imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

LTC2984

OLOGY Accuracy Digital Temperature Measurement System with EEPROM DESCRIPTION

FEATURES

- Directly Digitizes 2-, 3-, or 4-Wire RTDs, Thermocouples, Thermistors, and Diodes
- On-Chip EEPROM Stores Channel Configuration Data and Custom Coefficients
- Single 2.85V to 5.25V Supply
- 20 Flexible Inputs Allow Interchanging Sensors
- Automatic Thermocouple Cold Junction Compensation
- Built-In Standard and User-Programmable Coefficients for Thermocouples, RTDs and Thermistors
- Measures Negative Thermocouple Voltages
- Automatic Burn Out, Short-Circuit and Fault Detection
- Buffered Inputs Allow External Protection
- Simultaneous 50Hz/60Hz Rejection
- Includes 15ppm/°C (Max) Reference (I-Grade)

APPLICATIONS

- Direct Thermocouple Measurements
- Direct RTD Measurements
- Direct Thermistor Measurements
- Custom Sensor Applications

The LTC[®]2984 measures a wide variety of temperature sensors and digitally outputs the result, in °C or °F, with 0.1°C accuracy and 0.001°C resolution. The LTC2984 can measure the temperature of virtually all standard (type B, E, J, K, N, S, R, T) or custom thermocouples, automatically compensate for cold junction temperatures and linearize the results. The device can also measure temperature with standard 2-, 3-, or 4-wire RTDs, thermistors, and diodes. It has 20 reconfigurable analog inputs enabling many sensor connections and configuration options. The LTC2984 includes excitation current sources and fault detection circuitry appropriate for each type of temperature sensor as well as an EEPROM for storing custom coefficients and channel configuration data.

The LTC2984 allows direct interfacing to ground referenced sensors without the need for level shifters, negative supply voltages, or external amplifiers. All signals are buffered and simultaneously digitized with three high accuracy, 24-bit $\Delta\Sigma$ ADC's, driven by an internal 10ppm/°C (maximum) reference.

Δ7, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners. Patents Pending

TYPICAL APPLICATION

Thermocouple Measurement with Automatic Cold Junction Compensation

TABLE OF CONTENTS

Features	1
Applications	1
Typical Application	1
Description	1
Absolute Maximum Ratings	3
Order Information	3
Pin Configuration	3
Complete System Electrical Characteristics	4
ADC Electrical Characteristics	4
Reference Electrical Characteristics	5
Digital Inputs and Digital Outputs	5
EEPROM Characteristics	6
Typical Performance Characteristics	7
Pin Functions	10
Block Diagram	11
Test Circuits	12
Timing Diagram	12
Overview	13
Applications Information	17
EEPROM Overview.	23
EEPROM Read/Write Validation	23
EEPROM Write Operation	23
EEPROM Read Operation	24
Thermocouple Measurements	25
Diode Measurements	
RTD Measurements	32
Thermistor Measurements	50
Supplemental Information	61
Direct ADC Measurements	61
Fault Protection and Anti-Aliasing	63
2- and 3-Cvcle Conversion Modes	63
Running Conversions Consecutively on Multiple Channels	64
Entering/Exiting Sleep Mode	64
MUX Configuration Delay	64
Global Configuration Register	65
Reference Considerations	65
Custom Thermocouples	65
Custom RTDs	68
Custom Thermistors	71
Package Description	76
Revision History	77
Typical Application	78
Related Parts	78

ABSOLUTE MAXIMUM RATINGS

(Notes 1, 2)

Supply Voltage (V_{DD})0.3V to 6V Analog Input Pins (CH1 to
CH20, COM)0.3V to (V _{DD} + 0.3V)
Input Current (CH1 to CH20, COM) ±15mA
Digital Inputs (CS, SDI,
SCK, RESET) $-0.3V$ to $(V_{DD} + 0.3V)$
Digital Outputs (SDO, INTERRUPT) $-0.3V$ to (V _{DD} + 0.3V)
V _{REFP} 0.3V to 2.8V
Q1, Q2, Q3, LDO, V _{REFOUT,} V _{REF_BYP} (Note 18)
Reference Short-Circuit Duration Indefinite
Operating Temperature Range
LTC2984C0°C to 70°C
LTC2984I –40°C to 85°C
LTC2984H–40°C to 125°C

PIN CONFIGURATION

ORDER INFORMATION

LEAD FREE FINISH	TRAY	PART MARKING*	PACKAGE DESCRIPTION	TEMPERATURE RANGE
LTC2984CLX#PBF	LTC2984CLX#PBF	LTC2984LX	48-Lead (7mm \times 7mm) LQFP	0°C to 70°C
LTC2984ILX#PBF	LTC2984ILX#PBF	LTC2984LX	48-Lead (7mm \times 7mm) LQFP	–40°C to 85°C
LTC2984HLX#PBF	LTC2984HLX#PBF	LTC2984LX	48-Lead (7mm × 7mm) LQFP	–40°C to 125°C

Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container. For more information on lead free part marking, go to: http://www.linear.com/leadfree/

COMPLETE SYSTEM ELECTRICAL CHARACTERISTICS which apply over the full operating temperature range, otherwise specifications are at $T_A = 25^{\circ}C$.

The • denotes the specifications

PARAMETER	CONDITIONS	MIN	ТҮР	MAX	UNITS
Supply Voltage		2.85		5.25	V
Supply Current			15	20	mA
Sleep Current			25	60	μA
Input Range	All Analog Input Channels	-0.05		V _{DD} - 0.3	V
Output Rate	Two Conversion Cycle Mode (Notes 6, 9)	150	164	170	ms
Output Rate	Three Conversion Cycle Mode (Notes 6, 9)	225	246	255	ms
Input Common Mode Rejection	50Hz/60Hz (Note 4)	120			dB
Input Normal Mode Rejection	60Hz (Notes 4, 7)	120			dB
Input Normal Mode Rejection	50Hz (Notes 4, 8)	120			dB
Input Normal Mode Rejection	50Hz/60Hz (Notes 4, 6, 9)	75			dB
Power-On Reset Threshold			2.25		V
Analog Power-Up	(Note 11)			100	ms
Digital Initialization	(Note 12)			100	ms

ADC ELECTRICAL CHARACTERISTICS The \bullet denotes the specifications which apply over the full operating temperature range, otherwise specifications are at T_A = 25°C.

PARAMETER	CONDITIONS		MIN	ТҮР	MAX	UNITS
Resolution (No Missing Codes)	$-F_{S} \le V_{IN} \le + F_{S}$	•	24			Bits
Integral Nonlinearity	V _{IN(CM)} = 1.25V (Note 15)			2	30	ppm of V _{REF}
Offset Error		•		0.5	2	μV
Offset Error Drift	(Note 4)	•		10	20	nV/°C
Positive Full-Scale Error	(Notes 3, 15)	•			100	ppm of V _{REF}
Positive Full-Scale Drift	(Notes 3, 15)	•		0.1	0.5	ppm of V _{REF} /°C
Input Leakage	(Note 19) H-Grade	•			1 10	nA nA
Negative Full-Scale Error	(Notes 3, 15)	•			100	ppm of V _{REF}
Negative Full-Scale Drift	(Notes 3, 15)	•		0.1	0.5	ppm of V _{REF} /°C
Input Referred Noise	(Note 5) H-Grade	•		0.8	1.5 2.0	μV _{RMS} μV _{RMS}
Common Mode Input Range		•	-0.05		V _{DD} – 0.3	V
RTD Excitation Current	(Note 16)	•	-25	Table 33	25	%
RTD Excitation Current Matching	Continuously Calibrated	•	Error wit	hin Noise L	evel of ADC	
Thermistor Excitation Current	(Note 16)	•	-37.5	Table 57	37.5	%

REFERENCE ELECTRICAL CHARACTERISTICS the full operating temperature range, otherwise specifications are at $T_A = 25$ °C.

5 1	The 🗕	denotes	the	specifications	which	apply	over
-----	-------	---------	-----	----------------	-------	-------	------

PARAMETER	CONDITIONS		MIN	ТҮР	MAX	UNITS
Output Voltage	V _{REFOUT} (Note 10)		2.49		2.51	V
Output Voltage Temperature Coefficient	I-Grade, H-Grade	•		3	15	ppm/°C
Output Voltage Temperature Coefficient	C-Grade	•		3	20	ppm/°C
Line Regulation		•			10	ppm/V
Load Regulation	I _{OUT(SOURCE)} = 100µA	•			5	mV/mA
	I _{OUT(SINK)} = 100µA	•			5	mV/mA
Output Voltage Noise	$0.1Hz \le f \le 10Hz$			4		μV _{P-P}
	$10Hz \le f \le 1kHz$			4.5		μV _{P-P}
Output Short-Circuit Current	Short V _{REFOUT} to GND			40		mA
	Short V _{REFOUT} to V _{DD}			30		mA
Turn-On Time	0.1% Setting, $C_{LOAD} = 1\mu F$			115		μs
Long Term Drift of Output Voltage (Note 13)				60		ppm/√khr
Hysteresis (Note 14)	ΔT = 0°C to 70°C ΔT = -40°C to 85°C			30 70		ppm ppm

DIGITAL INPUTS AND DIGITAL OUTPUTS full operating temperature range, otherwise specifications are at $T_A = 25$ °C.

The • denotes the specifications which apply over the

SYMBOL	PARAMETER	CONDITIONS		MIN	ТҮР	MAX	UNITS
	External SCK Frequency Range		•	0		2	MHz
	External SCK LOW Period		•	250			ns
	External SCK HIGH Period		•	250			ns
t ₁	$\overline{\text{CS}}\downarrow$ to SDO Valid		•	0		200	ns
t ₂	CS↑ to SD0 Hi-Z		•	0		200	ns
t ₃	CS↓ to SCK↑		•	100			ns
t ₄	SCK↓ to SDO Valid		•			225	ns
t ₅	SDO Hold After SCK↓		•	10			ns
t ₆	SDI Setup Before SCK↑		•	100			ns
t ₇	SDI HOLD After SCK↑		•	100			ns
	High Level Input Voltage	CS, SDI, SCK, RESET	•	V _{DD} – 0.5			V
	Low Level Input Voltage	CS, SDI, SCK, RESET	•			0.5	V
	Digital Input Current	CS, SDI, SCK, RESET		-10		10	μA
	Digital Input Capacitance	CS, SDI, SCK, RESET			10		pF
	LOW Level Output Voltage (SDO, INTERRUPT)	I ₀ = -800μA	•			0.4	V
	High Level Output Voltage (SDO, INTERRUPT)	I ₀ = 1.6mA		V _{DD} - 0.5			V
	Hi-Z Output Leakage (SDO)			-10		10	μA

EEPROM CHARACTERISTICS The \bullet denotes the specifications which apply over the full operating temperature range, otherwise specifications are at T_A = 25°C.

SYMBOL	PARAMETER	CONDITIONS	MIN	ТҮР	MAX	UNITS	
	Retention	Note 17	٠	10			Years
	Endurance		•	10000			Cycles
	Programming Time	Complete Transfer from RAM to EEPROM	٠			2600	mS
	Read Time	Complete Transfer EEPROM to RAM	٠			20	mS

Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.

Note 2: All voltage values are with respect to GND.

Note 3: Full scale ADC error. Measurements do not include reference error.

Note 4: Guaranteed by design, not subject to test.

Note 5: The input referred noise includes the contribution of internal calibration operations.

Note 6: MUX configuration delay = default 1ms.

Note 7: Global configuration set to 60Hz rejection.

Note 8: Global configuration set to 50Hz rejection.

Note 9: Global configuration default 50Hz/60Hz rejection.

Note 10: The exact value of V_{REF} is stored in the LTC2984 and used for all measurement calculations. Temperature coefficient is measured by dividing the maximum change in output voltage by the specified temperature range.

Note 11: Analog power-up. Command status register inaccessible during this time.

Note 12: Digital initialization. Begins at the conclusion of Analog Power-Up. Command status register is 0×80 at the beginning of digital initialization and 0×40 at the conclusion.

Note 13: Long-term stability typically has a logarithmic characteristic and therefore, changes after 1000 hours tend to be much smaller than before that time. Total drift in the second thousand hours is normally less than one third that of the first thousand hours with a continuing trend toward reduced drift with time. Long-term stability will also be affected by differential stresses between the IC and the board material created during board assembly.

Note 14: Hysteresis in output voltage is created by package stress that differs depending on whether the IC was previously at a higher or lower temperature. Output voltage is always measured at 25°C, but the IC is cycled to the hot or cold temperature limit before successive measurements. Hysteresis measures the maximum output change for the averages of three hot or cold temperature cycles. For instruments that are stored at well controlled temperatures (within 20 or 30 degrees of operational temperature), it is usually not a dominant error source. Typical hysteresis is the worst-case of 25°C to cold to 25°C or 25°C to hot to 25°C, preconditioned by one thermal cycle.

Note 15: Differential Input Range is ±V_{REF}/2.

Note 16: RTD and thermistor measurements are made ratiometrically. As a result current source excitation variation does not affect absolute accuracy. Choose an excitation current such that largest sensor or R_{SENSE} resistance value, when driven by the nominal excitation current, will drop 1V or less. The extended ADC input range will accommodate variation in excitation current and the ratiometric calculation will negate the absolute value of the excitation current.

Note 17: 10-year data retention guaranteed for up to 1000 program cycles. **Note 18:** Do not apply voltage or current sources to these pins. They must be connected to capacitive loads only. Otherwise, permanent damage may occur.

Note 19: Input leakage measured with $V_{IN} = -10mV$ and $V_{IN} = 2.5V$.

2984fh

TYPICAL PERFORMANCE CHARACTERISTICS

Type R Thermocouple Error and RMS Noise vs Temperature

Type E Thermocouple Error and RMS Noise vs Temperature

Type S Thermocouple Error and RMS Noise vs Temperature

Type T Thermocouple Error and RMS Noise vs Temperature

RTD PT-1000 Error and RMS Noise vs Temperature

TYPICAL PERFORMANCE CHARACTERISTICS

-0.6 -0.8 -1.0 , -40 -20 0 20 40 60 80 100 120 140 THERMISTOR TEMPERATURE (°C) 2984 G18

, -40 -20 0 20 40 60 80 100 120 140

THERMISTOR TEMPERATURE (°C)

2984 G17

-0.6

-0.8

-1.0

-0.6

-0.8

-1.0

-40 -20 0 20 40 60 80 100 120 140

THERMISTOR TEMPERATURE (°C)

TYPICAL PERFORMANCE CHARACTERISTICS

Channel Input Leakage Current vs Temperature

One Shot Conversion Current vs Temperature

Adjacent Channel Offset Error vs

Input Fault Voltage ($V_{DD} = 5V$)

2.5

2.0

1.5

1.0

0.5

0

-0.5 ∟ 4.95

5 5.05

CH2 OFFSET ERROR (µV)

V_{REFOUT} vs Temperature

Adjacent Channel Offset Error vs Input Fault Voltage

2984fb

5.1 5.15 5.2

CH1 FAULT VOLTAGE (V)

5.25

5.3 5.35

2984 G26

PIN FUNCTIONS

GND (Pins 1, 3, 5, 7, 9, 12, 15, 44): Ground. Connect each of these pins to a common ground plane through a low impedance connection. All eight pins must be grounded for proper operation.

 V_{DD} (Pins 2, 4, 6, 8, 45): Analog Power Supply. Tie all five pins together and bypass as close as possible to the device, to ground with a 0.1µF capacitor.

 V_{REF_BYP} (Pin 11): Internal Reference Power. This is an internal supply pin, do not load this pin with external circuitry. Decouple with a 0.1µF capacitor to GND.

 V_{REFOUT} (Pin 13): Reference Output Voltage. Short to V_{REFP} . A minimum 1µF capacitor to ground is required. Do not load this pin with external circuitry.

V_{REFP} (Pin 14): Positive Reference Input. Tie to V_{REFOUT}.

CH1 to CH20 (Pin 16 to Pin 35): Analog Inputs. May be programmed for single-ended, differential, or ratiometric operation. The voltage on these pins can have any value between GND – 50mV and V_{DD} – 0.3V. Unused pins can be grounded or left floating.

COM (Pin 36): Analog Input. The common negative input for all single-ended configurations. The voltage on this pin can have any value between GND – 50mV and V_{DD} – 0.3V. This pin is typically tied to ground for temperature measurements.

INTERRUPT (Pin 37): This pin outputs a LOW when the device is busy either during start-up or while a conversion

cycle is in progress. This pin goes HIGH at the conclusion of the start-up state or conversion cycle.

SCK (Pin 38): Serial Clock Pin. Data is shifted out of the device on the falling edge of SCK and latched by the device on the rising edge.

SDO (Pin 39): Serial Data Out. During the data output state, this pin is used as the serial data output. When the chip select pin is HIGH, the SDO pin is in a high impedance state.

SDI (Pin 40): Serial Data Input. Used to program the device. Data is latched on the rising edge of SCK.

CS (Pin 41): Active Low Chip Select. A low on this pin enables the digital input/output. A HIGH on this pin places SDO in a high impedance state. A falling edge on \overline{CS} marks the beginning of a SPI transaction and a rising edge marks the end.

RESET (Pin 42): Active Low Reset. While this pin is LOW, the device is forced into the reset state. Once this pin is returned HIGH, the device initiates its start-up sequence.

LDO (Pin 43): 2.5V LDO Output. Bypass with a 10μ F capacitor to GND. This is an internal supply pin, do not load this pin with external circuitry.

Q3, Q2, Q1 (Pins 46, 47, 48): External Bypass Pins for -200mV integrated Charge Pump. Tie a 10μ F X7R capacitor between Q1 and Q2 close to each pin. Tie a 10μ F X5R capacitor from Q3 to Ground. These are internal supply pins, do not make additional connections.

2984fh

BLOCK DIAGRAM

For more information www.linear.com/LTC2984

TEST CIRCUITS

TIMING DIAGRAM

The LTC2984 measures temperature using the most common sensors (thermocouples, RTDs, thermistors, and diodes). It includes all necessary active circuitry, switches, measurement algorithms, and mathematical conversions to determine the temperature for each sensor type.

Thermocouples can measure temperatures from as low as -265°C to over 1800°C. Thermocouples generate a voltage as a function of the temperature difference between the tip (thermocouple temperature) and the electrical connection on the circuit board (cold junction temperature). In order to determine the thermocouple temperature, an accurate measurement of the cold junction temperature is required; this is known as cold junction compensation. The cold junction temperature is usually determined by placing a separate (non-thermocouple) temperature sensor at the cold junction. The LTC2984 allows diodes, RTDs, and thermistors to be used as cold junction sensors. In order to convert the voltage output from the thermocouple into a temperature result, a high order polynomial equation (up to 14th order) must be solved. The LTC2984 has these polynomials built in for virtually all standard thermocouples (J, K, N, E, R, S, T, and B). Additionally, inverse polynomials must be solved for the cold junction temperature. The LTC2984 simultaneously measures the thermocouple output and the cold junction temperature and performs all required calculations to report the thermocouple temperature in °C or °F. It directly digitizes both positive and negative voltages (down to 50mV below ground) from a single ground referenced supply, includes sensor burnout detection, and allows external protection/anti-aliasing circuits without the need of buffer circuits.

Diodes are convenient low cost sensor elements and are often used to measure cold junction temperatures in thermocouple applications. Diodes are typically used to measure temperatures from -60° C to 130° C, which is suitable for most cold junction applications. Diodes generate an output voltage that is a function of temperature and excitation current. When the difference of two diode output voltages are taken at two different excitation current levels, the result (ΔV_{BE}) is proportional to temperature. The LTC2984 accurately generates excitation currents, measures the diode voltages, and calculates the temperature in °C or °F.

RTDs and thermistors are resistors that change value as a function of temperature. RTDs can measure temperatures over a wide temperature range, from as low as -200°C to 850°C while thermistors typically operate from -40°C to 150°C. In order to measure one of these devices a precision sense resistor is tied in series with the sensor. An excitation current is applied to the network and a ratiometric measurement is made. The value, in Ω , of the RTD/thermistor can be determined from this ratio. This resistance is used to determine the temperature of the sensor element using a table lookup (RTDs) or solving Steinhart-Hart equations (thermistors). The LTC2984 automatically generates the excitation current, simultaneously measures the sense resistor and thermistor/RTD voltage, calculates the sensor resistance and reports the result in °C. The LTC2984 can digitize most RTD types (PT-10, PT-50, PT-100, PT-200, PT-500, PT-1000, and NI-120), has built in coefficients for many curves (American, European, Japanese, and ITS-90), and accommodates 2-wire, 3-wire, and 4-wire configurations. It also includes coefficients for calculating the temperature of standard 2.252k, 3k, 5k, 10k, and 30k thermistors. It can be configured to share one sense resistor among multiple RTDs/thermistors and to rotate excitation current sources to remove parasitic thermal effects. In addition to built-in linearization coefficients, the LTC2984 provides the means of inserting custom coefficients for both RTDs and thermistors.

Table 1 shows the estimated system accuracy and noise associated with specific temperature sensing devices. System accuracy and peak-to-peak noise include the effects of the ADC, internal amplifiers, excitation current sources, and integrated reference. Accuracy and noise are the worst-case errors calculated from the guaranteed maximum ADC and reference specifications. Peak-topeak noise values are calculated at 0°C (except type B was calculated at 400°C) and diode measurements use AVG = ON mode.

Thermocouple errors do not include the errors associated with the cold junction measurement. Errors associated with a specific cold junction sensor within the operating temperature range can combined with the errors for a given thermocouple for total temperature measurement accuracy.

SENSOR TYPE	TEMPERATURE RANGE	ERROR CONTRIBUTION	PEAK-TO-PEAK NOISE
Type K Thermocouple	–200°C to 0°C 0°C to 1372°C	±(Temperature • 0.23% + 0.05)°C ±(Temperature • 0.12% + 0.05)°C	±0.08°C
Type J Thermocouple	-210°C to 0°C 0°C to 1200°C	±(Temperature • 0.23% + 0.05)°C ±(Temperature • 0.12% + 0.05)°C	±0.07°C
Type E Thermocouple -200°C to 0°C ±(Temperature • 0.18% + 0.05)°C 0°C to 1000°C ±(Temperature • 0.10% + 0.05)°C		±(Temperature • 0.18% + 0.05)°C ±(Temperature • 0.10% + 0.05)°C	±0.06°C
Type N Thermocouple-200°C to 0°C 0°C to 1300°C±(Temperature • 0.27% ±(Temperature • 0.10%)		±(Temperature • 0.27% + 0.08)°C ±(Temperature • 0.10% + 0.08)°C	±0.13°C
Type R Thermocouple	0°C to 1768°C	±(Temperature • 0.10% + 0.4)°C	±0.62°C
Type S Thermocouple	0°C to 1768°C	±(Temperature • 0.10% + 0.4)°C	±0.62°C
Type B Thermocouple	400°C to 1820°C	±(Temperature • 0.10%)°C	±0.83°C
Type T Thermocouple	-250°C to 0°C 0°C to 400°C	±(Temperature • 0.15% + 0.05)°C ±(Temperature • 0.10% + 0.05)°C	±0.09°C
External Diode (2 Reading)	–40°C to 85°C	±0.25°C	±0.05°C
External Diode (3 Reading)	–40°C to 85°C	±0.25°C	±0.2°C
Platinum RTD – PT-10, $R_{SENSE} = 1k\Omega$ Platinum RTD – PT-100, $R_{SENSE} = 2k\Omega$ Platinum RTD – PT-500, $R_{SENSE} = 2k\Omega$ Platinum RTD – PT-1000, $R_{SENSE} = 2k\Omega$	-200°C to 800°C -200°C to 800°C -200°C to 800°C -200°C to 800°C	±0.1°C ±0.1°C ±0.1°C ±0.1°C	±0.05°C ±0.05°C ±0.02°C ±0.01°C
Thermistor, $R_{SENSE} = 10k\Omega$	-40°C to 85°C	±0.1°C	±0.01°C

Table 1. LTC2984 Error Contribution and Peak Noise Errors

2984fh

Memory Map

The LTC2984 channel assignment, configuration, conversion start, and results are all accessible via the RAM (see Table 2A). Table 2B details the valid SPI instruction bytes for accessing memory. The channel conversion results are mapped into memory locations 0x010 to 0x05F and can be read using the SPI interface as shown in Figure 1. A read is initiated by sending the read instruction byte = 0x03

followed by the address and then data. Channel assignment data resides in memory locations 0x200 to 0x24F and can be programmed via the SPI interface as shown in Figure 2. A write is initiated by sending the write instruction byte = 0x02 followed by the address and then data. Conversions are initiated by writing the conversion control byte (see Table 6) into memory location 0x000 (command status register).

Table 2A. Memory Map

LTC2984 I				
SEGMENT	START ADDRESS	END ADDRESS	SIZE (BYTES)	DESCRIPTION
Command Status Register	0x000	0x0000	1	See Table 6, Initiate Conversion, Sleep Command
Reserved	0x001	0x000F	15	
Temperature Result Memory 20 Words – 80 Bytes	0x010	0x05F	80	See Tables 8 to 10, Read Result
Reserved	0x060	0x0AF	80	
EEPROM Key	0x0B0	0x0B3	4	See Table 11
Reserved	0x0B4	0x0CF	44	
EEPROM Read Result Code	0x0D0	0x0D0	1	See Table 11
Reserved	0x0D1	0x0EF	15	
Global Configuration Register	0x0F0	0x0F0	1	
Reserved	0x0F1	0x0F3	3	
Measure Multiple Channels Bit Mask	0x0F4	0x0F7	4	See Tables 69, 70, Run Multiple Conversions
Reserved	0x0F8	0x0F8	1	
EEPROM Status Register	0x0F9	0x0F9	1	See Table 12
Reserved	0x0FA	0x0FE	5	
MUX Configuration Delay	0x0FF	0x0FF	1	See MUX Configuration Delay Section of Data Sheet
Reserved	0x100	0x1FF	256	
Channel Assignment Data	0x200	0x24F	80	See Tables 3, 4, Channel Assignment
Custom Sensor Table Data	0x250	0x3CF	384	
Reserved	0x3D0	0x3FF	48	

Table 2B. SPI Instruction Byte

INSTRUCTION	SPI INSTRUCTION BYTE	DESCRIPTION
Read	0b0000011	See Figure 1
Write	0b0000010	See Figure 2

2984fl

The LTC2984 combines high accuracy with ease of use. The basic operation is simple and is composed of five states (see Figure 3).

Figure 3. Basic Operation

Conversion States Overview

- Start-Up. After power is applied to the LTC2984 (V_{DD} > 2.6V), there is a 200ms wake up period. During this time, the LDO, charge pump, ADCs, and reference are powered up and the internal RAM is initialized. Once start-up is complete, the INTERRUPT pin goes HIGH and the command status register will return a value of 0x40 (Start bit = 0, Done bit = 1) when read.
- 2. Channel Assignment. The device automatically enters the channel assignment state after start-up is complete. While in this state, the user writes sensor specific data for each input channel into RAM or loads it from the EEPROM (see the EEPROM section for more details). The assignment data contains information about the sensor type, pointers to cold junction sensors or sense resistors, and sensor specific parameters.
- **3.** Initiate Conversion. A conversion is initiated by writing a measurement command into RAM memory location 0x000. This command is a pointer to the channel in which the conversion will be performed.

- **4. Conversion.** A new conversion begins automatically following an Initiate Conversion command. In this state, the ADC is running a conversion on the specified channel and associated cold junction or R_{SENSE} channel (if applicable). The user is locked out of RAM access while in the state (except for reading status location 0x000). The end of conversion is indicated by both the INTERRUPT pin going HIGH and a status register START bit going LOW and DONE bit going HIGH.
- **5. Read Results.** In this state, the user has access to RAM and can read the completed conversion results and fault status bits. It is also possible for the user to modify/append the channel assignment data during the read results state.

Conversion State Details State 1: Start-Up

The start-up state automatically occurs when power is applied to the LTC2984. If the power drops below a threshold of \approx 2.6V and then returns to the normal operating voltage (2.85V to 5.25V), the LTC2984 resets and enters the power-up state. Note that the LTC2984 also enters the start-up state at the conclusion of the sleep state. The start-up state can also be entered at any time during normal operation by pulsing the RESET pin low.

In the first phase of the start-up state all critical analog circuits are powered up. This includes the LDO, reference, charge pump and ADCs. During this first phase, the command status register will be inaccessible to the user. This phase takes a maximum of 100mS to complete. Once this phase completes, the command status register will be accessible and return a value of 0x80 until the LTC2984 is completely initialized. Once the LTC2984 is initialized and ready to use, the interrupt pin will go high and the command status register will return a read value of 0x40 (Start bit = 0, Done bit = 1). At this point the LTC2984 is fully initialized and is ready to perform a conversion.

State 2: Channel Assignment

The LTC2984 RAM can be programmed with up to 20 sets of 32-bit (4-byte) channel assignment data. These reside sequentially in RAM with a one-to-one correspondence to each of the 20 analog input channels (see Table 3). Channels that are not used should have their channel assignment data set to all zeros (default at START-UP).

Table 3. Channel Assignment Memory Map

CHANNEL ASSIGNMENT NUMBER	CONFIGURATION DATA START ADDRESS	CONFIGURATION DATA ADDRESS + 1	CONFIGURATION DATA ADDRESS + 2	CONFIGURATION DATA END ADDRESS + 3	SIZE (BYTES)
CH1	0x200	0x201	0x202	0x203	4
CH2	0x204	0x205	0x206	0x207	4
CH3	0x208	0x209	0x20A	0x20B	4
CH4	0x20C	0x20D	0x20E	0x20F	4
CH5	0x210	0x211	0x212	0x213	4
CH6	0x214	0x215	0x216	0x217	4
CH7	0x218	0x219	0x21A	0x21B	4
CH8	0x21C	0x21D	0x21E	0x21F	4
CH9	0x220	0x221	0x222	0x223	4
CH10	0x224	0x225	0x226	0x227	4
CH11	0x228	0x229	0x22A	0x22B	4
CH12	0x22C	0x22D	0x22E	0x22F	4
CH13	0x230	0x231	0x232	0x233	4
CH14	0x234	0x235	0x236	0x237	4
CH15	0x238	0x239	0x23A	0x23B	4
CH16	0x23C	0x23D	0x23E	0x23F	4
CH17	0x240	0x241	0x242	0x243	4
CH18	0x244	0x245	0x246	0x247	4
CH19	0x248	0x249	0x24A	0x24B	4
CH20	0x24C	0x24D	0x24E	0x24F	4

The channel assignment data contains all the necessary information associated with the specific sensor tied to that channel (see Table 4). The first five bits determine the sensor type (see Table 5). Associated with each sensor are sensor specific configurations. These include pointers to cold junction or sense resistor channels, pointers to memory locations of custom linearization data, sense resistor values and diode ideality factors. Also included in this data are, if applicable, the excitation current level, single-ended/differential input mode, as well as sensor specific controls. Separate detailed operation sections for thermocouples, RTDs, diodes, thermistors, and sense resistors describe the assignment data associated with each sensor type in more detail. The LTC2984 demonstration software includes a utility for checking configuration data and generating annotated C-code for programming the channel assignment data.

Table 4. Channel Assignment Data

	SENSOR TYPE		SENSOR SPECIFIC CONFIGURATION																			
Channel Assignment Memory Location	Config Star	uration I t Addres	Data s			C	onfigura Start Add	tion Dat ress + 1	a				Co S	onfig tart	gurat Addı	ion E ess)ata + 2		Cor Sta	nfigurat art Add	ion D ress +	ata ⊦ 3
	31 30 29 28 27	26	25	24	23 22	21	20	19	18	17	16	15	14	13	12	11	10 9	8	7 6	5 4 3	3 2	1 0
Unassigned (Default)	Type = 0							Cł	nannel D)isat	oled											
Thermocouple	Type = 1 to 9	Colo A	Cold Junction Channel Assignment [4:0]SGL=1 DIFF=0OC CheckOC Current [1:0]0000000Custom Address [5:0]Custom Length - 1 [5:0]											5:0]								
RTD	Type = 10 to 18	R _{SENSE}	Channel [4:0	Assię]	gnment	ment 2, 3, 4 Wire Excitation Excitation Curve Custom Mode Current [3:0] [1:0] Address [5:0]						5:0]	Ci Lengt	ustom h – 1 [[5:0]							
Thermistor	Type = 19 to 27	R _{SENSE}	Channel [4:0	Assię]	gnment	SGL=1 Excitation Excitation Current DIFF=0 Mode [3:0]					ent	0	0	0	A	Cus ddres	stom ss [5	5:0]	C Lengt	ustom h – 1 [[5:0]	
Diode	Туре = 28	SGL=1 DIFF=0	2 to 3 Reading	Avg on	Current [1:0]	Ideality All Zero	Factor (os Use F	(2, 20) N actory S	/alue fro Set Defai	om 0 ult ir	to n R(4 w DM	th ⁻	1/1()4857	76 R	esolu	ition				
Sense Resistor	Type = 29	Sense Resistor Value (17, 10) Up to $131,072\Omega$ with $1/1024\Omega$ Resolution																				
Direct ADC	Type = 30	SGL=1 DIFF=0							N	ot U	sed											
Reserved	Type = 31	Not Used																				

Table 5. Sensor Type Selection

31	30	29	28	27	SENSOR TYPE
0	0	0	0	0	Unassigned
0	0	0	0	1	Type J Thermocouple
0	0	0	1	0	Type K Thermocouple
0	0	0	1	1	Type E Thermocouple
0	0	1	0	0	Type N Thermocouple
0	0	1	0	1	Type R Thermocouple
0	0	1	1	0	Type S Thermocouple
0	0	1	1	1	Type T Thermocouple
0	1	0	0	0	Type B Thermocouple
0	1	0	0	1	Custom Thermocouple
0	1	0	1	0	RTD PT-10
0	1	0	1	1	RTD PT-50
0	1	1	0	0	RTD PT-100
0	1	1	0	1	RTD PT-200
0	1	1	1	0	RTD PT-500
0	1	1	1	1	RTD PT-1000
1	0	0	0	0	RTD 1000 (0.00375)
1	0	0	0	1	RTD NI-120
1	0	0	1	0	RTD Custom
1	0	0	1	1	Thermistor 44004/44033 2.252kΩ at 25°C
1	0	1	0	0	Thermistor 44005/44030 3kΩ at 25°C
1	0	1	0	1	Thermistor 44007/44034 5kΩ at 25°C
1	0	1	1	0	Thermistor 44006/44031 10k Ω at 25°C
1	0	1	1	1	Thermistor 44008/44032 30k Ω at 25°C
1	1	0	0	0	Thermistor YSI 400 2.252kΩ at 25°C
1	1	0	0	1	Thermistor Spectrum 1003k 1k Ω
1	1	0	1	0	Thermistor Custom Steinhart-Hart
1	1	0	1	1	Thermistor Custom Table
1	1	1	0	0	Diode
1	1	1	0	1	Sense Resistor
1	1	1	1	0	Direct ADC
1	1	1	1	1	Reserved

State 3: Initiate Conversion

Once the channel assignment is complete, the device is ready to begin a conversion. A conversion is initiated by writing Start (B7 = 1) and Done (B6 = 0) followed by the desired input channel (B4 – B0) into RAM memory location 0x000 (see Tables 6 and 7). It is possible to initiate a measurement cycle on multiple channels by setting the channel selection bits (B4 to B0) to 00000; see the Running Conversions Consecutively on Multiple Channels section of the data sheet.

Table 6. Command Status Register

B7	B6	B5	B4	B3	B2	B1	BO	
Start = 1	Done=0	0	EE Cha	PROM annel S	Comr Selectio	nand a on 1 to	ind 20	Start Conversion
1	0	0	1	0	1	1	1	Initiate Sleep

Table 7. Input Channel Mapping

B7	B6	B5	B4	B3	B2	B1	BO	CHANNEL SELECTED				
1	0	0	0	0	0	0	0	Multiple Channels				
1	0	0	0	0	0	0	1	CH1				
1	0	0	0	0	0	1	0	CH2				
1	0	0	0	0	0	1	1	CH3				
1	0	0	0	0	1	0	0	CH4				
1	0	0	0	0	1	0	1	CH5				
1	0	0	0	0	1	1	0	CH6				
1	0	0	0	0	1	1	1	CH7				
1	0	0	0	1	0	0	0	CH8				
1	0	0	0	1	0	0	1	CH9				
1	0	0	0	1	0	1	0	CH10				
1	0	0	0	1	0	1	1	CH11				
1	0	0	0	1	1	0	0	CH12				
1	0	0	0	1	1	0	1	CH13				
1	0	0	0	1	1	1	0	CH14				
1	0	0	0	1	1	1	1	CH15				
1	0	0	1	0	0	0	0	CH16				
1	0	0	1	0	0	0	1	CH17				
1	0	0	1	0	0	1	0	CH18				
1	0	0	1	0	0	1	1	CH19				
1	0	0	1	0	1	0	0	CH20				
1	0	0	1	0	1	1	1	Sleep				
		All Ot	her Co		Reserved							

Bits B4 to B0 determine which input channel the conversion is performed upon and are simply the binary equivalent of the channel number (see Table 7). These bits are also used for EEPROM read and write operations (see Table 14).

Bit B5 should be set to 0.

Bits B7 and B6 serve as start/done bits. In order to start a conversion, these bits must be set to "10" (B7=1 and B6=0). When the conversion begins, the INTERRUPT pin goes LOW. Once the conversion is complete, bits B7 and B6 will toggle to "01" (B7=0 and B6=1) (Address = 0x000) and the INTERRUPT pin will go HIGH, indicating the conversion is complete and the result is available.

State 4: Conversion

The measurement cycle starts after the initiate conversion command is written into RAM location 0x000 (Table 6). The LTC2984 simultaneously measures the selected input sensor, sense resistors (RTDs and thermistors), and cold junction temperatures if applicable (thermocouples).

Once the conversion is started, the user is locked out of the RAM, with the exception of reading status data stored in RAM memory location 0x000.

Once the conversion is started the INTERRUPT pin goes low. Depending on the sensor configuration, two or three 82ms cycles are required per temperature result. These correspond to conversion rates of 167ms and 251ms, respectively. Details describing these modes are described in the 2- and 3-cycle Conversion Modes section of the data sheet.

The end of conversion can be monitored either through the interrupt pin (LOW to HIGH transition), or by reading the command status register in RAM memory location 0x000 (start bit, B7, toggles from 1 to 0 and DONE bit, B6, toggles from 0 to 1).

State 5: Read Results

Once the conversion is complete, the conversion results can be read from RAM memory locations corresponding to the input channel (see Table 8).

The conversion result is 32 bits long and contains both the sensor temperature (D23 to D0) and sensor fault data (D31 to D24) (see Tables 9A and 9B).

The result is reported in °C for all temperature sensors with a range of -273.16°C to 8192°C and 1/1024°C resolution or in °F with a range of -459.67°F to 8192°F with 1/1024°F resolution. Included with the conversion result are seven sensor fault bits and a valid bit. These bits are set to a 1 if there was a problem associated with the corresponding conversion result (see Table 10). Two types of errors are reported: hard errors and soft errors. Hard errors indicate the reading is invalid and the resulting temperature reported is -999°C or °F. Soft errors indicate operation beyond the normal temperature range of the sensor or the input range of the ADC. In this case, the calculated temperature is reported but the accuracy may be compromised. Details relating to each fault type are sensor specific and are described in detail in the sensor specific sections of this data sheet. Bit D24 is the valid bit and will be set to a 1 for valid data.

Once the data read is complete, the device is ready for a new initiate conversion command. In cases where new channel configuration data is required, the user has access to the RAM in order to modify existing channel assignment data.

Table 8. Conversion Result Memory Map

CONVERSION Channel	START ADDRESS	END ADDRESS	SIZE (BYTES)
CH1	0x010	0x013	4
CH2	0x014	0x017	4
CH3	0x018	0x01B	4
CH4	0x01C	0x01F	4
CH5	0x020	0x023	4
CH6	0x024	0x027	4
CH7	0x028	0x02B	4
CH8	0x02C	0x02F	4
CH9	0x030	0x033	4
CH10	0x034	0x037	4
CH11	0x038	0x03B	4
CH12	0x03C	0x03F	4
CH13	0x040	0x043	4
CH14	0x044	0x047	4
CH15	0x048	0x04B	4
CH16	0x04C	0x04F	4
CH17	0x050	0x053	4
CH18	0x054	0x057	4
CH19	0x058	0x05B	4
CH20	0x05C	0x05F	4

Table 9A. Example Data Output Words (°C)

		START ADDRESS							ST	ART	ADD	RES	S + 1				STA	RT /	١DD	RES	S +	2		ST. (AR1 En	i ad D ai	DR DDF	ESS RES	5 + 3 S)	
	D31	D30	D29	D28	D27	D26	D25	D24	D23	D22	D21	D20	D19	D18	D17	D16	D15	D14	D13	D12	D11	D10	D9	D8	D7 [D6 [)5 D4	1 D3	D2 I	D1 D0
				Fa	ult Data	a			SIGN	MSB																				LSB
Temperature	Sensor Hard Fault	ADC Hard Fault	CJ Hard Fault	CJ Soft Fault	Sensor Over Range Fault	Sensor Under Range Fault	ADC Out of Range Fault	Valid If 1	4	096°(↓	0											1℃ ↓							1/10	24°C ↓
8191.999°C								1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1 1	1	1	1 1
1024°C								1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0 0
1°C								1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0 0	0	0	0 0
1/1024°C								1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0 1
0°C								1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0 0
-1/1024°C								1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1 1	1	1	1 1
-1°C								1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0 0	0	0	0 0
–273.15°C								1	1	1	1	1	1	0	1	1	1	0	1	1	1	0	1	1	0	1	1 0	0	1	1 1

Table 9B. Example Data Output Words (°F)

		START ADDRESS								ST	ART	ADD	RES	S + 1	l			STA	RT	ADD	RES	SS +	2		ST	'AR (en	t ai Id a)DF DD	RES RES	S + 3 S)	3
	D31	D30	D29	D28	D27	D26	D25	D24	D23	D22	D21	D20	D19	D18	D17	D16	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5 D	4 D3	3 D2	D1 [D0
				Fai	ult Data				SIGN	MSB																				LS	ЗB
Temperature	Sensor Hard Fault	Sensor ADC CJ CJ Sensor Sensor ADC Va Hard Hard Hard Soft Over Under Out If Fault Fault Fault Fault Range Fault Fault Range Fault Fault Ange Fault				Valid If 1	4	1096°I	F											1°F ↓			1/1024°F								
8191.999°F								1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1 1	1	1	1	1
1024°F								1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0) 0	0	0	0
1°F								1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0 0) 0	0	0	0
1/1024°F								1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0) 0	0	0	1
0°F								1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0) 0	0	0	0
-1/1024°F								1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1 1	1	1	1	1
–1°F								1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0 0) 0	0	0	0
-459.67°F								1	1	1	1	1	1	0	0	0	1	1	0	1	0	0	0	1	0	1	0 1	0	0	1	0

Table 10. Sensor Fault Reporting

BIT	FAULT	ERROR TYPE	DESCRIPTION	OUTPUT RESULT
D31	Sensor Hard Fault	Hard	Bad Sensor Reading	–999°C or °F
D30	Hard ADC-Out-of-Range	Hard	Bad ADC Reading (Could Be Large External Noise Event)	–999°C or °F
D29	CJ Hard Fault	Hard	Cold Junction Sensor Has a Hard Fault Error	–999°C or °F
D28	CJ Soft Fault	Soft	Cold Junction Sensor Result Is Beyond Normal Range	Suspect Reading
D27	Sensor Over Range	Soft	Sensor Reading Is Above Normal Range	Suspect Reading
D26	Sensor Under Range	Soft	Sensor Reading Is Below Normal Range	Suspect Reading
D25	ADC Out-of-Range	Soft	ADC Absolute Input Voltage Is Beyond ±1.125 • V _{REF} /2	Suspect Reading
D24	Valid	NA	Result Valid (Should Be 1) Discard Results if 0	Suspect Reading
	· ·	•	·	 2984fb

EEPROM OVERVIEW

The LTC2984 contains 512 bytes of EEPROM, which shadows the upper sensor configuration segment of USER RAM (locations 0x200–0x3CF, see Figure 4). Prior to initial usage, the user programs the USER RAM with all channel assignment and custom sensor data. Once the USER RAM has been programmed, the user can save this segment of memory into the EEPROM. After subsequent power down or sleep cycles, the user can reload the USER RAM with this stored EEPROM data bypassing the channel assignment and customer sensor programming normally required.

AND IS NOT SHADOWED BY EEPROM

Figure 4. Shadow EEPROM Memory Map

EEPROM READ/WRITE VALIDATION

Access to the EEPROM is key-protected to prevent inadvertent access. The EEPROM also has two levels of data integrity protection. The first level is implemented using an error correcting code (ECC) on each 32-bit word of data in the EEPROM. The ECC is capable of correcting any single bit error per word and detecting 2-bit errors per word. The second level of protection is implemented using a 32-bit checksum, which covers the entire contents of user EEPROM. Status bits are available to the user for reporting ECC status and checksum error conditions.

EEPROM WRITE OPERATION

The EEPROM write operation requires 5 steps (see Figure 5).

- 1. **Sensor-Configuration.** Write all desired channel assignment and custom sensor data to the LTC2984 USER RAM.
- 2. Set EEPROM Key. Write the EEPROM Key (0xA53C0F5A) to the key register space of the LTC2984 USER RAM (Address range 0x0B0–0x0B3, see Tables 5, 7 and 11). Note the key is written MSB first.
- 3. Send EEPROM Write Command. Write the EEPROM write command (0x15) and start bit (0x80) to the LTC2984 command register (Address 0x000). The command plus start bit is 0x80 + 0x15 = 0x95 (see Table 12).
- 4. Wait for EEPROM Command to Complete. Completion of the write operation is indicated by both the interrupt pin going HIGH and the status register START bit going LOW and DONE bit going HIGH.
- 5. **Check EEPROM Status Register.** Read EEPROM Status register (Address 0x0F9) and checks the Program-Failed status bit (Bit 2) to determine whether the EEPROM write operation was successful (see Table 13). The Program-Failed status bit being set indicates that the write operation failed.

Upon successful completion of steps 1–5, the EEPROM will now contain the image that was present in USER RAM locations 0x200–0x3CF.

2984fh

EEPROM READ OPERATION

The LTC2984 EEPROM read operation is comprised of 4 steps (see Figure 6)

Figure 6. Read Operation

- 1. Set EEPROM Key. Write the EEPROM Key (0xA53C0F5A) to the key register space of the LTC2984 USER RAM (Address range 0x0B0–0x0B3, see Tables 5, 7 and 11). Note the key is written MSB first.
- 2. Send EEPROM Read Command. Write the EEPROM read command (0x16) and start bit (0x80) to the LTC2984 command register (Address 0x000). The command plus start bit would be 0x80 + 0x16 = 0x96 (see Table 12).
- 3. Wait for EEPROM Command to Complete. Completion of the read operation is indicated by both the interrupt pin going HIGH and the status register START bit going LOW and DONE bit going HIGH.
- 4. Check EEPROM Read Result Code. Read the EEPROM read result code register address (0x0D0) to determine the pass/fail status of the read operation. A value of zero indicates that the command completed successfully and a non-zero value indicates that an error has occurred. Additional read operation status bits are also available in the EEPROM Status Register (see Tables 13 and 14).

Upon successful completion of steps 1–4, USER RAM locations 0x200–0x3CF will now contain the data that was stored in the LTC2984's shadow EEPROM.

Table 11. LTC2984 EEPROM Related Registers

ADDRESS	REGISTER NAME	DESCRIPTION
0x0B0	EEPROM Key [3] (MSB)	EEPROM Key byte 3 – Set to 0xA5
0x0B1	EEPROM Key [2]	EEPROM Key byte 2 – Set to 0x3C
0x0B2	EEPROM Key [1]	EEPROM Key byte 1 – Set to 0x0F
0x0B3	EEPROM Key [0] (LSB)	EEPROM Key byte 0 – Set to 0x5A
0x0D0	EEPROM Read Result Code	This register indicates the Pass/Fail status of the most recent EEPROM read operation 0x00 = PASS 0xFF = FAIL
0x0F9	EEPROM Status Register	See LTC2984 EPROM Status Register Tables 12 and 13

Table 12. LTC2984 EEPROM Related Commands and Status

B 7	B6	B5	B4	B3	B2	B1	BO	DESCRIPTION
1	0	0	1	0	1	0	1	EEPROM Write Command – Transfer the contents of user memory locations 0x200–0x3CF to the on-chip shadow EEPROM
1	0	0	1	0	1	1	0	EEPROM Read Command – Transfer the contents of the on- chip shadow EEPROM to user memory locations 0x200–0x3CF

Table 13. EEPROM Status Bits

EEPROM STATUS BIT	DESCRIPTION
ECC Used	Error Correcting Code Used – This bit indicates that ECC was used to correct data on one or more locations during the EEPROM read process (Note 1)
ECC Failure	Error Correcting Code Failure – This bit indicates that ECC failed to correct data on one or more locations during the EEPROM read process. If this bit is set one or more locations has invalid data (Note 1)
Program Failure	Program Failure – This bit indicates that a write data error occurred on one or more locations during the EEPROM programming process (Note 1)
Checksum Error	Checksum Error – This bit indicates that a checksum error occurred during the EEPROM read process (Note 1)

Note 1: Once bits in the EEPROM status register are set they will remain set until cleared by the user. The EEPROM status register bits are cleared by writing 0x00 to address 0x0F9. These bits are also cleared on reset and after exiting sleep mode.

Table 14. LTC2984 EEPROM Status Register (Address 0x0F9)

					-		
7	6	5	4	3	2	1	0
-	-	-	-	Checksum Error	Program Failure	ECC Failure	ECC Used

THERMOCOUPLE MEASUREMENTS

Channel Assignment – Thermocouples

For each thermocouple tied to the LTC2984, a 32-bit channel assignment word is programmed into a memory location corresponding to the channel the sensor is tied to (see Table 15). This word includes (1) thermocouple type, (2) cold junction channel pointer, (3) sensor configuration, and (4) custom thermocouple data pointer.

(1) Thermocouple Type

The thermocouple type is determined by the first five input bits B31 to B27 as shown in Table 16. Standard NIST coefficients for types J,K,E,N,R,S,T and B thermocouples are stored in the device ROM. If custom thermocouples are used, the custom thermocouple sensor type can be selected. In this case, user-specific data can be stored in the on-chip RAM starting at the address defined in the custom thermocouple data pointer.

(2) Cold Junction Channel Pointer

The cold junction compensation can be a diode, RTD, or thermistor. The cold junction channel pointer tells the LTC2984 which channel (1 to 20) the cold junction sensor is assigned to (see Table 17). When a conversion is performed on a channel tied to a thermocouple, the cold junction sensor is simultaneously and automatically measured. The final output data uses the embedded coefficients stored in ROM to automatically compensate the cold junction temperature and output the thermocouple sensor temperature.

(3) Sensor Configuration

The sensor configuration field (see Table 18) is used to select single-ended (B21=1) or differential (B21=0) input and allows selection of open circuit current if internal open-circuit detect is enabled (bit B20). Single-ended readings are measured relative to the COM pin and differential are measured between the selected CH_{TC} and adjacent CH_{TC-1} (see Figure 7). If open-circuit detection is enabled, B20=1, then the user can select the pulsed current value applied during opencircuit detect using bits B18 and B19. The user determines the value of the open circuit current based on the size of the external protection resistor and filter capacitor (typically 10µA). This network needs to settle within 50ms to 1µV or less. The duration of the current pulse is approximately 8ms and occurs 50ms before the normal conversion cycle.

Thermocouple channel assignments follow the general convention shown in Figure 7. The thermocouple positive terminal ties to CH_{TC} (where TC is the selected channel number) for both the single-ended and differential modes of operation. For single-ended measurements the thermocouple negative terminal and the COM pin are grounded. The thermocouple negative terminal is tied to CH_{TC-1} for differential measurements. This node can either be grounded or tied to a bias voltage.

	(1)	THE	RMC Typi)COL E	JPLE	(2) COLD JUNCTION Channel Pointer					(3) SENSOR CONFIGURATION										(4) CUSTOM THERMOCOUPLE DATA POINTER										
	TABLES 4, 16					TABLE 17				TABLE 18						TABLES 71 TO 73															
Measurement Type	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3 2	1	0
Thermocouple	Types 1 to 9					Cold Junction Channel Assignment [4:0]				SGL=1 DIFF=0	OC Check	OC OC Check Current [1:0]		0	0	0 0		0	0	Custom Address C [5:0]			Custom Length –1 [5:0]								

Table 15. Thermocouple Channel Assignment Word

