppm/°C (Max) Reference (I-Grade)

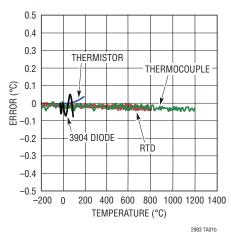
APPLICATIONS

- Direct Thermocouple Measurements
- Direct RTD Measurements
- Direct Thermistor Measurements
- Custom Sensor Applications

DESCRIPTION


The LTC®2983 measures a wide variety of temperature sensors and digitally outputs the result, in °C or °F, with 0.1°C accuracy and 0.001°C resolution. The LTC2983 can measure the temperature of virtually all standard (type B, E, J, K, N, S, R, T) or custom thermocouples, automatically compensate for cold junction temperatures and linearize the results. The device can also measure temperature with standard 2-, 3- or 4-wire RTDs, thermistors and diodes. It has 20 reconfigurable analog inputs enabling many sensor connections and configuration options. The LTC2983 includes excitation current sources and fault detection circuitry appropriate for each type of temperature sensor.

The LTC2983 allows direct interfacing to ground referenced sensors without the need for level shifters, negative supply voltages, or external amplifiers. All signals are buffered and simultaneously digitized with three high accuracy, 24-bit $\Delta\Sigma$ ADCs, driven by an internal 15ppm/°C (maximum) reference.


LT, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners. Patents Pending

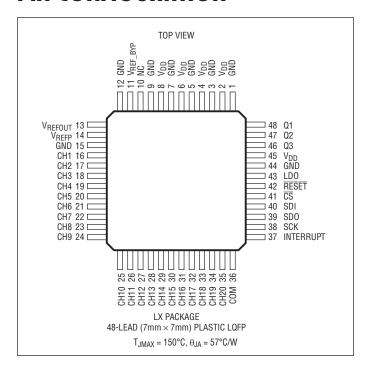
TYPICAL APPLICATION

Thermocouple Measurement with Automatic Cold Junction Compensation

Typical Temperature Error Contribution

LTC2983

TABLE OF CONTENTS


Features	
Applications	1
Typical Application	1
Description	1
Absolute Maximum Ratings	3
Order InformationOrder Information	3
Complete System Electrical Characteristics	3
Pin Configuration	
ADC Electrical Characteristics	4
Reference Electrical Characteristics	4
Digital Inputs and Digital Outputs	5
Typical Performance Characteristics	6
Pin Functions	9
Block Diagram	10
Test Circuits	11
Timing Diagram	11
Overview	12
Applications Information	16
Thermocouple Measurements	21
Diode Measurements	
RTD Measurements	28
Thermistor Measurements	43
Direct ADC Measurements	55
Supplemental Information	55
Fault Protection and Anti-Aliasing	
2- and 3-Cycle Conversion Modes	
Running Conversions Consecutively on Multiple Channels	58
MUX Configuration Delay	
Global Configuration Register	
Custom Thermocouples	
Custom RTDs	
Custom Thermistors	
Package Description	
Revision History	
Typical Application	
Related Parts	72

ABSOLUTE MAXIMUM RATINGS

(Notes 1, 2)

Supply Voltage (V_{DD})0.3V to 6V Analog Input Pins (CH1 to
CH20, COM)
Input Current (CH1 to CH20, COM)±15mA
Digital Inputs (CS, SDI,
SCK, $\overline{\text{RESET}}$)
Digital Outputs (SDO, INTERRUPT) $-0.3V$ to $(V_{DD} + 0.3V)$
V _{REFP} 0.3V to 2.8V
Q ₁ , Q ₂ , Q ₃ , LDO, V _{REFOUT} , V _{REF BVP} (Note 17)
Reference Short-Circuit Duration Indefinite
Operating Temperature Range
LTC2983C0°C to 70°C
LTC2983I40°C to 85°C
LTC2983H40°C to 125°C

PIN CONFIGURATION

ORDER INFORMATION

LEAD FREE FINISH	TRAY	PART MARKING*	PACKAGE DESCRIPTION	TEMPERATURE RANGE
LTC2983CLX#PBF	LTC2983CLX#PBF	LTC2983LX	48-Lead (7mm × 7mm) LQFP	0°C to 70°C
LTC2983ILX#PBF	LTC2983ILX#PBF	LTC2983LX	48-Lead (7mm × 7mm) LQFP	-40°C to 85°C
LTC2983HLX#PBF	LTC2983HLX#PBF	LTC2983LX	48-Lead (7mm × 7mm) LQFP	-40°C to 125°C

Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container. For more information on lead free part marking, go to: http://www.linear.com/leadfree/

COMPLETE SYSTEM ELECTRICAL CHARACTERISTICS which apply over the full operating temperature range, otherwise specifications are at $T_A = 25$ °C.

The ullet denotes the specifications

PARAMETER	CONDITIONS	TIONS		TYP	MAX	UNITS
Supply Voltage		•	2.85		5.25	V
Supply Current		•		15	20	mA
Sleep Current		•		25	60	μA
Input Range	All Analog Input Channels	•	-0.05		V _{DD} – 0.3	V
Output Rate	Two Conversion Cycle Mode (Notes 6, 9)	•	150	164	170	ms
Output Rate	Three Conversion Cycle Mode (Notes 6, 9)	•	225	246	255	ms
Input Common Mode Rejection	50Hz/60Hz (Note 4)	•	120			dB
Input Normal Mode Rejection	60Hz (Notes 4, 7)	•	120			dB

COMPLETE SYSTEM ELECTRICAL CHARACTERISTICS which apply over the full operating temperature range, otherwise specifications are at $T_A = 25$ °C.

The • denotes the specifications

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Input Normal Mode Rejection	50Hz (Notes 4, 8)	•	120			dB
Input Normal Mode Rejection	50Hz/60Hz (Notes 4, 6, 9)	•	75			dB
Power-On Reset Threshold				2.25		V
Analog Power-Up	(Note 11)	•			100	ms
Digital Initialization	(Note 12)	•			100	ms

ADC ELECTRICAL CHARACTERISTICS The \bullet denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $T_A = 25^{\circ}C$.

PARAMETER	CONDITIONS	CONDITIONS			MAX	UNITS
Resolution (No Missing Codes)	$-F_S \le V_{IN} \le + F_S$	•	24			Bits
Integral Nonlinearity	V _{IN(CM)} = 1.25V (Note 15)	•		2	30	ppm of V _{REF}
Offset Error		•		0.5	2	μV
Offset Error Drift	(Note 4)	•		10	20	nV/°C
Positive Full-Scale Error	(Notes 3, 15)	•			100	ppm of V _{REF}
Positive Full-Scale Drift	(Notes 3, 15)	•		0.1	0.5	ppm of V _{REF} /°C
Input Leakage	(Note 18) H-Grade	•			1 10	nA nA
Negative Full-Scale Error	(Notes 3, 15)	•			100	ppm of V _{REF}
Negative Full-Scale Drift	(Notes 3, 15)	•		0.1	0.5	ppm of V _{REF} /°C
Input Referred Noise	(Note 5) H-Grade	•		0.8	1.5 2.0	μV _{RMS} μV _{RMS}
Common Mode Input Range		•	-0.05		V _{DD} – 0.3	V
RTD Excitation Current	(Note 16)	•	-25	Table 30	25	%
RTD Excitation Current Matching	Continuously Calibrated	•	Error wit	Error within Noise Level of ADC		
Thermistor Excitation Current	(Note 16)	•	-37.5	Table 53	37.5	%

REFERENCE ELECTRICAL CHARACTERISTICS the full operating temperature range, otherwise specifications are at $T_A = 25$ °C.

The • denotes the specifications which apply over

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Output Voltage	V _{REFOUT} (Note 10)		2.49		2.51	V
Output Voltage Temperature Coefficient	I-Grade, H-Grade	•		3	15	ppm/°C
Output Voltage Temperature Coefficient	C-Grade	•		3	20	ppm/°C
Line Regulation		•			10	ppm/V
Load Regulation	I _{OUT(SOURCE)} = 100μA	•			5	mV/mA
	I _{OUT(SINK)} = 100μA	•			5	mV/mA
Output Voltage Noise	0.1Hz ≤ f ≤ 10Hz			4		μV _{P-P}
	$10Hz \le f \le 1kHz$			4.5		μV _{P-P}
Output Short-Circuit Current	Short V _{REFOUT} to GND			40		mA
	Short V _{REFOUT} to V _{DD}			30		mA
Turn-On Time	0.1% Setting, C _{LOAD} = 1μF			115		μs
Long Term Drift of Output Voltage (Note 13)				60		ppm/√khr
Hysteresis (Note 14)	$\Delta T = 0$ °C to 70°C $\Delta T = -40$ °C to 85°C			30 70		ppm ppm

DIGITAL INPUTS AND DIGITAL OUTPUTS

full operating temperature range, otherwise specifications are at $T_A = 25$ °C.

The • denotes the specifications which apply over the

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
	External SCK Frequency Range		•	0		2	MHz
	External SCK LOW Period		•	250			ns
	External SCK HIGH Period		•	250			ns
t ₁	CS↓ to SDO Valid		•	0		200	ns
$\overline{t_2}$	CS↑ to SD0 Hi-Z		•	0		200	ns
t ₃	CS↓ to SCK↑		•	100			ns
t ₄	SCK↓ to SDO Valid		•			225	ns
t ₅	SDO Hold After SCK↓		•	10			ns
t ₆	SDI Setup Before SCK↑		•	100			ns
t ₇	SDI HOLD After SCK↑		•	100			ns
	High Level Input Voltage	CS, SDI, SCK, RESET	•	V _{DD} - 0.5			V
	Low Level Input Voltage	CS, SDI, SCK, RESET	•			0.5	V
	Digital Input Current	CS, SDI, SCK, RESET	•	-10		10	μА
	Digital Input Capacitance	CS, SDI, SCK, RESET			10		pF
	LOW Level Output Voltage (SDO, INTERRUPT)	I ₀ = -800μA	•			0.4	V
	High Level Output Voltage (SDO, INTERRUPT)	I ₀ = 1.6mA	•	V _{DD} - 0.5			V
	Hi-Z Output Leakage (SDO)		•	-10		10	μA

Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.

Note 2: All voltage values are with respect to GND.

Note 3: Full scale ADC error. Measurements do not include reference error.

Note 4: Guaranteed by design, not subject to test.

Note 5: The input referred noise includes the contribution of internal calibration operations.

Note 6: MUX configuration delay = default 1ms

Note 7: Global configuration set to 60Hz rejection.

Note 8: Global configuration set to 50Hz rejection.

Note 9: Global configuration default 50Hz/60Hz rejection.

Note 10: The exact value of V_{REF} is stored in the LTC2983 and used for all measurement calculations. Temperature coefficient is measured by dividing the maximum change in output voltage by the specified temperature range.

Note 11: Analog power-up. Command status register inaccessible during this time.

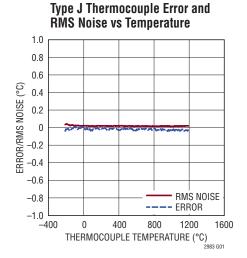
Note 12: Digital initialization. Begins at the conclusion of Analog Power-Up. Command status register is 0×80 at the beginning of digital initialization and 0×40 at the conclusion.

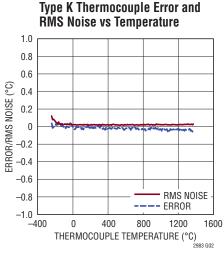
Note 13: Long-term stability typically has a logarithmic characteristic and therefore, changes after 1000 hours tend to be much smaller than before that time. Total drift in the second thousand hours is normally less

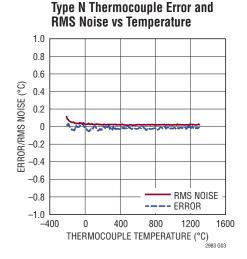
than one third that of the first thousand hours with a continuing trend toward reduced drift with time. Long-term stability will also be affected by differential stresses between the IC and the board material created during board assembly.

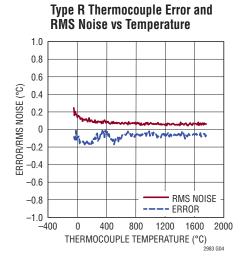
Note 14: Hysteresis in output voltage is created by package stress that differs depending on whether the IC was previously at a higher or lower temperature. Output voltage is always measured at 25°C, but the IC is cycled to the hot or cold temperature limit before successive measurements. Hysteresis measures the maximum output change for the averages of three hot or cold temperature cycles. For instruments that are stored at well controlled temperatures (within 20 or 30 degrees of operational temperature), it is usually not a dominant error source. Typical hysteresis is the worst-case of 25°C to cold to 25°C or 25°C to hot to 25°C, preconditioned by one thermal cycle.

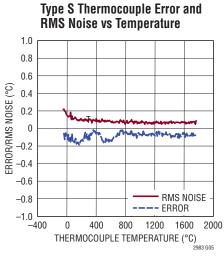
Note 15: Differential Input Range is ±V_{REF}/2.

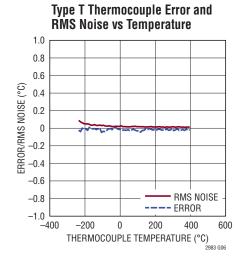

Note 16: RTD and thermistor measurements are made ratiometrically. As a result current source excitation variation does not affect absolute accuracy. Choose an excitation current such that largest sensor or R_{SENSE} resistance value, when driven by the nominal excitation current, will drop 1V or less. The extended ADC input range will accommodate variation in excitation current and the ratiometric calculation will negate the absolute value of the excitation current.

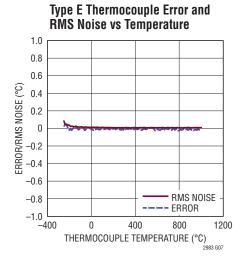

Note 17: Do not apply voltage or current sources to these pins. They must be connected to capacitive loads only, otherwise permanent damage may

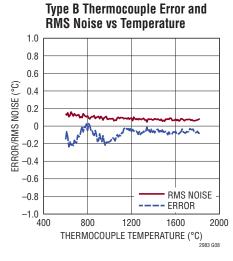

Note 18: Input leakage measured with $V_{IN} = -10 \text{mV}$ and $V_{IN} = 2.5 \text{V}$.

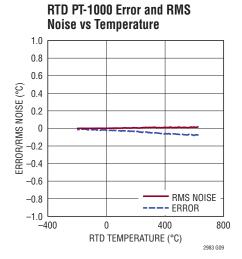


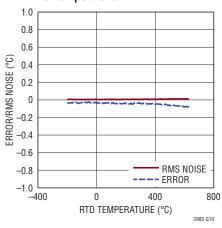

TYPICAL PERFORMANCE CHARACTERISTICS

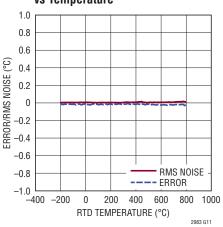




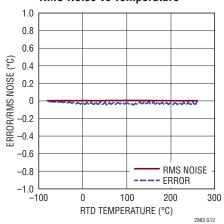


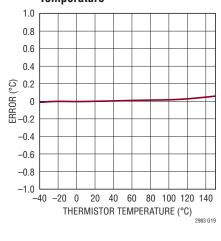


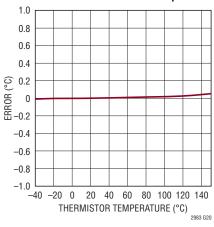


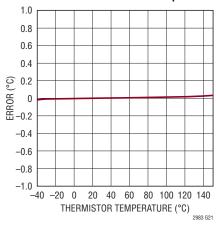


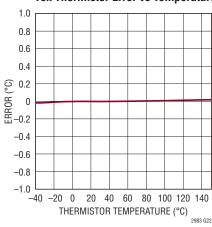
TYPICAL PERFORMANCE CHARACTERISTICS

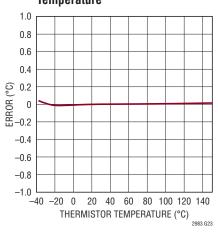

RTD PT-200 Error and RMS Noise vs Temperature

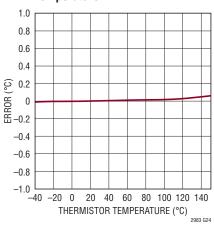

RTD PT-100 Error and RMS Noise vs Temperature

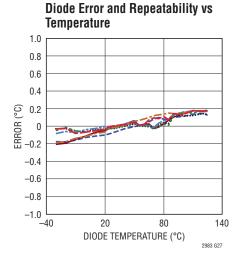

RTD NI-120 RTD Error and RMS Noise vs Temperature

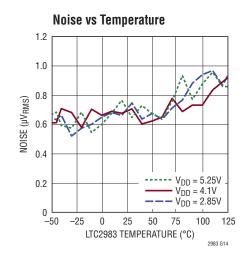

2.252k Thermistor Error vs Temperature

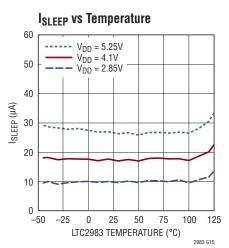

3k Thermistor Error vs Temperature

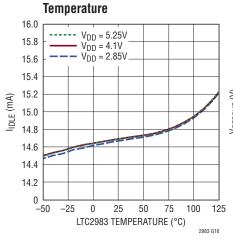

5k Thermistor Error vs Temperature

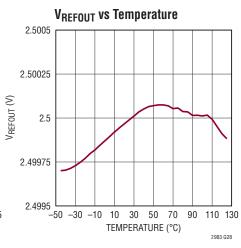

10k Thermistor Error vs Temperature

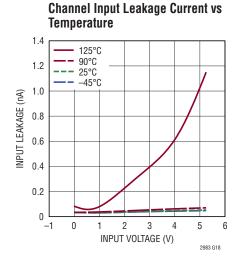

30k Thermistor Error vs Temperature

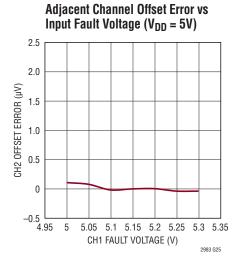

YSI-400 Thermistor Error vs Temperature

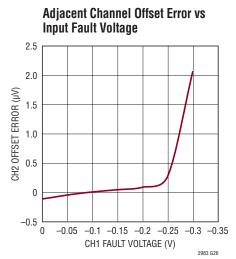



TYPICAL PERFORMANCE CHARACTERISTICS









One Shot Conversion Current vs

PIN FUNCTIONS

GND (Pins 1, 3, 5, 7, 9, 12, 15, 44): Ground. Connect each of these pins to a common ground plane through a low impedance connection. All eight pins must be grounded for proper operation.

 V_{DD} (Pins 2, 4, 6, 8, 45): Analog Power Supply. Tie all five pins together and bypass as close as possible to the device, to ground with a $0.1\mu F$ capacitor.

V_{REF_BYP}(**Pin 11**): Internal Reference Power. This is an internal supply pin, do not load this pin with external circuitry. Decouple with a 0.1μF capacitor to GND.

 V_{REFOUT} (Pin 13): Reference Output Voltage. Short to V_{REFP} . A minimum 1µF capacitor to ground is required. Do not load this pin with external circuitry.

V_{REFP} (**Pin 14**): Positive Reference Input. Tie to V_{REFOUT}.

CH1 to CH20 (Pin 16 to Pin 35): Analog Inputs. May be programmed for single-ended, differential, or ratiometric operation. The voltage on these pins can have any value between GND -50mV and $V_{DD}-0.3$ V. Unused pins can be grounded or left floating.

COM (Pin 36): Analog Input. The common negative input for all single-ended configurations. The voltage on this pin can have any value between GND - 50mV and $V_{DD}-$ 0.3V. This pin is typically tied to ground for temperature measurements.

INTERRUPT (Pin 37): This pin outputs a LOW when the device is busy either during start-up or while a conversion

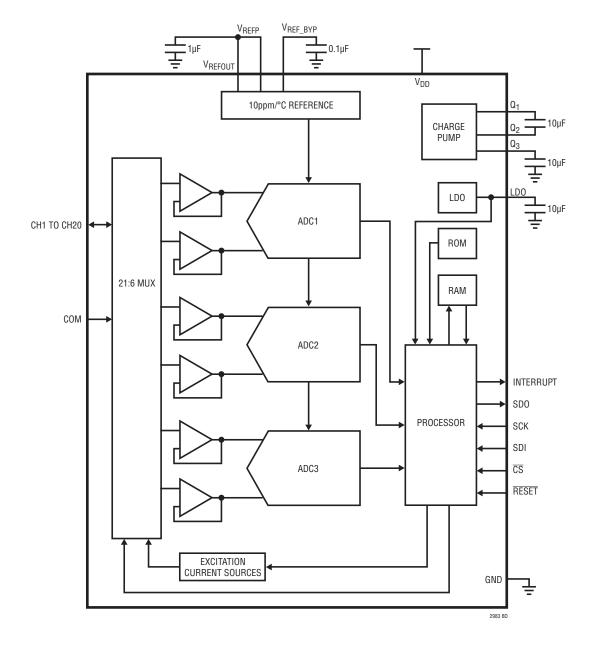
cycle is in progress. This pin goes HIGH at the conclusion of the start-up state or conversion cycle.

SCK (Pin 38): Serial Clock Pin. Data is shifted out of the device on the falling edge of SCK and latched by the device on the rising edge.

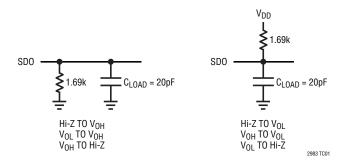
SDO (Pin 39): Serial Data Out. During the data output state, this pin is used as the serial data output. When the chip select pin is HIGH, the SDO pin is in a high impedance state.

SDI (Pin 40): Serial Data Input. Used to program the device. Data is latched on the rising edge of SCK.

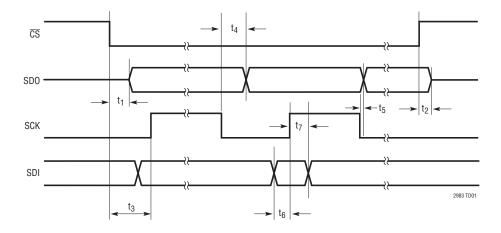
CS (**Pin 41**): Active Low Chip Select. A low on this pin enables the digital input/output. A HIGH on this pin places SDO in a high impedance state. A falling edge on CS marks the beginning of a SPI transaction and a rising edge marks the end.


RESET (**Pin 42**): Active Low Reset. While this pin is LOW, the device is forced into the reset state. Once this pin is returned HIGH, the device initiates its start-up sequence.

LDO (Pin 43): 2.5V LDO Output. Bypass with a 10μ F capacitor to GND. This is an internal supply pin, do not load this pin with external circuitry.


Q3, **Q2**, **Q1** (**Pins 46**, **47**, **48**): External Bypass Pins for -200mV integrated Charge Pump. Tie a 10μ F X7R capacitor between Q1 and Q2 close to each pin. Tie a 10μ F X5R capacitor from Q3 to Ground. These are internal supply pins, do not make additional connections.

BLOCK DIAGRAM



TEST CIRCUITS

TIMING DIAGRAM

SPI Timing Diagram

The LTC2983 measures temperature using the most common sensors (thermocouples, RTDs, thermistors, and diodes). It includes all necessary active circuitry, switches, measurement algorithms, and mathematical conversions to determine the temperature for each sensor type.

Thermocouples can measure temperatures from as low as -265°C to over 1800°C. Thermocouples generate a voltage as a function of the temperature difference between the tip (thermocouple temperature) and the electrical connection on the circuit board (cold junction temperature). In order to determine the thermocouple temperature, an accurate measurement of the cold junction temperature is required; this is known as cold junction compensation. The cold junction temperature is usually determined by placing a separate (non-thermocouple) temperature sensor at the cold junction. The LTC2983 allows diodes, RTDs, and thermistors to be used as cold junction sensors. In order to convert the voltage output from the thermocouple into a temperature result, a high order polynomial equation (up to 14th order) must be solved. The LTC2983 has these polynomials built in for virtually all standard thermocouples (J, K, N, E, R, S, T, and B). Additionally, inverse polynomials must be solved for the cold junction temperature. The LTC2983 simultaneously measures the thermocouple output and the cold junction temperature and performs all required calculations to report the thermocouple temperature in °C or °F. It directly digitizes both positive and negative voltages (down to 50mV below ground) from a single ground referenced supply, includes sensor burnout detection, and allows external protection/anti-aliasing circuits without the need of buffer circuits.

Diodes are convenient low cost sensor elements and are often used to measure cold junction temperatures in thermocouple applications. Diodes are typically used to measure temperatures from -60°C to 130°C, which is

suitable for most cold junction applications. Diodes generate an output voltage that is a function of temperature and excitation current. When the difference of two diode output voltages are taken at two different excitation current levels, the result (ΔV_{BE}) is proportional to temperature. The LTC2983 accurately generates excitation currents, measures the diode voltages, and calculates the temperature in °C or °F.

RTDs and thermistors are resistors that change value as a function of temperature. RTDs can measure temperatures over a wide temperature range, from as low as -200°C to 850°C while thermistors typically operate from -40°C to 150°C. In order to measure one of these devices a precision sense resistor is tied in series with the sensor. An excitation current is applied to the network and a ratiometric measurement is made. The value, in Ω , of the RTD/thermistor can be determined from this ratio. This resistance is used to determine the temperature of the sensor element using a table lookup (RTDs) or solving Steinhart-Hart equations (thermistors). The LTC2983 automatically generates the excitation current, simultaneously measures the sense resistor and thermistor/RTD voltage. calculates the sensor resistance and reports the result in °C. The LTC2983 can digitize most RTD types (PT-10. PT-50, PT-100, PT-200, PT-500, PT-1000, and NI-120), has built in coefficients for many curves (American, European, Japanese, and ITS-90), and accommodates 2-wire, 3-wire, and 4-wire configurations. It also includes coefficients for calculating the temperature of standard 2.252k, 3k, 5k, 10k, and 30k thermistors. It can be configured to share one sense resistor among multiple RTDs/thermistors and to rotate excitation current sources to remove parasitic thermal effects.

In addition to built-in linearization coefficients, the LTC2983 provides the means of inserting custom coefficients for both RTDs and thermistors.

Table 1. LTC2983 Error Contribution and Peak Noise Errors

SENSOR TYPE	TEMPERATURE RANGE	ERROR CONTRIBUTION	PEAK-TO-PEAK NOISE
Type K Thermocouple	-200°C to 0°C 0°C to 1372°C	±(Temperature • 0.23% + 0.05)°C ±(Temperature • 0.12% + 0.05)°C	±0.08°C
Type J Thermocouple	-210°C to 0°C 0°C to 1200°C	±(Temperature • 0.23% + 0.05)°C ±(Temperature • 0.10% + 0.05)°C	±0.07°C
Type E Thermocouple	-200°C to 0°C 0°C to 1000°C	±(Temperature • 0.18% + 0.05)°C ±(Temperature • 0.10% + 0.05)°C	±0.06°C
Type N Thermocouple	-200°C to 0°C 0°C to 1300°C	±(Temperature • 0.27% + 0.08)°C ±(Temperature • 0.10% + 0.08)°C	±0.13°C
Type R Thermocouple	0°C to 1768°C	±(Temperature • 0.10% + 0.4)°C	±0.62°C
Type S Thermocouple	0°C to 1768°C	±(Temperature • 0.10% + 0.4)°C	±0.62°C
Type B Thermocouple	400°C to 1820°C	±(Temperature • 0.10%)°C	±0.83°C
Type T Thermocouple	-250°C to 0°C 0°C to 400°C	±(Temperature • 0.15% + 0.05)°C ±(Temperature • 0.10% + 0.05)°C	±0.09°C
External Diode (2 Reading)	-40°C to 85°C	±0.25°C	±0.05°C
External Diode (3 Reading)	-40°C to 85°C	±0.25°C	±0.2°C
Platinum RTD - PT-10, R_{SENSE} = $1k\Omega$ Platinum RTD - PT-100, R_{SENSE} = $2k\Omega$ Platinum RTD - PT-500, R_{SENSE} = $2k\Omega$ Platinum RTD - PT-1000, R_{SENSE} = $2k\Omega$	-200°C to 800°C -200°C to 800°C -200°C to 800°C -200°C to 800°C	±0.1°C ±0.1°C ±0.1°C ±0.1°C	±0.05°C ±0.05°C ±0.02°C ±0.01°C
Thermistor, $R_{SENSE} = 10k\Omega$	-40°C to 85°C	±0.1°C	±0.01°C

Table 1 shows the estimated system accuracy and noise associated with specific temperature sensing devices. System accuracy and peak-to-peak noise include the effects of the ADC, internal amplifiers, excitation current sources, and integrated reference for I-grade parts. Accuracy and noise are the worst-case errors calculated from the guaranteed maximum ADC and reference specifications. Peak-to-peak noise values are calculated at 0°C (except type B was calculated at 400°C) and diode measurements use AVG = ON mode.

Thermocouple errors do not include the errors associated with the cold junction measurement. Errors associated with a specific cold junction sensor within the operating temperature range can be combined with the errors for a given thermocouple for total temperature measurement accuracy.

Memory Map

The LTC2983 channel assignment, configuration, conversion start, and results are all accessible via the RAM (see Table 2A). Table 2B details the valid SPI instruction bytes for accessing memory. The channel conversion results are mapped into memory locations 0x010 to 0x05F and can be read using the SPI interface as shown in Figure 1. A read is initiated by sending the read instruction byte = 0x03

followed by the address and then data. Channel assignment data resides in memory locations 0x200 to 0x24F and can be programmed via the SPI interface as shown in Figure 2. A write is initiated by sending the write instruction byte = 0x02 followed by the address and then data. Conversions are initiated by writing the conversion control byte (see Table 6) into memory location 0x000 (command status register).

Table 2A. Memory Map

LTC2983	MEMORY MAP			
SEGMENT	START ADDRESS	END Address	SIZE (BYTES)	DESCRIPTION
Command Status Register	0x000	0x000	1	See Table 6, Initiate Conversion, Sleep Command
Reserved	0x001	0x00F	15	
Temperature Result Memory 20 Words - 80 Bytes	0x010	0x05F	80	See Tables 8 to 10, Read Result
Reserved	0x060	0x0EF	144	
Global Configuration Register	0x0F0	0x0F0	1	
Reserved	0x0F1	0x0F3	3	
Measure Multiple Channels Bit Mask	0x0F4	0x0F7	4	See Tables 65, 66, Run Multiple Conversions
Reserved	0x0F8	0x0F8	1	
Reserved	0x0F9	0x0FE	6	
Mux Configuration Delay	0x0FF	0x0FF	1	See MUX Configuration Delay Section of Data Sheet
Reserved	0x100	0x1FF	256	
Channel Assignment Data	0x200	0x24F	80	See Tables 3, 4, Channel Assignment
Custom Sensor Table Data	0x250	0x3CF	384	
Reserved	0x3D0	0x3FF	48	

Table 2B. SPI Instruction Byte

INSTRUCTION	SPI INSTRUCTION BYTE	DESCRIPTION
Read	0b0000011	See Figure 1
Write	0b0000010	See Figure 2
No Opp	0bXXXXXX0X	

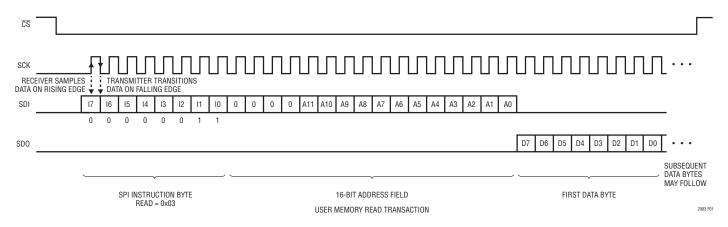


Figure 1. Memory Read Operation

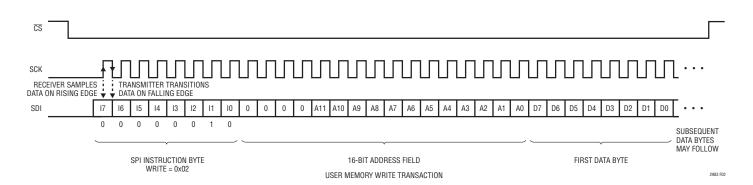


Figure 2. Memory Write Operation

The LTC2983 combines high accuracy with ease of use. The basic operation is simple and is composed of five states (see Figure 3).

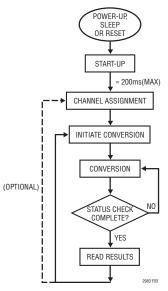


Figure 3. Basic Operation

Conversion States Overview

- 1. Start-Up. After power is applied to the LTC2983 (V_{DD} > 2.6V), there is a 200ms wake up period. During this time, the LDO, charge pump, ADCs, and reference are powered up and the internal RAM is initialized. Once start-up is complete, the INTERRUPT pin goes HIGH and the command status register will return a value of 0x40 (Start bit = 0, Done bit = 1) when read.
- 2. Channel Assignment. The device automatically enters the channel assignment state after start-up is complete. While in this state, the user writes sensor specific data for each input channel into RAM. The assignment data contains information about the sensor type, pointers to cold junction sensors or sense resistors, and sensor specific parameters.
- 3. Initiate Conversion. A conversion is initiated by writing a measurement command into RAM memory location 0x000. This command is a pointer to the channel in which the conversion will be performed.
- **4. Conversion.** A new conversion begins automatically following an Initiate Conversion command. In this state, the ADC is running a conversion on the specified channel and associated cold junction or R_{SENSE} channel (if

- applicable). The user is locked out of RAM access while in the state (except for reading status location 0x000). The end of conversion is indicated by both the INTER-RUPT pin going HIGH and a status register START bit going LOW and DONE bit going HIGH.
- 5. Read Results. In this state, the user has access to RAM and can read the completed conversion results and fault status bits. It is also possible for the user to modify/append the channel assignment data during the read results state.

Conversion State Details State 1: Start-Up

The start-up state automatically occurs when power is applied to the LTC2983. If the power drops below a threshold of $\approx\!2.6\text{V}$ and then returns to the normal operating voltage (2.85V to 5.25V), the LTC2983 resets and enters the power-up state. Note that the LTC2983 also enters the start-up state at the conclusion of the sleep state. The start-up state can also be entered at any time during normal operation by pulsing the $\overline{\text{RESET}}$ pin low.

In the first phase of the start-up state all critical analog circuits are powered up. This includes the LDO, reference, charge pump and ADCs. During this first phase, the command status register will be inaccessible to the user. This phase takes a maximum of 100 mS to complete. Once this phase completes, the command status register will be accessible and return a value of 0×80 until the LTC2983 is completely initialized. Once the LTC2983 is initialized and ready to use, the interrupt pin will go high and the command status register will return a read value of 0×40 (Start bit = 0, Done bit = 1). At this point the LTC2983 is fully initialized and is ready to perform a conversion.

State 2: Channel Assignment

The LTC2983 RAM can be programmed with up to 20 sets of 32-bit (4-byte) channel assignment data. These reside sequentially in RAM with a one-to-one correspondence to each of the 20 analog input channels (see Table 3). Channels that are not used should have their channel assignment data set to all zeros (default at START-UP).

The channel assignment data contains all the necessary information associated with the specific sensor tied to that channel (see Table 4). The first five bits determine the sensor type (see Table 5). Associated with each sensor are sensor

LINEAR

Table 3. Channel Assignment Memory Map

CHANNEL ASSIGNMENT NUMBER	CONFIGURATION DATA START ADDRESS	CONFIGURATION DATA ADDRESS + 1	CONFIGURATION DATA ADDRESS + 2	CONFIGURATION DATA END ADDRESS + 3	SIZE (BYTES)
CH1	0x200	0x201	0x202	0x203	4
CH2	0x204	0x205	0x206	0x207	4
CH3	0x208	0x209	0x20A	0x20B	4
CH4	0x20C	0x20D	0x20E	0x20F	4
CH5	0x210	0x211	0x212	0x213	4
CH6	0x214	0x215	0x216	0x217	4
CH7	0x218	0x219	0x21A	0x21B	4
CH8	0x21C	0x21D	0x21E	0x21F	4
CH9	0x220	0x221	0x222	0x223	4
CH10	0x224	0x225	0x226	0x227	4
CH11	0x228	0x229	0x22A	0x22B	4
CH12	0x22C	0x22D	0x22E	0x22F	4
CH13	0x230	0x231	0x232	0x233	4
CH14	0x234	0x235	0x236	0x237	4
CH15	0x238	0x239	0x23A	0x23B	4
CH16	0x23C	0x23D	0x23E	0x23F	4
CH17	0x240	0x241	0x242	0x243	4
CH18	0x244	0x245	0x246	0x247	4
CH19	0x248	0x249	0x24A	0x24B	4
CH20	0x24C	0x24D	0x24E	0x24F	4

Table 4. Channel Assignment Data

	SENSOR TYPE				SENSOR	SPECIFIC	CONI	FIGI	JRATI	ON				
Channel Assignment Memory Location		uration Data t Address			nfiguration art Address							ion Data ess + 2		nfiguration Data art Address + 3
	31 30 29 28 27	26 25 2	24 23 22	21	20 19	18	17	16	15 14	13	12	11 10 9 8	7 6	5 4 3 2 1 0
Unassigned (Default)	Type = 0		Channel Disabled											
Thermocouple	Type = 1 to 9													Custom Length - 1 [5:0]
RTD	Type = 10 to 18	R _{SENSE} Channel A [4:0]	OLIVOL 3									Custom Length - 1 [5:0]		
Thermistor	Type = 19 to 27	R _{SENSE} Channel A [4:0]	Assignment	SGL=1 DIFF=0	Excitation Mode	Excitati [on Ci 3:0]	urre	nt 0	0	0	Custor Address [Custom Length - 1 [5:0]
Diode	Type = 28	SGL=1 2 to 3 A			actor (2, 20 Use Factor					1/1	04857	76 Resolutio	n	
Sense Resistor	Type = 29	Sense Resistor Value (17, 10) Up to $131,072\Omega$ with $1/1024\Omega$ Resolution												
Direct ADC	Type = 30	SGL=1 DIFF=0 Not Used												
Reserved	Type = 31					Not U	sed							

Table 5. Sensor Type Selection

Iani	e o.	96II9	or i	/he s	Detection				
31	30	29	28	27	SENSOR TYPE				
0	0	0	0	0	Unassigned				
0	0	0	0	1	Type J Thermocouple				
0	0	0	1	0	Type K Thermocouple				
0	0	0	1	1	Type E Thermocouple				
0	0	1	0	0	Type N Thermocouple				
0	0	1	0	1	Type R Thermocouple				
0	0	1	1	0	Type S Thermocouple				
0	0	1	1	1	Type T Thermocouple				
0	1	0	0	0	Type B Thermocouple				
0	1	0	0	1	Custom Thermocouple				
0	1	0	1	0	RTD PT-10				
0	1	0	1	1	RTD PT-50				
0	1	1	0	0	RTD PT-100				
0	1	1	0	1	RTD PT-200				
0	1	1	1	0	RTD PT-500				
0	1	1	1	1	RTD PT-1000				
1	0	0	0	0	RTD 1000 (0.00375)				
1	0	0	0	1	RTD NI-120				
1	0	0	1	0	RTD Custom				
1	0	0	1	1	Thermistor 44004/44033 2.252kΩ at 25°C				
1	0	1	0	0	Thermistor 44005/44030 3kΩ at 25°C				
1	0	1	0	1	Thermistor 44007/44034 5 k Ω at 25 °C				
1	0	1	1	0	Thermistor 44006/44031 10kΩ at 25°C				
1	0	1	1	1	Thermistor 44008/44032 30kΩ at 25°C				
1	1	0	0	0	Thermistor YSI 400 2.252kΩ at 25°C				
1	1	0	0	1	1 Thermistor Spectrum 1003k 1kΩ				
1	1	0	1	0	Thermistor Custom Steinhart-Hart				
1	1	0	1	1	Thermistor Custom Table				
1	1	1	0	0	Diode				
1	1	1	0	1	Sense Resistor				
1	1	1	1	0	Direct ADC				
1	1	1	1	1	Reserved				

specific configurations. These include pointers to cold junction or sense resistor channels, pointers to memory locations of custom linearization data, sense resistor values and diode ideality factors. Also included in this data are, if applicable, the excitation current level, single-ended/differential input mode, as well as sensor specific controls. Separate detailed operation sections for thermocouples, RTDs, diodes, thermistors, and sense resistors describe the assignment data associated with each sensor type in more detail. The LTC2983 demonstration

software includes a utility for checking configuration data and generating annotated C-code for programming the channel assignment data.

State 3: Initiate Conversion

Once the channel assignment is complete, the device is ready to begin a conversion. A conversion is initiated by writing Start (B7 = 1) and Done (B6 = 0) followed by the desired input channel (B4 - B0) into RAM memory location 0x000 (see Tables 6 and 7). It is possible to initiate a measurement cycle on multiple channels by setting the channel selection bits (B4 to B0) to 00000; see the Running Conversions Consecutively on Multiple Channels section of the data sheet.

Table 6. Command Status Register

В7	В6	B5	B4	В3	B2	B1	В0	
Start = 1	Done = 0	0	Cha	annel S	Selectio	on 1 to	20	Start Conversion
1	0	0	1	0	1	1	1	Initiate Sleep

Table 7. Input Channel Mapping

B7	В6	B5	B4	В3	B2	B1	В0	CHANNEL SELECTED
1	0	0	0	0	0	0	0	Multiple Channels
1	0	0	0	0	0	0	1	CH1
1	0	0	0	0	0	1	0	CH2
1	0	0	0	0	0	1	1	CH3
1	0	0	0	0	1	0	0	CH4
1	0	0	0	0	1	0	1	CH5
1	0	0	0	0	1	1	0	CH6
1	0	0	0	0	1	1	1	CH7
1	0	0	0	1	0	0	0	CH8
1	0	0	0	1	0	0	1	CH9
1	0	0	0	1	0	1	0	CH10
1	0	0	0	1	0	1	1	CH11
1	0	0	0	1	1	0	0	CH12
1	0	0	0	1	1	0	1	CH13
1	0	0	0	1	1	1	0	CH14
1	0	0	0	1	1	1	1	CH15
1	0	0	1	0	0	0	0	CH16
1	0	0	1	0	0	0	1	CH17
1	0	0	1	0	0	1	0	CH18
1	0	0	1	0	0	1	1	CH19
1	0	0	1	0	1	0	0	CH20
1	0	0	1	0	1	1	1	Sleep
		All Ot	her Co	mbina	tions			Reserved

2983f

Bits B4 to B0 determine which input channel the conversion is performed upon and are simply the binary equivalent of the channel number (see Table 7).

Bit B5 should be set to 0.

Bits B7 and B6 serve as start/done bits. In order to start a conversion, these bits must be set to "10" (B7=1 and B6=0). When the conversion begins, the INTERRUPT pin goes LOW. Once the conversion is complete, bits B7 and B6 will toggle to "01" (B7=0 and B6=1) (Address = 0x000) and the INTERRUPT pin will go HIGH, indicating the conversion is complete and the result is available.

State 4: Conversion

The measurement cycle starts after the initiate conversion command is written into RAM location 0x000 (Table 6). The LTC2983 simultaneously measures the selected input sensor, sense resistors (RTDs and thermistors), and cold junction temperatures if applicable (thermocouples).

Once the conversion is started, the user is locked out of the RAM, with the exception of reading status data stored in RAM memory location 0x000.

Once the conversion is started the INTERRUPT pin goes low. Depending on the sensor configuration, two or three 82ms cycles are required per temperature result. These correspond to conversion rates of 167ms and 251ms, respectively. Details describing these modes are described in the 2- and 3-cycle Conversion Modes section of the data sheet.

The end of conversion can be monitored either through the interrupt pin (LOW to HIGH transition), or by reading the command status register in RAM memory location 0x000 (start bit, B7, toggles from 1 to 0 and DONE bit, B6, toggles from 0 to 1).

State 5: Read Results

Once the conversion is complete, the conversion results can be read from RAM memory locations corresponding to the input channel (see Table 8).

The conversion result is 32 bits long and contains both the sensor temperature (D23 to D0) and sensor fault data (D31 to D24) (see Tables 9A and 9B).

Table 8. Conversion Result Memory Map

CONVERSION CHANNEL	START Address	END ADDRESS	SIZE (BYTES)
CH1	0x010	0x013	4
CH2	0x014	0x017	4
CH3	0x018	0x01B	4
CH4	0x01C	0x01F	4
CH5	0x020	0x023	4
CH6	0x024	0x027	4
CH7	0x028	0x02B	4
CH8	0x02C	0x02F	4
CH9	0x030	0x033	4
CH10	0x034	0x037	4
CH11	0x038	0x03B	4
CH12	0x03C	0x03F	4
CH13	0x040	0x043	4
CH14	0x044	0x047	4
CH15	0x048	0x04B	4
CH16	0x04C	0x04F	4
CH17	0x050	0x053	4
CH18	0x054	0x057	4
CH19	0x058	0x05B	4
CH20	0x05C	0x05F	4

The result is reported in °C for all temperature sensors with a range of -273.16°C to 8192°C and 1/1024°C resolution or in °F with a range of -459.67°F to 8192°F with 1/1024°F resolution. Included with the conversion result are seven sensor fault bits and a valid bit. These bits are set to a 1 if there was a problem associated with the corresponding conversion result (see Table 10). Two types of errors are reported: hard errors and soft errors. Hard errors indicate the reading is invalid and the resulting temperature reported is -999°C or °F. Soft errors indicate operation beyond the normal temperature range of the sensor or the input range of the ADC. In this case, the calculated temperature is reported but the accuracy may be compromised. Details relating to each fault type are sensor specific and are described in detail in the sensor specific sections of this data sheet. Bit D24 is the valid bit and will be set to a 1 for valid data.

Once the data read is complete, the device is ready for a new initiate conversion command. In cases where new channel configuration data is required, the user has access to the RAM in order to modify existing channel assignment data.

Table 9A. Example Data Output Words (°C)

									1																					
			;	STAR	T ADDF	RESS				ST	ART	ADD	RES	S + 1				STA	RT /	ADD	RES	S +	2		_			DRI DDR		
	D31	D30	D29	D28	D27	D26	D25	D24	D23	D22	D21	D20	D19	D18	D17	D16	D15	D14	D13	D12	D11	D10	D9	D8	07 D	6 D	5 D4	1D3	D2 [D1 D0
				Fa	ault Dat	a			SIGN	MSB																				LSB
Temperature	Hard	Hard	Hard		Over	Sensor Under Range Fault	Out	Valid If 1	4	096°(0											1°C ↓						1	/10	24°C
8191.999°C								1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1 1	1	1 1	1	1	1 1
1024°C								1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0 0) (0 0	0	0	0 0
1°C								1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0 0) (0 0	0	0	0 0
1/1024°C								1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0) (0 0	0	0	0 1
0°C								1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0) (0 0	0	0	0 0
-1/1024°C								1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1 1	1	1	1	1	1 1
-1°C								1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0 0) (0 0	0	0	0 0
−273.15°C								1	1	1	1	1	1	0	1	1	1	0	1	1	1	0	1	1	0 1	1	0	0	1	1 1

Table 9B. Example Data Output Words (°F)

			5	TART	ADDRE	SS				ST	ART	ADD	RES	S + 1				STA	RT A	ADDI	RES	S +	2						SS + SS)	-
	D31	D30	D29	D28	D27	D26	D25	D24	D23	D22	D21	D20	D19	D18	D17	D16	D15	D14	D13	D12 [D11	D10	D9	D8[)7 D6	3 D5	D4	D3 D	2 D1	D0
				Fai	ult Data				SIGN	MSB																			L	SB
Temperature	Sensor Hard Fault	Hard	Hard		Over	Sensor Under Range Fault	ADC Out of Range Fault	Valid If 1		1096°I	F											1°F ↓						1/	1024	4°F ↓
8191.999°F								1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1 1	1	1	1	1 1	1
1024°F								1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0 (0 0	0
1°F								1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0 0	0	0	0 (0	0
1/1024°F								1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0 (0 0	1
0°F								1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0 (0	0
-1/1024°F								1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1 1	1	1	1	1 1	1
-1°F								1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0 0	0	0	0 (0 0	0
-459.67°F								1	1	1	1	1	1	0	0	0	1	1	0	1	0	0	0	1	0 1	0	1	0 () 1	0

Table 10. Sensor Fault Reporting

BIT	FAULT	ERROR TYPE	DESCRIPTION	OUTPUT RESULT
D31	Sensor Hard Fault	Hard	Bad Sensor Reading	–999°C or °F
D30	Hard ADC-Out-of-Range	Hard	Bad ADC Reading (Could Be Large External Noise Event)	–999°C or °F
D29	CJ Hard Fault	Hard	Cold Junction Sensor Has a Hard Fault Error	–999°C or °F
D28	CJ Soft Fault	Soft	Cold Junction Sensor Result Is Beyond Normal Range	Suspect Reading
D27	Sensor Over Range	Soft	Sensor Reading Is Above Normal Range	Suspect Reading
D26	Sensor Under Range	Soft	Sensor Reading Is Below Normal Range	Suspect Reading
D25	ADC Out-of-Range	Soft	ADC Absolute Input Voltage Is Beyond ±1.125 • V _{REF} /2	Suspect Reading
D24	Valid	NA	Result Valid (Should Be 1) Discard Results if 0	Suspect Reading

THERMOCOUPLE MEASUREMENTS

Table 11. Thermocouple Channel Assignment Word

	(1)		RMO Typi		IPLE		COLI					SENSO									(4) CUSTOM THERMOCOUPLE Data Pointer
	1	TABLES 4, 12				TA	BLE	13		ī	ABLE 14	1								TABLES 67 TO 69	
Measurement Type	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11 10 9 8 7 6 5 4 3 2 1 0
Thermocouple	Types 1 to 9			Cold nnel		ignn		SGL=1 DIFF=0	OC Check	Cur	C rent :0]	0	0	0	0	0	0	Custom Address Custom Length –1 [5:0]			

Channel Assignment – Thermocouples

For each thermocouple tied to the LTC2983, a 32-bit channel assignment word is programmed into a memory location corresponding to the channel the sensor is tied to (see Table 11). This word includes (1) thermocouple type, (2) cold junction channel pointer, (3) sensor configuration, and (4) custom thermocouple data pointer.

(1) Thermocouple Type

The thermocouple type is determined by the first five input bits B31 to B27 as shown in Table 12. Standard NIST coefficients for types J,K,E,N,R,S,T and B thermocouples are stored in the device ROM. If custom thermocouples are used, the custom thermocouple sensor type can be selected. In this case, user-specific data can be stored in the on-chip RAM starting at the address defined in the custom thermocouple data pointer.

(2) Cold Junction Channel Pointer

The cold junction compensation can be a diode, RTD, or thermistor. The cold junction channel pointer tells the LTC2983 which channel (1 to 20) the cold junction

Table 12. Thermocouple Type

(1) THER	MOCOU	IPLE TY	PE	
B31	B30	B29	B28	B27	THERMOCOUPLE TYPES
0	0	0	0	1	Type J Thermocouple
0	0	0	1	0	Type K Thermocouple
0	0	0	1	1	Type E Thermocouple
0	0	1	0	0	Type N Thermocouple
0	0	1	0	1	Type R Thermocouple
0	0	1	1	0	Type S Thermocouple
0	0	1	1	1	Type T Thermocouple
0	1	0	0	0	Type B Thermocouple
0	1	0	0	1	Custom Thermocouple

sensor is assigned to (see Table 13). When a conversion is performed on a channel tied to a thermocouple, the cold junction sensor is simultaneously and automatically measured. The final output data uses the embedded coefficients stored in ROM to automatically compensate the cold junction temperature and output the thermocouple sensor temperature.

Table 13. Cold Junction Channel Pointer

(2) COL	D JUNCT	TION CHA	NNEL PO	DINTER	
B26	B25	B24	B23	B22	COLD JUNCTION CHANNEL
0	0	0	0	0	No Cold Junction Compensation, 0°C Used for Calculations
0	0	0	0	1	CH1
0	0	0	1	0	CH2
0	0	0	1	1	CH3
0	0	1	0	0	CH4
0	0	1	0	1	CH5
0	0	1	1	0	CH6
0	0	1	CH7		
0	1	0	0	0	CH8
0	1	0	0	1	CH9
0	1	0	1	0	CH10
0	1	0	1	1	CH11
0	1	1	0	0	CH12
0	1	1	0	1	CH13
0	1	1	1	0	CH14
0	1	1	1	1	CH15
1	0	0	0	0	CH16
1	0	0	0	1	CH17
1	0	0	1	0	CH18
1	0	0	1	1	CH19
1	0	1	0	0	CH20
	All Othe	er Combin	nations		Invalid

(3) Sensor Configuration

The sensor configuration field (see Table 14) is used to select single-ended (B21=1) or differential (B21=0) input and allows selection of open circuit current if internal open-circuit detect is enabled (bit B20). Single-ended readings are measured relative to the COM pin and differential are measured between the selected CH_{TC} and adjacent CH_{TC-1} (see Figure 4). If open-circuit detection is enabled, B20=1, then the user can select the pulsed current value applied during open-circuit detect using bits B18 and B19 . The user determines the value of the open circuit current based on the size of the external protection resistor and filter capacitor (typically $10\mu A$). This network needs to settle within 50ms to $1\mu V$ or less. The duration of the current pulse is approximately 8ms and occurs 50ms before the normal conversion cycle.

Thermocouple channel assignments follow the general convention shown in Figure 4. The thermocouple positive terminal ties to CH_{TC} (where TC is the selected channel number) for both the single-ended and differential modes of operation. For single-ended measurements the thermocouple negative terminal and the COM pin are grounded. The thermocouple negative terminal is tied to $\text{CH}_{\text{TC-1}}$ for differential measurements. This node can either be grounded or tied to a bias voltage.

(4) Custom Thermocouple Data Pointer

See Custom Thermocouples section near the end of this data sheet for more information.

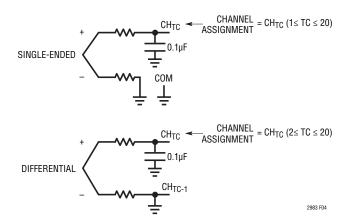


Figure 4. Thermocouple Channel Assignment Convention

Table 14. Sensor Configuration

(3) SI	ENSOR CO	NFIGUR	ATION		
SGL	OC CHECK	OC CU	RRENT	SINGLE-ENDED/ DIFFERENTIAL	OPEN-CIRCUIT CURRENT
B21	B20	B19	B18		
0	0	Χ	Χ	Differential	External
0	1	0	0	Differential	10μΑ
0	1	0	1	Differential	100μΑ
0	1	1	0	Differential	500μΑ
0	1	1	1	Differential	1mA
1	0	Χ	Χ	Single-Ended	External
1	1	0	0	Single-Ended	10μΑ
1	1	0	1	Single-Ended	100μΑ
1	1	1	0	Single-Ended	500μΑ
1	1	1	1	Single-Ended	1mA

Fault Reporting – Thermocouple

Each sensor type has a unique fault reporting mechanism indicated in the upper byte of the data output word. Table 15 shows faults reported in the measurement of thermocouples.

Bit D31 indicates the thermocouple sensor is open (broken or not plugged in), the cold junction sensor has a hard fault, or the ADC is out of range. This is indicated by a reading well beyond the normal operating range. Bit D30 indicates a bad ADC reading. This can be a result of either a broken (open) sensor or an excessive noise event (ESD or static discharge into the sensor path). Either of these are a hard error and –999°C or °F is reported. In the case of an excessive noise event, the device should recover and the following conversions will be valid if the noise event was a random, infrequent event. Bit D29 indicates a hard fault occurred at the cold junction sensor and –999°C or °F is reported. Refer to the specific sensor (diode, themistor, or RTD) used for cold junction compensation. Bit D28 indicates a soft fault occurred at the cold junction

sensor. A valid temperature is reported, but the accuracy may be compromised since the cold junction sensor is operating outside its normal temperature range. Bits D27 and D26 indicate over or under temperature limits have been exceeded for specific thermocouple types, as defined in Table 16. Bit D25 indicates the absolute voltage measured by the ADC is beyond its normal operating range. This fault reflects a reading that is well beyond the normal range of a thermocouple.

Table 16. Thermocouple Temperature Limits

THERMOCOUPLE TYPE	LOW TEMP LIMIT °C	HIGH TEMP LIMIT °C
J-Type	-210	1200
K-Type	-265	1372
E-Type	-265	1000
N-Type	-265	1300
R-type	-50	1768
S-Type	-50	1768
T-Type	-265	400
B-Type	40	1820
Custom	Lowest Table Entry	Highest Table Entry

Table 15. Thermocouple Fault Reporting

BIT	FAULT	ERROR TYPE	DESCRIPTION	OUTPUT RESULT
D31	Sensor Hard Fault	Hard	Open Circuit or Hard ADC or Hard CJ	–999°C or °F
D30	Hard ADC-Out-of-Range	Hard	Bad ADC Reading (Could Be Large External Noise Event)	–999°C or °F
D29	CJ Hard Fault	Hard	Cold Junction Sensor Has a Hard Fault Error	–999°C or °F
D28	CJ Soft Fault	Soft	Cold Junction Sensor Result Is Beyond Normal Range	Suspect Reading
D27	Sensor Over Range	Soft	Thermocouple Reading Greater Than High Limit	Suspect Reading
D26	Sensor Under Range	Soft	Thermocouple Reading Less Than Low Limit	Suspect Reading
D25	ADC Out-of-Range	Soft	ADC Absolute Input Voltage Is Beyond ±1.125 • V _{REF} /2	Suspect Reading
D24	Valid	NA	Result Valid (Should Be 1) Discard Results if 0	Valid Reading

DIODE MEASUREMENTS

Table 17. Diode Channel Assignment Word

	(1) SENSOR TYPE					Έ	•) SENSOR Figuratio		(3) EXC CURI		(4) DIODE IDEALITY FACTOR VALUE					
	TABLE 18									TABL	E 19	TABLE 20					
Measurement Class	31	30	29	9 2	8 2	7	26	25	24	23	22	21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0					
Diode	Type = 28						SGL=1 DIFF=0	2 or 3 Readings	Avg on	Curren	it [1:0]	Non-Ideality Factor (2, 20) Value from 0 to 4 with 1/1048576 Resolution All Zeros Uses a Factory Set Default of 1.003					

Channel Assignment – Diode

For each diode tied to the LTC2983, a 32-bit channel assignment word is programmed into a memory location corresponding to the channel the sensor is tied to (see Table 17). This word includes (1) diode sensor selection, (2) sensor configuration, (3) excitation current, and (4) diode ideality factor.

1) Sensor Type

The diode is selected by the first five input bits B31 to B27 (see Table 18).

Table 18. Diode Sensor Selection

	(1) 8	SENSOR 1								
B31	B30	B29	B28	B27	SENSOR TYPE					
1	1	1	0	0	Diode					

(2) Sensor Configuration

The sensor configuration field (bits B26 to B24) is used to define various diode measurement properties. Configuration bit B26 is set high for single-ended (measurement relative to COM) and low for differential.

Bit B25 sets the measurement algorithm. If B25 is low, two conversion cycles (one at 11 and one at 81 current excitation) are used to measure the diode. This is used in applications where parasitic resistance between the LTC2983 and the diode is small. Parasitic resistance effects can be removed by setting bit B25 high, enabling three conversion cycles (one at 11, one at 41 and one at 81).

Table 20. Programming Diode Ideality Factor

Table 19. Diode Excitation Current Selection

Bit B24 enables a running average of the diode temperature reading. This reduces the noise when the diode is used as a cold junction temperature element on an isothermal block where temperatures change slowly.

The algorithm used for diode averaging is a simple recursive running average. The new value is equal to the average of the current reading plus the previous value.

NEW VALUE =
$$\frac{\text{CURRENT READING}}{2} + \frac{\text{PREVIOUS VALUE}}{2}$$

If the current reading is 2°C above or below the previous value, the new value is reset to the current reading.

(3) Excitation Current

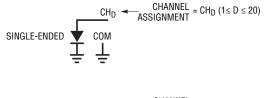
The next field in the channel assignment word (B23 to B22) controls the magnitude of the excitation current applied to the diode (see Table 19). In the two conversion cycle mode, the device performs the first conversion at a current equal to 8x the excitation current 11. The second conversion occurs at 11. Alternatively, in the three conversion cycle mode the first conversion excitation current is 81, the second is 41 and the 3rd is **1**1.

(3) EXCITATION	ON CURRENT					
B23	B22	11	41	81		
0	0	10μΑ	40μΑ	80μΑ		
0	1	20μΑ	80μΑ	160μΑ		
1	0	40μΑ	160μΑ	320μΑ		
1	1	80μΑ	320µA	640µA		

	(4) DIODE IDEALITY FACTOR VALUE																					
	B21	B20	B19	B18	B17	B16	B15	B14	B13	B12	B11	B10	В9	B8	B7	B6	B5	B4	В3	B2	B1	B0
Example η	21	20	2-1	2-2	2-3	2-4	2-5	2-6	2-7	2-8	2-9	2-10	2-11	2-12	2-13	2-14	2-15	2-16	2-17	2-18	2-19	2-20
1.25	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1.003 (Default)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1.006	0	1	0	0	0	0	0	0	0	1	1	0	0	0	1	0	0	1	0	0	1	1

(4) Diode Ideality Factor

The last field in the channel assignment word (B21 to B0) sets the diode ideality factor within the range 0 to 4 with 1/1048576 (2^{-20}) resolution. The top two bits (B21 to B20) are the integer part and bits B19 to B0 are the fractional part of the ideality factor (see Table 20).


Diode channel assignments follow the general convention shown in Figure 5. The anode ties to CH_D (where D is the selected channel number) for both the single-ended and differential modes of operation, and the cathode is grounded. For differential diode measurements, the cathode is also tied to CH_{D-1} .

Fault Reporting - Diode

Each sensor type has unique fault reporting mechanism indicated in the upper byte of the data output word. Table 21 shows faults reported in the measurement of diodes.

Bit D31 indicates the diode is open, shorted, not plugged in, wired backwards, or the ADC reading is bad. Any of these are hard faults and -999°C or °F is reported. Bit D30 indicates a bad ADC reading. This can be a result of either a broken (open) sensor or an excessive noise event (ESD or static discharge into the sensor path). This is a

hard error and -999°C or °F is reported. In the case of an excessive noise event, the device should recover and the following conversions will be valid if the noise event was a random, infrequent event. Bits D29 and D28 are not used for diodes. Bits D27 and D26 indicate over or under temperature limits (defined as T > 130°C or T < -60°C). The calculated temperature is reported, but the accuracy may be compromised. Bit D25 indicates the absolute voltage measured by the ADC is beyond its normal operating range. If a diode is used as the cold junction element, any hard or soft error is flagged in the corresponding thermocouple result (bits D28 and D29 in Table 15).

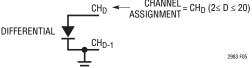


Figure 5. Diode Channel Assignment Convention

Table 21. Diode Fault Reporting

BIT	FAULT	ERROR TYPE	DESCRIPTION	OUTPUT RESULT
D31	Sensor Hard Fault	Hard	Open, Short, Reversed, or Hard ADC	–999°C or °F
D30	Hard ADC-Out-of-Range	Hard	Bad ADC Reading (Could Be Large External Noise Event)	–999°C or °F
D29	Not Used for Diodes	N/A	Always 0	
D28	Not Used for Diodes	N/A	Always 0	
D27	Sensor Over Range	Soft	T > 130°C	Suspect Reading
D26	Sensor Under Range	Soft	T < -60°C	Suspect Reading
D25	ADC Out-of-Range	Soft	ADC Absolute Input Voltage Is Beyond ±1.125 • V _{REF} /2	Suspect Reading
D24	Valid	NA	Result Valid (Should Be 1) Discard Results if 0	Valid Reading