: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

feATURES

- 12dB Power Conversion Gain
- 35dBm Output IP3
- 15.5dB Range IF DVGA in 0.5dB Steps
- Programmable RF Input Tuning
- Reduced Power Mode
- 3.3V Single Supply
- Simple SPI for Fast Development
- $-40^{\circ} \mathrm{C}$ to $105^{\circ} \mathrm{C}$ Operation (T_{C})
- Very Small Solution Size
- 32-Lead ($5 \mathrm{~mm} \times 5 \mathrm{~mm}$) QFN Package

APPLICATIONS

- 4G and 5G MIMO Receivers
- Diversity Receivers
- Distributed Antenna Systems (DAS)
- Network Test/Monitoring Equipment
- Software-Defined Radios

The LTC ${ }^{\circledR 5566}$ dual programmable gain downconverting mixer is ideal for diversity and MIMO receivers that require precise gain setting. Each channel incorporates an active mixer and a digital IF VGA with 15.5 dB gain control range. The IF gain of each channel is programmed in 0.5 dB steps through the SPI.
Programmable RF input tuning via the SPI or parallel control lines makes the device attractive for wideband radio applications. Furthermore, a reduced power mode is available, programmed through the SPI.
Integrated RF transformers provide single-ended 50Ω inputs. The differential LO input is designed for single-ended or differential drive. The differential IF output simplifies the interface to differential IF filters and amplifiers. The mixers are optimized for use up to 5 GHz but may be used up to 6 GHz with degraded performance.

TYPICAL APPLICATION

Dual Channel MIMO Receiver with Programmable 0.5dB Gain Steps

LTC5566 Conversion Gain vs RF Frequency and IF Attenuation (0.5dB Gain Steps)

ABSOLUTE MAXIMUM RATINGS

pIn COnfiguration

Supply Voltage (VDD $\mathrm{V}_{\mathrm{CC} 1}, \mathrm{~V}_{\mathrm{CC} 2}, \mathrm{IF1}^{+}, \mathrm{IF1}^{-}$,
IF2 ${ }^{+}$, IF2- ${ }^{-}$).. 4 V
EN1, EN2, T0, T1 Input Voltages -0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$ LO', LO^{-}Input Power (150 MHz to 6GHz) +10 dBm
RF1, RF2 Input Power (300MHz to 6GHz) +20 dBm
LO ${ }^{+}$LO- DC Voltage ... $\pm 0.5 \mathrm{~V}$
IF DVGA Peak Differential Input Voltage.................... 4 V
SDI, CLK, CSB, PS Input Voltages... -0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
SDO Output Current.. $\pm 10 \mathrm{~mA}$
Operating Temperature Range $\left(\mathrm{T}_{\mathrm{C}}\right) \ldots40^{\circ} \mathrm{C}$ to $105^{\circ} \mathrm{C}$ Junction Temperature (T_{J}) $150^{\circ} \mathrm{C}$ Storage Temperature Range $65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

ORDER INFORMATION

(http://www.linear.com/product/LTC5566\#orderinfo)

LEAD FREE FINISH	TAPE AND REEL	PART MARKING	PACKAGE DESCRIPTION	CASE TEMPERATURE RANGE
LTC5566IUH\#PBF	LTC5566IUH\#TRPBF	5566	$32-$ Lead $(5 \mathrm{~mm} \times 5 \mathrm{~mm})$ Plastic QFN	$-40^{\circ} \mathrm{C}$ to $105^{\circ} \mathrm{C}$

Consult LTC Marketing for parts specified with wider operating temperature ranges.
For more information on lead free part marking, go to: http://www.linear.com/leadfree/
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/. Some packages are available in 500 unit reels through designated sales channels with \#TRMPBF suffix.

ELECTRICAL CHARACTERISTICS
The \bullet denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C} . \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{D D}=3.3 \mathrm{~V}$. Test circuit shown in Figure 1. (Note 2)

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Supply Voltage (VCC)		\bullet	3.0	3.3	3.6	V
SPI Supply Voltage (VD)		\bullet	1.6		3.6	V
Supply Current (Icc)	One Channel, Full Power Mode Both Channels, Full Power Mode One Channel, Reduced Power Mode Both Channels, Reduced Power Mode Shutdown	\bullet		$\begin{aligned} & \hline 192 \\ & 384 \\ & 147 \\ & 294 \\ & 1.2 \end{aligned}$	$\begin{aligned} & 225 \\ & 450 \\ & \\ & 1.9 \end{aligned}$	$m A$ $m A$ $m A$ $m A$ $m A$
SPI Supply Current (ldD)	$\text { Operating: CSB = Low, f } \mathrm{fLK}=10 \mathrm{MHz}$ Idle: CSB = High			$\begin{aligned} & 0.2 \\ & 10 \end{aligned}$	1	$\begin{aligned} & \mathrm{mA} \\ & \mu \mathrm{~A} \end{aligned}$

Enable and RF Tuning Logic Inputs (EN1, EN2, T0, T1) Internal Pull-Down Resistors on Each Pin

Input High Voltage (On)		\bullet	1.4	V
Input Low Voltage (Off)		\bullet	0.5	V
Input Current	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}$		100	$\mu \mathrm{~A}$
Enable Turn-On Time			$\mu \mathrm{s}$	
Enable Turn-Off Time			0.3	$\mu \mathrm{~s}$

RF Input Tuning Parallel Select Logic Input (PS) Internal Pull-Down Resistor

Input High Voltage (Parallel Enabled)		\bullet	$0.7 \bullet V_{D D}$	V
Input Low Voltage (Serial Enabled)		\bullet	$0.3 \bullet \vee_{D D}$	V
Input Current	$\mathrm{V}_{I N}=\mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}$		50	$\mu \mathrm{~A}$

ELECTRICAL CHARACTERISTICS The odenotes the specilications which apply vere the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$. $\mathrm{V}_{C C}=\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$. Test circuit shown in Figure 1. (Notes 3, 6)

| PARAMETER | CONDITIONS | MIN | TYP | MAX | UNITS |
| :--- | :--- | :--- | :--- | :--- | :---: | :---: |
| SPI Port Logic Inputs (CSB, CLK, SDI) | \bullet | | | | |
| Input High Voltage | | \bullet | | | |
| Input Low Voltage | | | V | | |
| Input Current | $V_{I N}=V_{D D}=3.6 \mathrm{~V}$ | $0.3 \cdot V_{D D}$ | V | | |
| Input Hysteresis | | | 25 | $\mu \mathrm{~A}$ | |

SPI Port Logic Output (SDO)

Output High Voltage	$I_{\text {SOURCE }}=3 \mathrm{~mA}$	\bullet	$V_{D D}-0.4 \mathrm{~V}$	V
Output Low Voltage	$\mathrm{I}_{\text {SINK }}=3 \mathrm{~mA}$	\bullet		0.4
Output Leakage Current	$\mathrm{V}_{\text {CSB }}=\mathrm{V}_{\text {DD }}=3.6 \mathrm{~V}$		V	

SPI Port Timing

SDI Setup Time		5	ns	
SDI Hold Time		10	ns	
CLK Falling to SDO Valid Time	$C_{S D O}=20 \mathrm{pF}$		ns	
SDO Rise/Fall Time	$C_{S D O}=20 \mathrm{pF}$		15	ns
SDO Enable Time			10	ns
SDO Disable Time			10	ns
CSB Setup Time		15	ns	
CSB Hold Time		5	ns	
CLK Frequency	$C_{S D O}=20 \mathrm{pF}$		MHz	

AC ELECTRICAL CHARACTERISTICS The denotes the speciifications which apply ver the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C} . \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{EN} 1, \mathrm{EN} 2=\mathrm{High}, \mathrm{P}_{\mathrm{LO}}=\mathrm{OdBm}$. Test circuit shown in Figure 1. (Notes 3, 4, 5)

LTC5566

AC ELECTRICAL CHARACTERISTICS The \bullet denotes the speciitications which apply over the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$. $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$, $\mathrm{EN} 1, \mathrm{EN} 2=\mathrm{High}, \mathrm{P}_{\mathrm{RF}}=-8 \mathrm{dBm} / \mathrm{Tone}, \mathrm{P}_{\mathrm{LO}}=0 \mathrm{dBm}$, unless otherwise noted. Test circuit shown in Figure 1. (Notes 3, 4, 5)
Band 0 (See Figure 1): RF = 4.5GHz, IF = 153MHz, Low Side LO

PARAMETER	CONDITIONS		FULL PWR		REDUCED PWR	UNITS
			MIN TYP	MAX	TYP	
RF Input Return Loss	$\mathrm{Z}_{0}=50 \Omega, 3.1 \mathrm{GHz}$ to 5.1 GHz		>10		>10	dB
Power Conversion Gain	$\begin{aligned} & \text { OdB IF ATTEN } \\ & \text { 6dB IF ATTEN } \\ & \text { 12dB IF ATTEN } \end{aligned}$		$\begin{gathered} \hline 10.6 \\ 4.5 \\ -1.6 \end{gathered}$		$\begin{gathered} 10.3 \\ 4.2 \\ -1.9 \end{gathered}$	dB dB dB
Conversion Gain Flatness	$\mathrm{RF}=4.5 \mathrm{GHz} \pm 100 \mathrm{MHz}, \mathrm{LO}=4.35 \mathrm{GHz}$		± 0.4		± 0.4	dB
Conversion Gain vs Temperature	$\mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$ to $105^{\circ} \mathrm{C}$	\bullet	-0.014		-0.014	$\mathrm{dB} /{ }^{\circ} \mathrm{C}$
Two-Tone Input 3rd Order Intercept $\left(\Delta f_{R F}=2 M H z\right)$	OdB IF ATTEN 6dB IF ATTEN 12dB IF ATTEN		$\begin{aligned} & 22.0 \\ & 23.6 \\ & 24.1 \end{aligned}$		$\begin{aligned} & 17.8 \\ & 18.7 \\ & 18.9 \end{aligned}$	$\begin{aligned} & \mathrm{dBm} \\ & \mathrm{dBm} \end{aligned}$ dBm
Two-Tone Input 2nd Order Intercept $\left(\Delta f_{\mathrm{RF}}=154 \mathrm{MHz}=\mathrm{f}_{\mathrm{IM} 2}\right)$	OdB to 15.5dB IF ATTEN		50		46	dBm
SSB Noise Figure	OdB IF ATTEN 6dB IF ATTEN 12dB IF ATTEN		$\begin{aligned} & \hline 16.3 \\ & 17.8 \\ & 21.1 \end{aligned}$		$\begin{aligned} & 15.2 \\ & 17.1 \\ & 20.9 \end{aligned}$	dB dB dB
L0 to RF Leakage	$\mathrm{LO}=3.1 \mathrm{GHz}$ to 5.2 GHz		<-42		<-42	dBm
Input 1dB Compression	OdB IF ATTEN 3dB IF ATTEN 6dB IF ATTEN 9dB IF ATTEN and Higher		$\begin{gathered} \hline 7.0 \\ 9.6 \\ 11.2 \\ 11.5 \end{gathered}$		$\begin{gathered} \hline 6.4 \\ 8.9 \\ 10.3 \\ 10.6 \end{gathered}$	dBm dBm dBm dBm
Channel-to-Channel Isolation	$\mathrm{RF}=4.5 \mathrm{GHz}$		40		40	dB

RF $=3.6 \mathrm{GHz}$, IF = 153MHz, Low Side LO

PARAMETER	CONDITIONS		FULL PWR		REDUCED PWR	UNITS
			MIN TYP	MAX	TYP	
Power Conversion Gain	OdB IF ATTEN 6dB IF ATTEN 12dB IF ATTEN		$\begin{gathered} 11.8 \\ 5.7 \\ -0.4 \end{gathered}$		$\begin{gathered} 11.5 \\ 5.4 \\ -0.7 \end{gathered}$	dB dB dB
Conversion Gain Flatness	$\mathrm{RF}=3.6 \mathrm{GHz} \pm 100 \mathrm{MHz}, \mathrm{LO}=3.45 \mathrm{GHz}$		± 0.45		± 0.45	dB
Conversion Gain vs Temperature	$\mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$ to $105^{\circ} \mathrm{C}$	\bullet	-0.012		-0.012	$\mathrm{dB} /{ }^{\circ} \mathrm{C}$
Two-Tone Input 3rd Order Intercept $\left(\Delta f_{\mathrm{RF}}=2 \mathrm{MHz}\right)$	OdB IF ATTEN 6dB IF ATTEN 12dB IF ATTEN		$\begin{aligned} & 22.0 \\ & 24.5 \\ & 25.5 \end{aligned}$		$\begin{aligned} & 18.4 \\ & 19.9 \\ & 20.3 \end{aligned}$	dBm dBm dBm
Two-Tone Input 2nd Order Intercept $\left(\Delta f_{\mathrm{RF}}=154 \mathrm{MHz}=\mathrm{f}_{\mathrm{IM} 2}\right)$	OdB to 15.5dB IF ATTEN		60		55	dBm
SSB Noise Figure	OdB IF ATTEN 6dB IF ATTEN 12dB IF ATTEN		$\begin{aligned} & 13.8 \\ & 15.4 \\ & 18.8 \end{aligned}$		$\begin{aligned} & 12.7 \\ & 14.8 \\ & 18.6 \end{aligned}$	dB dB dB
LO to RF Leakage	$\mathrm{LO}=3.1 \mathrm{GHz}$ to 5.2 GHz		<-42		<-42	dBm
Input 1dB Compression	OdB IF ATTEN 3dB IF ATTEN 6dB IF ATTEN 9dB IF ATTEN and Higher		$\begin{gathered} 6.0 \\ 8.8 \\ 10.7 \\ 11.5 \end{gathered}$		$\begin{gathered} \hline 5.4 \\ 8.2 \\ 10.1 \\ 10.6 \\ \hline \end{gathered}$	dBm dBm dBm dBm
Channel-to-Channel Isolation	$\mathrm{RF}=3.6 \mathrm{GHz}$		51		51	dB

AC ELECTRICAL CHARACTERISTICS The e denotes the speciifications which apply ver the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C} . \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{EN} 1, \mathrm{EN} 2=\mathrm{High}, \mathrm{P}_{\mathrm{RF}}=-8 \mathrm{dBm} / \mathrm{Tone}, \mathrm{P}_{\mathrm{LO}}=0 \mathrm{OBm}$, unless otherwise noted. Test circuit shown in Figure 1. (Notes 3, 4, 5)
Band 1 (See Figure 1): RF = 2.6GHz, IF = 153MHz, High Side LO

PARAMETER	CONDITIONS		FULL PWR		REDUCED PWR	UNITS
			MIN TYP	MAX	TYP	
RF Input Return Loss	$\mathrm{Z}_{0}=50 \Omega, 1.8 \mathrm{GHz}$ to 4.4 GHz		>12		>12	dB
Power Conversion Gain	OdB IF ATTEN 3dB IF ATTEN 6dB IF ATTEN 9dB IF ATTEN 12dB IF ATTEN 15dB IF ATTEN		 11.8 6.8 8.8 5.8 2.7 -0.3 -3.4		$\begin{gathered} \hline 11.5 \\ 8.4 \\ 5.4 \\ 2.4 \\ -0.7 \\ -3.7 \end{gathered}$	dB $d B$ $d B$ $d B$ $d B$ $d B$
Conversion Gain Flatness	$\mathrm{RF}=2.6 \mathrm{GHz} \pm 100 \mathrm{MHz}, \mathrm{LO}=2.75 \mathrm{GHz}$		± 0.5		± 0.5	dB
Conversion Gain vs Temperature	$\mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$ to $105^{\circ} \mathrm{C}$	\bullet	-0.013		-0.013	$\mathrm{dB} /{ }^{\circ} \mathrm{C}$
Two-Tone Input 3rd Order Intercept $\left(\Delta f_{\mathrm{RF}}=2 \mathrm{MHz}\right)$	OdB IF ATTEN 3dB IF ATTEN 6dB IF ATTEN 9dB IF ATTEN 12dB IF ATTEN 15dB IF ATTEN		$\begin{aligned} & 23.2 \\ & 24.6 \\ & 26.0 \\ & 26.8 \\ & 27.6 \\ & 28.0 \end{aligned}$		$\begin{aligned} & 19.5 \\ & 20.6 \\ & 21.2 \\ & 21.4 \\ & 21.4 \\ & 21.4 \end{aligned}$	dBm dBm dBm dBm dBm dBm
Two-Tone Output 3rd Order Intercept $\left(\Delta f_{\mathrm{RF}}=2 \mathrm{MHz}\right)$	OdB IF ATTEN 3dB IF ATTEN 6dB IF ATTEN 9dB IF ATTEN 12dB IF ATTEN 15dB IF ATTEN		$\begin{aligned} & 35.0 \\ & 33.4 \\ & 31.8 \\ & 29.5 \\ & 27.3 \\ & 24.6 \end{aligned}$		31.0 29.0 26.6 23.8 20.7 17.7	dBm dBm dBm dBm dBm dBm
Two-Tone Input 2nd Order Intercept $\left(\Delta f_{\mathrm{RF}}=154 \mathrm{MHz}=\mathrm{f}_{\mathrm{IM} 2}\right)$	OdB to 15.5dB IF ATTEN		59		54	dBm
SSB Noise Figure	OdB IF ATTEN 3dB IF ATTEN 6dB IF ATTEN 9dB IF ATTEN 12dB IF ATTEN 15dB IF ATTEN		$\begin{aligned} & \hline 13.3 \\ & 14.1 \\ & 15.3 \\ & 17.0 \\ & 19.3 \\ & 21.7 \end{aligned}$		$\begin{aligned} & 13.0 \\ & 14.0 \\ & 15.3 \\ & 17.2 \\ & 19.5 \\ & 22.1 \end{aligned}$	dB $d B$ $d B$ $d B$ $d B$ $d B$
SSB Noise Figure Under Blocking (2.5GHz Blocker)	$\begin{aligned} & \text { +2dBm BLOCKER, 3dB IF ATTEN } \\ & \text { +5dBm BLOCKER, 3dB IF ATTEN } \end{aligned}$		$\begin{aligned} & \hline 18.7 \\ & 21.1 \\ & \hline \end{aligned}$		$\begin{aligned} & \hline 18.3 \\ & 20.9 \\ & \hline \end{aligned}$	dB dB
LO to RF Leakage	LO $=1.6 \mathrm{GHz}$ to 4GHz		<-45		<-45	dBm
1/2 IF Output Spurious Product ($f_{\text {RF }}$ Offset to Produce Spur at $f_{\mathrm{IF}}=153 \mathrm{MHz}$)	$\begin{aligned} & \mathrm{f}_{\mathrm{RF}}=2676.5 \mathrm{MHz}, \mathrm{P}_{\mathrm{RF}}=-6 \mathrm{dBm} \\ & 0 \mathrm{~dB} \text { to } 15.5 \mathrm{~dB} \text { IF ATTEN } \end{aligned}$		-71		-69	dBC
1/3 IF Output Spurious Product ($\mathrm{f}_{\text {RF }}$ Offset to Produce Spur at $\mathrm{f}_{\mathrm{IF}}=153 \mathrm{MHz}$)	$\begin{aligned} & \mathrm{f}_{\mathrm{RF}}=2702 \mathrm{MHz}, \mathrm{P}_{\mathrm{RF}}=-6 \mathrm{dBm} \\ & 0 \mathrm{~dB} \text { to } 15.5 \mathrm{~dB} \text { IF ATTEN } \\ & \hline \end{aligned}$		-65		-60	dBc
Input 1dB Compression	OdB IF ATTEN 3dB IF ATTEN 6dB IF ATTEN 9dB IF ATTEN and Higher		$\begin{array}{r} 6.2 \\ 9.2 \\ 11.5 \\ 12.6 \end{array}$		$\begin{gathered} \hline 5.6 \\ 8.6 \\ 10.9 \\ 11.6 \end{gathered}$	dBm dBm dBm dBm
Output 1dB Compression	OdB IF ATTEN 3dB IF ATTEN 6dB IF ATTEN 9dB IF ATTEN		$\begin{aligned} & 17.0 \\ & 17.0 \\ & 16.3 \\ & 14.3 \end{aligned}$		$\begin{aligned} & 16.1 \\ & 16.0 \\ & 15.3 \\ & 13.0 \end{aligned}$	dBm dBm dBm dBm
Channel-to-Channel Isolation	$\mathrm{RF}=2.6 \mathrm{GHz}$		49		49	dB

LTC5566

AC ELECTRICAL CHARACTERISTICS The • denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C} . \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{EN} 1, \mathrm{EN} 2=3.3 \mathrm{~V}, \mathrm{P}_{\mathrm{RF}}=-8 \mathrm{dBm} /$ Tone, $\mathrm{P}_{\mathrm{LO}}=0 \mathrm{dBm}$, unless otherwise noted. Test circuit shown in Figure 1. (Notes 3, 4, 5)
Band 2 (See Figure 1): RF = 1.9GHz, IF = 153MHz, High Side LO

PARAMETER	CONDITIONS		FULL PWR		REDUCED PWR	UNITS
			MIN TYP	MAX		
RF Input Return Loss	$\mathrm{Z}_{0}=50 \Omega, 1.3 \mathrm{GHz}$ to 3.9 GHz		>10		>10	dB
Power Conversion Gain	OdB IF ATTEN 3dB IF ATTEN 6dB IF ATTEN 9dB IF ATTEN 12dB IF ATTEN 15dB IF ATTEN		$\begin{gathered} \hline 11.9 \\ 8.8 \\ 5.8 \\ 2.8 \\ -0.3 \\ -3.3 \end{gathered}$		$\begin{gathered} \hline 11.6 \\ 8.5 \\ 5.5 \\ 2.5 \\ -0.5 \\ -3.6 \end{gathered}$	dB $d B$ $d B$ $d B$ $d B$ $d B$
Conversion Gain Flatness	$\mathrm{RF}=1.9 \mathrm{GHz} \pm 100 \mathrm{MHz}, \mathrm{LO}=2.05 \mathrm{GHz}$		± 0.5		± 0.5	dB
Conversion Gain vs Temperature	$\mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$ to $105^{\circ} \mathrm{C}$	\bullet	-0.013		-0.013	$\mathrm{dB} /{ }^{\circ} \mathrm{C}$
Two-Tone Input 3rd Order Intercept $\left(\Delta \mathrm{f}_{\mathrm{RF}}=2 \mathrm{MHz}\right)$	OdB IF ATTEN 3dB IF ATTEN 6dB IF ATTEN 9dB IF ATTEN 12dB IF ATTEN 15dB IF ATTEN		$\begin{aligned} & 22.6 \\ & 23.9 \\ & 25.4 \\ & 26.1 \\ & 26.3 \\ & 26.5 \end{aligned}$		$\begin{aligned} & 19.8 \\ & 21.2 \\ & 22.0 \\ & 22.3 \\ & 22.4 \\ & 22.5 \end{aligned}$	dBm dBm dBm dBm dBm dBm
Two-Tone Output 3rd Order Intercept $\left(\Delta \mathrm{f}_{\mathrm{RF}}=2 \mathrm{MHz}\right)$	OdB IF ATTEN 3dB IF ATTEN 6dB IF ATTEN 9dB IF ATTEN 12dB IF ATTEN 15dB IF ATTEN		34.5 32.7 31.2 28.9 26.0 23.2		$\begin{aligned} & 31.4 \\ & 29.7 \\ & 27.5 \\ & 24.8 \\ & 21.9 \\ & 18.9 \end{aligned}$	dBm dBm dBm dBm dBm dBm
Two-Tone Input 2nd Order Intercept $\left(\Delta \mathrm{f}_{\mathrm{RF}}=154 \mathrm{MHz}=\mathrm{f}_{\mathrm{I} \mathrm{M} 2}\right)$	OdB to 15.5dB IF ATTEN		57		53	dBm
SSB Noise Figure	OdB IF ATTEN 3dB IF ATTEN 6dB IF ATTEN 9dB IF ATTEN 12dB IF ATTEN 15dB IF ATTEN		$\begin{aligned} & 13.0 \\ & 13.9 \\ & 15.2 \\ & 17.0 \\ & 19.3 \\ & 21.8 \end{aligned}$		$\begin{aligned} & \hline 12.1 \\ & 13.2 \\ & 14.7 \\ & 16.7 \\ & 19.2 \\ & 21.8 \end{aligned}$	dB $d B$ $d B$ $d B$ $d B$ $d B$
SSB Noise Figure Under Blocking (1.8GHz Blocker)	$\begin{aligned} & +2 \mathrm{dBm} \text { BLOCKER, 3dB IF ATTEN } \\ & \text { +5dBm BLOCKER, 3dB IF ATTEN } \end{aligned}$		$\begin{aligned} & 17.6 \\ & 20.4 \end{aligned}$		$\begin{aligned} & \hline 17.4 \\ & 20.0 \end{aligned}$	dB dB
L0 to RF Leakage	$\mathrm{L} 0=1.1 \mathrm{GHz}$ to 3.5 GHz		<-47		<-47	dBm
1/2 IF Output Spurious Product (f ${ }_{\text {RF }}$ Offset to Produce Spur at $\mathrm{f}_{\mathrm{IF}}=153 \mathrm{MHz}$)	$\begin{aligned} & \mathrm{f}_{\mathrm{RF}}=1976.5 \mathrm{MHz}, \mathrm{P}_{\mathrm{RF}}=-6 \mathrm{dBm} \\ & 0 \mathrm{~dB} \text { to 15.5dB IF ATTEN } \end{aligned}$		-67		-65	dBC
1/3 IF Output Spurious Product ($f_{\text {RF }}$ Offset to Produce Spur at $f_{I F}=153 M H z$)	$\mathrm{f}_{\mathrm{RF}}=2002 \mathrm{MHz}, \mathrm{P}_{\mathrm{RF}}=-6 \mathrm{dBm}$ OdB to 15.5dB IF ATTEN		-71		-65	dBc
Input 1dB Compression	OdB IF ATTEN 3dB IF ATTEN 6dB IF ATTEN 9dB IF ATTEN and Higher		$\begin{gathered} \hline 6.1 \\ 9.2 \\ 11.7 \\ 13.3 \\ \hline \end{gathered}$		$\begin{gathered} \hline 5.4 \\ 8.5 \\ 10.9 \\ 12.0 \\ \hline \end{gathered}$	dBm $d B m$ $d B m$ $d B m$
Output 1dB Compression	OdB IF ATTEN 3dB IF ATTEN 6dB IF ATTEN 9dB IF ATTEN		$\begin{aligned} & 17.0 \\ & 17.0 \\ & 16.5 \\ & 15.1 \end{aligned}$		$\begin{aligned} & 16.0 \\ & 16.0 \\ & 15.4 \\ & 13.5 \end{aligned}$	dBm dBm dBm dBm
Channel-to-Channel Isolation	$\mathrm{RF}=1.9 \mathrm{GHz}$		50		50	dB

AC ELECTRICAL CHARACTERISTICS The e denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C} . \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{EN} 1, \mathrm{EN} 2=\mathrm{High}, \mathrm{P}_{\mathrm{RF}}=-8 \mathrm{dBm} /$ Tone, $\mathrm{P}_{\mathrm{LO}}=0 \mathrm{dBm}$, unless otherwise noted. Test circuit shown in Figure 1. (Notes 3, 4, 5)
Band 3 (See Figure 1): RF = 850MHz, IF = 153MHz, High Side LO

PARAMETER	CONDITIONS		FULL PWR		REDUCED PWR	UNITS
			MIN TYP	MAX	TYP	
RF Input Return Loss	$\mathrm{Z}_{0}=50 \Omega, 700 \mathrm{MHz}$ to 1.3 GHz		>10		>10	dB
Power Conversion Gain	$\begin{aligned} & \text { OdB IF ATTEN } \\ & \text { 6dB IF ATTEN } \\ & \text { 12dB IF ATTEN } \end{aligned}$		$\begin{gathered} 12.2 \\ 6.1 \\ 0 \end{gathered}$		$\begin{gathered} 11.8 \\ 5.7 \\ -0.4 \end{gathered}$	dB dB dB
Conversion Gain Flatness	$\mathrm{RF}=850 \mathrm{MHz} \pm 75 \mathrm{MHz}, \mathrm{LO}=1050 \mathrm{MHz}$		± 0.3		± 0.3	dB
Conversion Gain vs Temperature	$\mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$ to $105^{\circ} \mathrm{C}$	\bullet	-0.014		-0.014	$\mathrm{dB} /{ }^{\circ} \mathrm{C}$
Two-Tone Input 3rd Order Intercept $\left(\Delta f_{\mathrm{RF}}=2 \mathrm{MHz}\right)$	OdB IF ATTEN 6dB IF ATTEN 12dB IF ATTEN		$\begin{aligned} & 22.0 \\ & 24.7 \\ & 26.2 \end{aligned}$		$\begin{aligned} & 19.5 \\ & 22.3 \\ & 23.3 \end{aligned}$	dBm dBm dBm
Two-Tone Input 2nd Order Intercept $\left(\Delta f_{\mathrm{RF}}=154 \mathrm{MHz}=\mathrm{f}_{\mathrm{I} \mathrm{M} 2}\right)$	OdB to 15.5dB IF ATTEN		60.0		56.5	dBm
SSB Noise Figure	OdB IF ATTEN 6dB IF ATTEN 12dB IF ATTEN		$\begin{aligned} & 12.6 \\ & 14.9 \\ & 19.1 \end{aligned}$		$\begin{aligned} & 12.1 \\ & 14.7 \\ & 19.2 \end{aligned}$	dB dB dB
LO to RF Leakage	LO $=300 \mathrm{MHz}$ to 1.5 GHz		<-60		<-60	dBm
Input 1dB Compression	OdB IF ATTEN 3dB IF ATTEN 6dB IF ATTEN 9dB IF ATTEN and Higher		$\begin{gathered} \hline 5.8 \\ 8.8 \\ 11.5 \\ 13.3 \\ \hline \end{gathered}$		$\begin{gathered} \hline 5.1 \\ 8.2 \\ 10.6 \\ 11.9 \\ \hline \end{gathered}$	dBm dBm dBm dBm
Channel-to-Channel Isolation	$\mathrm{RF}=850 \mathrm{MHz}$		50		50	dB

Band 4 (See Figure 1): RF = 450MHz, IF = 153MHz, High Side LO

PARAMETER	CONDITIONS	FULL PWR			REDUCED PWR	UNITS
		MIN	TYP	MAX		
RF Input Return Loss	$\mathrm{Z}_{0}=50 \Omega, 390 \mathrm{MHz}$ to 530 MHz		>10		>10	dB
Power Conversion Gain	OdB IF ATTEN 6dB IF ATTEN 12dB IF ATTEN		$\begin{gathered} 11.7 \\ 5.6 \\ -0.5 \end{gathered}$		$\begin{gathered} \hline 11.1 \\ 5.0 \\ -1.1 \end{gathered}$	dB dB dB
SSB Noise Figure	OdB IF ATTEN 6dB IF ATTEN 12dB IF ATTEN		$\begin{aligned} & \hline 13.8 \\ & 15.9 \\ & 19.9 \end{aligned}$		$\begin{aligned} & 13.6 \\ & 15.9 \\ & 20.1 \end{aligned}$	dB dB dB
Two-Tone Input 3rd Order Intercept $\left(\Delta f_{\mathrm{RF}}=2 \mathrm{MHz}\right)$	OdB IF ATTEN 6dB IF ATTEN 12dB IF ATTEN		$\begin{aligned} & 21.8 \\ & 24.1 \\ & 25.0 \end{aligned}$		$\begin{aligned} & 19.4 \\ & 21.7 \\ & 22.6 \end{aligned}$	
Channel-to-Channel Isolation	$\mathrm{RF}=450 \mathrm{MHz}$		57		57	dB

Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.
Note 2: The mixer output pins on this device are sensitive to ESD greater than 750 V (HBM). Proper ESD handling precautions must be observed. All other pins withstand 2 kV .
Note 3: The LTC5566 is guaranteed functional over the $-40^{\circ} \mathrm{C}$ to $105^{\circ} \mathrm{C}$ case temperature range.

Note 4: SSB Noise Figure measured with a small-signal noise source, bandpass filter and 2 dB matching pad on RF input, and bandpass filter on the LO input.
Note 5: Channel-to-channel isolation is defined as the relative IF output power of channel 2 to channel 1, with the RF input signal applied to RF1 while the RF2 input is 50Ω terminated. Both channels are enabled and programmed for 3dB IF attenuation.
Note 6: SPI timing guaranteed by design, not subject to test.

TYPICAL PERFORMARCE CHARACTERISTICS Test tirutut shown in Figure 1 .

$P_{\mathrm{RF}}=-8 \mathrm{dBm} /$ Tone, $\Delta \mathrm{f}=2 \mathrm{MHz}, \mathrm{P}_{\mathrm{LO}}=0 \mathrm{dBm}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$, unless otherwise noted.
Band O: RF = 3.6GHz and 4.5GHz, IF = 153MHz, Low Side LO

3.6GHz Conv Gain, IIP3 and SSB NF vs LO Power and Case Temperature

4.5GHz Conv Gain, IIP3 and SSB NF vs LO Power and Case Temperature

SSB NF vs RF Frequency
OdB, 6dB and 12dB IF Attenuation

3.6GHz Conv Gain, IIP3 and SSB NF vs IF Attenuation (0.5 dB Steps)

4.5GHz Conv Gain, IIP3 and SSB NF vs IF Attenuation (0.5 dB Steps)

RF Isolation and LO Leakage vs Frequency

3.6GHz Conv Gain vs IF Frequency and Attenuation, Swept RF/Fixed LO

5566 G06
4.5GHz Conv Gain vs IF Frequency and Attenuation, Swept RF/Fixed LO

TYPICAL PERFORMARCE CHARACTERISTICS Test irivitis sown in figure 1 .

$P_{\mathrm{RF}}=-8 \mathrm{dBm} /$ Tone, $\Delta \mathrm{f}=2 \mathrm{MHz}, \mathrm{P}_{\mathrm{LO}}=0 \mathrm{dBm}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$, unless otherwise noted.
Band 1: RF = 2.6GHz, IF = 153MHz, High Side LO

2.6GHz Conv Gain, IIP3 and SSB NF
vs LO Power and Case Temperature

Isolation vs RF Frequency

SSB NF vs RF Frequency 0dB, 6dB and 12dB IF Attenuation

2.6GHz Conv Gain, IIP3 and SSB NF vs IF Attenuation (0.5 dB Steps)

LO Leakage vs LO Frequency

Conv Gain vs IF Frequency and IF Attenuation, Swept RF/Fixed LO

2.6GHz RF Input and IF Output P1dB vs IF Attenuation

2.6GHz Conv Gain, IIP3, NF and RF Input P1dB vs Temperature

TYPICAL PERFORMARCE CHARACTERISTICS Test tirutis shown in figure 1 .

$P_{\mathrm{RF}}=-8 \mathrm{dBm} / \mathrm{Tone}, \Delta \mathrm{f}=2 \mathrm{MHz}, \mathrm{P}_{\mathrm{LO}}=0 \mathrm{dBm}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$, unless otherwise noted.
Band 1: RF = 2.6GHz, IF = 153MHz, High Side LO

$V_{\text {Cc }}$ Supply Current vs Supply Voltage (Both Channels Enabled)

5566622

Single-Tone IF Output Power, 2×2 and 3×3 Spurs vs RF Input Power

5566 G20
2×2 and 3×3 Spur Suppression vs LO Power

2.6GHz Conv Gain IIP3 and SSB NF vs Supply Voltage and Case Temperature

2.6GHz SSB NF Distribution

TYPICAL PGRFORMANCE CHARACTERISTICS Test tiruxuit shown in Figure 1.

$P_{\mathrm{RF}}=-8 \mathrm{dBm} / \mathrm{Tone}, \Delta \mathrm{f}=2 \mathrm{MHz}, \mathrm{P}_{\mathrm{LO}}=0 \mathrm{dBm}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$, unless otherwise noted.
Band 2: RF $=1.9 \mathrm{GHz}$, IF = 153MHz, High Side LO

Conv Gain and IIP3 vs RF Frequency OdB, 6 dB and 12dB IF Attenuation

1.9GHz Conv Gain, IIP3 and SSB NF vs LO Power and Case Temperature

Isolation vs RF Frequency

SSB NF vs RF Frequency OdB, 6dB and 12dB IF Attenuation

1.9GHz Conv Gain, IIP3 and SSB NF vs IF Attenuation (0.5 dB Steps)

LO Leakage vs LO Frequency

Conv Gain vs IF Frequency and Attenuation, Swept RF/Fixed LO

1.9GHz RF Input and IF Output P1dB vs IF Attenuation

1.9GHz Conv Gain, IIP3, NF and RF Input P1dB vs Temperature

TYPICAL PERFORMARCE CHARACTERISTICS Test tirutuis somem in figure 1 .

$P_{\mathrm{RF}}=-8 \mathrm{dBm} / \mathrm{Tone}, \Delta \mathrm{f}=2 \mathrm{MHz}, \mathrm{P}_{\mathrm{LO}}=0 \mathrm{dBm}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$, unless otherwise noted.
Band 3: RF = 850MHz, IF = 153MHz, High Side LO

5566637

850MHz Conv Gain, IIP3 and SSB NF vs LO Power and Case Temperature

5566 G40

SSB NF vs RF Frequency
$0 \mathrm{~dB}, 6 \mathrm{~dB}$ and 12 dB IF Attenuation

850MHz Conv Gain, IIP3 and SSB NF vs IF Attenuation

5566 G41

Conv Gain vs IF Frequency and Attenuation, Swept RF/Fixed LO

850MHz RF Input and IF Output P1dB vs IF Attenuation

5566 G42

850MHz Conv Gain, IIP3, NF and RF Input P1dB vs Temperature

566 G39

TYPICAL PGRFORMANCE CHARACTERISTICS Test tiruuit shown in Figure 1.

$P_{\mathrm{RF}}=-8 \mathrm{dBm} /$ Tone, $\Delta \mathrm{f}=2 \mathrm{MHz}, \mathrm{P}_{\mathrm{LO}}=0 \mathrm{dBm}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$, unless otherwise noted.
Band 4: RF = 450MHz, IF = 153MHz, High Side LO

450MHz Conv Gain, IIP3 and SSB NF vs LO Power and Case Temperature

5566 G49

SSB NF vs RF Frequency 0dB, 6dB and 12dB IF Attenuation

450MHz Conv Gain, IIP3 and SSB NF vs IF Attenuation

5566 G50

LO Leakage vs LO Frequency

Conv Gain vs IF Frequency and IF Attenuation, Swept RF/Fixed LO

450MHz Conv Gain, IIP3, NF and RF Input P1dB vs Temperature

PIN fUNCTIONS

GND (Pins 1, 8, 16, 25, Exposed Pad Pin 33): Ground. These pins must be soldered to the RF ground plane on the circuit board. The exposed pad provides both electrical ground contact and thermal contact to the printed circuit board.

RF1, RF2 (Pins 2, 7): Single-Ended RF Inputs for Channels 1 and 2, Respectively. These pins are internally biased to $\mathrm{V}_{\text {CC }} / 2$ when $\mathrm{V}_{\text {CC }}$ is applied. Therefore, a series DC-blocking capacitor must be used. The internal matching capacitance may be adjusted in four discrete steps using the T0 and T1 control pins, or via the SPI interface.

CSB (Pin 3): Serial Port Chip Select. This CMOS input activates the SPI inputs when driven low. When driven high, the inputs are deactivated. See the Applications section for more details.

CLK (Pin 4): Serial Port Clock. This CMOS input clocks serial port input data on its rising edge. See the Applications section for more details.

SDI (Pin 5): Serial Port Data Input. This CMOS input is used to load serial data into the 16-bit register. See the Applications section for more details.

SDO (Pin 6): Serial Port Data Output. This CMOS threestate output presents data from the serial port during a communication burst. Optionally, attach a resistor of $>200 \mathrm{k}$ to GND to prevent a floating output. See the Applications section for more details.

T0, T1 (Pins 9, 32): 2-Bit RF Input Tuning Control Pins. A CMOS logic high will enable the respective bit for both channels when the PS pin is high. These pins have internal 167k pull-down resistors. The RF input tuning may also be controlled through the serial port when PS is low. For serial control only, these pins should be grounded.
MO2$^{-}$, MO2 $^{+}$, MO1+ ${ }^{+}$, MO1- (Pins 10, 11, 30, 31): OpenCollector Differential IF Outputs for Mixer 2 and Mixer 1, Respectively. These pins must be connected to $\mathrm{V}_{\text {cc }}$ through pull-up inductors. Typical DC current is 27 mA into each pin.
$\mathbf{V}_{\text {CC2 }}, \mathbf{V}_{\text {CC1 }}$ (Pins 12, 29): Power Supply Pins for Channels 2 and 1, Respectively. These pins must be connected to a regulated 3.3 V supply, with a bypass capacitor located close to the pins. Typical DC current consumption is 41 mA into each pin.
EN2, EN1 (Pins 13, 28): Enable Control Pins for Channels 2 and 1, Respectively. A CMOS logic high will enable each channel. These pins have internal 330k pull-down resistors, so if unconnected, both channels are shutdown.

Al2 ${ }^{+}$, $\mathrm{Al2}^{-}$, Al1 $^{-}$, $\mathrm{Al1}^{+}$(Pins 14, 15, 26, 27): Differential IF Attenuator Inputs for Channel 2 and Channel 1, Respectively. These pins are internally biased to $\mathrm{V}_{\mathrm{CC}} / 2$ when $V_{C C}$ is applied. Therefore, a series DC-blocking capacitor must be used.
IF2 ${ }^{+}$, IF2 $^{-}$, $\mathrm{IF1}^{-}$, $\mathrm{IF1}^{+}$(Pins 17, 18, 23, 24): Open-Collector Differential IF Buffer Outputs for Channel 2 and Channel 1, Respectively. These pins must be connected to $V_{C C}$ through pull-up inductors. Typical DC current is 48 mA into each pin.
PS (Pin 19): Parallel Select Pin for RF Input Tuning. A CMOS logic high will enable parallel control using the T1 and TO pins. A CMOS logic low allows the SPI port to set the tuning for each channel independently, while ignoring the voltage on the T1 and T0 pins. This pin has an internal 330k pull-down resistor.
LO^{-}, LO^{+}(Pins 20, 21): Differential Local Oscillator Input. These pins are internally connected to ESD diodes to ground. Therefore, series DC-blocking capacitors must be used if the LO source has a DC voltage present. Single-ended or differential drive may be used. Each pin is internally matched to 50Ω, even when the mixers are disabled.
$V_{D D}$ (Pin 22): Power Supply Pin for Serial Interface Logic. This pin must be connected to a regulated 1.8 V to 3.3 V supply. Typical DC current consumption is less than 1 mA with CSB low and the clock running at 10 MHz . When idle, typical current consumption is less than $500 \mu \mathrm{~A}$. The supply voltage on this pin defines the logic levels for the SPI inputs (CSB, CLK and SDI), the SDO output, and the PS pin.

BLOCK DIAGRAM

LTC5566

TEST CIRCUIT

Figure 1. Test Circuit Schematic with 100Ω Matched Differential IF Outputs

APPLICATIONS INFORMATION

Introduction

The LTC5566 incorporates two identical RF-to-IF downconversion mixers driven by a common LO input. The symmetry of the IC assures that both mixers are driven with an amplitude- and phase-coherent LO. Each channel includes an IF DVGA (digital variable gain amplifier) consisting of a programmable 15.5 dB range digital IF attenuator with 0.5 dB steps, and a fixed-gain IF buffer amplifier. The cascaded RF-to-IF conversion gain ranges from 12 dB at maximum IF gain, to -3.5 dB at minimum IF gain. The IF frequency response is flat within 1 dB from 40 MHz to 300 MHz , and may be modified by adjusting the values of the external pull-up inductors.

The RF inputs have programmable impedance tuning which may be controlled via the SPI or dedicated control lines. Each channel can be programmed to a reduced power mode via the SPI, resulting in a 22% power savings, with reduced linearity performance. The test circuit schematic in Figure 1 shows the external components used to characterize the IC. The evaluation board is shown in Figure 2.

Figure 2. Evaluation Board

RF Inputs

A block diagram of the channel 1 RF input is shown in Figure 3 (channel 2 is identical and not shown). Each RF input includes programmable 2-bit RF frequency tuning, followed by an integrated transformer and a differential RF buffer amplifier. The transformer's primary winding is biased at $1.65 \mathrm{~V}_{D C}$, and therefore requires an external DC-blocking capacitor.

Figure 3. RF Input Block Diagram
The RF input impedance match for each channel is tuned to one of three overlapping frequency bands ranging from 1.3 GHz to 5 GHz , by programming the RT1[1:0] and RT2[1:0] bits (two bits for each channel). Series matching capacitor, $\mathrm{C1}$, is fixed at 4.3 pF for these three bands. For RFfrequencies below 1.3 GHz , the fourth (lowest frequency) tuning band is used in conjunction with shunt inductor L9.

APPLICATIONS InFORMATION

Figure 1 summarizes the RF tuning and external matching for all frequency bands. The RF input return loss for each band is shown in Figure 4.

As shown in Figure 3, the RF input tuning may also be controlled by the parallel control lines T0 and T1 when the PS (parallel select) control line is high. The tuning bits for this method are also summarized in Figure 1, where T0 is the LSB. When using parallel tuning control, both channels are tuned to the same band simultaneously and the SPI tuning bits are ignored. The T0 and T1 control lines have internal 167k pull-down resistors and the PS pin has an internal 330 k pull-down resistor. All three pins will be pulled low if left floating, allowing the SPI to control the RF tuning, although it is recommended to ground these pins if SPI control is used.

Figure 4. RF Input Return Loss for Each Band

LO Input

A simplified schematic of the LO input is shown in Figure 5. As shown, each mixer has its own LO amplifier. A differential input is provided although the IC is characterized and production-tested with single-ended drive. Differential LO drive improves performance slightly, and is recommended if available. Each LO input is internally matched to 50Ω from 150 MHz to 3.8 GHz , requiring no external components. Adding shunt capacitor C 17 (0.3pF), extends the LO input match up to 6GHz. ESD protection diodes on
each input limit the peak voltage swing to approximately $\pm 700 \mathrm{mV}(+7 \mathrm{dBm})$, although higher LO drive, up to 10 dBm will not damage the input. An external DC-blocking capacitor is only needed if the LO source has DC voltage present. The measured LO input return loss is shown in Figure 6, with and without C17.

Figure 5. LO Input Schematic

Figure 6. LO Input Return Loss

APPLICATIONS INFORMATION

IF Outputs

A simplified IF output schematic for channel 1, with external matching components is shown in Figure 7 (channel 2 is identical, and not shown). The final output stage is differential, open-collector with integrated matching resistors, capacitors and ESD protection diodes. Each output pin must be biased at the supply voltage (V_{CC}) using external chokes (L11 and L13). Each pin draws approximately 48mA of DC supply current (96 mA total). Therefore, inductors with low DC resistance ($<1 \Omega$), are required for the highest output IP3 and P1dB.

The integrated output resistors set the differential output resistance at 206 Ω. C3, L15 and L17 form a 2:1 impedance transformer which transforms the output to 100Ω differential. If a 200Ω output is desired, C3 is not used and the values of L15 and L17 are reduced to the values shown in Table 1. C9 and C11 are DC-blocking capacitors, which may be omitted if the following stage is already DC-blocked.

The standard evaluation board is built with 100Ω differential IF outputs, but also has pads which allow the use of IF transformers to provide 50Ω single-ended outputs. To implement this, it is recommended to use the 200Ω matching shown in Table 1 and 4:1 IF transformers. Figure 16 shows the circuit schematic and measured performance using this approach.

Figure 7. IF Output Schematic

Table 1. IF Output Matching Element Values

DIFFERENTIAL $\mathbf{Z}_{\text {OUT }}$	C3	L15, L17	9dB RETURN LOSS BANDWIDTH
$200 \Omega^{\star}$	-	15 nH	30 MHz to 440 MHz
100Ω	3.9 pF	47 nH	70 MHz to 242 MHz
	2.2 pF	33 nH	87 MHz to 352 MHz
	1.5 pF	24 nH	105 MHz to 450 MHz

*200 Ω differential output return loss measured with 4:1 transformer on evaluation board.

The differential IF output impedance vs frequency is listed in Table 2. The impedances are at the package pins with no external components. Measured IF output return losses vs frequency for 100Ω differential matching is shown in Figure 8.

Table 2. Differential IF Output Impedance vs Frequency

IF FREQUENCY (MHz)	DIFFERENTIAL IMPEDANCE ($\mathbf{R}_{\text {IF }} \\|_{\text {IF }}$)
10	$210 \\| 1.10 \mathrm{pF}$
50	$209 \\| 1.09 \mathrm{pF}$
100	$209 \\| 1.04 \mathrm{pF}$
150	$208 \\| 0.97 \mathrm{pF}$
200	$207 \\| 0.94 \mathrm{pF}$
300	$206 \\| 0.92 \mathrm{pF}$
400	$203 \\| 0.93 \mathrm{pF}$
500	$200 \\| 0.91 \mathrm{pF}$
600	$196 \\| 0.91 \mathrm{pF}$
700	$192 \\| 0.91 \mathrm{pF}$
800	$186 \\| 0.91 \mathrm{pF}$
900	$179 \\| 0.90 \mathrm{pF}$
1000	$172 \\| 0.99 \mathrm{pF}$

Figure 8. IF Output Return Loss (100 Ω Differential Matching)

APPLICATIONS InFORMATION

Mixer Output to IF DVGA Interface

The mixer's 300Ω differential output impedance matches the IF DVGA's 300Ω differential input impedance, even over normal process variation due to the monolithic implementation. This assures minimal and repeatable DNL and INL over the full IF attenuation range. Furthermore, the mixer output and DVGA input include integrated matched capacitors, which simplify the realization of a lowpass filter between the mixer and DVGA. This filter attenuates undesired high frequency mixing products and LO leakage before entering the DVGA.

A simplified schematic of the interface for channel 1 is shown in Figure 9 (channel 2 is identical and not shown). L5 and L7 connect the mixer output to the DVGA input, while forming a 650 MHz 3 rd -order, 0.2 dB ripple Chebyshev lowpass filter. L1 and L3 supply DC current to the mixer and $\mathrm{C5}$ and $\mathrm{C7}$ are DC-blocking capacitors.

Figure 9. Mixer to IF DVGA Interface
An equivalent AC schematic of the lowpass filter is shown in Figure 10, where the mixer output and DVGA input are modeled as 300Ω in parallel with 1 pF . The mixer supply chokes and series DC blocking capacitors are ignored in this schematic.

Figure 10. Equivalent Lowpass Filter Schematic
It's also possible to implement a bandpass filter between the mixer and DVGA. An example is shown in Figure 11, where a 3rd-order bandpass filter is realized by changing the values of the reactive components and adding C21, C23 and L19. Figure 19 shows measured conversion gain vs IF output frequency using this bandpass topology.

Figure 11. 3rd-Order Bandpass Filter Realization

IF DVGA Phase vs IF Attenuation

Ideally, the phase of the IF output would be constant over the full IF attenuation range. Practically, there is some phase shift due to circuit parasitics in the attenuator. The LTC5566's IF DVGA is optimized for the lowest possible phase variation (or phase error) over the full IF attenuation range. Phase error vs IF attenuation for the complete IF section is listed in Table 3.

Table 3. IF Phase Error vs IF Attenuation

ATT (dB)	$\mathbf{1 5 0 M H z}$	$\mathbf{2 5 0 M H z}$	$\mathbf{3 5 0 M H z}$
0	REF	REF	REF
3	-1.1°	-1.4°	-3.0°
6	-1.6°	-2.1°	-4.2°
9	-2.0°	-2.8°	-5.1°
12	-2.2°	-3.2°	-5.3°
15	-2.4°	-3.0°	-5.5°

APPLICATIONS INFORMATION

Downconverter Performance vs IF Attenuation

RF-IF conversion gain, IIP3, OIP3 and noise figure over the full 15.5 dB attenuation range is shown in Figure 12. The same data is listed in Table 4 with the INL and DNL at each attenuator setting.

Table 4. Conversion Gain, IIP3, OIP3 and SSB NF vs IF Attenuation (RF = 2.6GHz, IF = 153MHz, High Side LO)

$\underset{(\mathrm{dB})}{\mathrm{A}}$	$\begin{aligned} & \text { IF1[4:0] } \\ & \text { IF2[4:0] } \end{aligned}$	$\underset{(\mathrm{dB})}{\mathrm{G}_{\mathrm{C}}}$	$\begin{gathered} \text { IIP3 } \\ (\mathrm{dBm}) \end{gathered}$	$\begin{gathered} \text { OIP3 } \\ \text { (dBm) } \end{gathered}$	$\begin{gathered} \mathrm{NF} \\ \text { (dB) } \end{gathered}$	DNL (dB)	$\begin{aligned} & \text { INL } \\ & \text { (dB) } \end{aligned}$
0	0	11.84	23.2	35.0	13.3	-	-
0.5	1	11.32	23.3	34.6	13.4	0.03	0.03
1.0	2	10.75	23.4	34.2	13.6	0.07	0.09
1.5	3	10.24	23.6	33.8	13.7	0.01	0.10
2.0	4	9.75	24.0	33.8	13.8	-0.01	0.09
2.5	5	9.24	24.2	33.5	13.9	0.01	0.10
3.0	6	8.75	24.6	33.4	14.1	-0.01	0.09
3.5	7	8.24	24.9	33.2	14.2	0.01	0.11
4.0	8	7.75	25.1	32.8	14.4	-0.01	0.10
4.5	9	7.24	25.5	32.8	14.6	0.01	0.11
5.0	10	6.75	25.7	32.4	14.8	-0.01	0.10
5.5	11	6.23	25.9	32.1	15.0	0.01	0.11
6.0	12	5.75	26.1	31.8	15.3	-0.01	0.10
6.5	13	5.23	26.5	31.7	15.5	0.01	0.11
7.0	14	4.74	26.4	31.1	15.7	-0.01	0.10
7.5	15	4.22	26.9	31.1	15.9	0.03	0.13
8.0	16	3.73	26.7	30.4	16.2	-0.02	0.11
8.5	17	3.21	27.1	30.4	16.5	0.02	0.14
9.0	18	2.73	26.9	29.6	16.9	-0.02	0.12
9.5	19	2.20	27.4	29.6	17.2	0.03	0.14
10.0	20	1.72	27.1	28.8	17.5	-0.02	0.13
10.5	21	1.20	27.6	28.8	17.8	0.02	0.15
11.0	22	0.71	27.3	28.0	18.2	-0.01	0.14
11.5	23	0.18	27.5	27.7	18.6	0.02	0.16
12.0	24	-0.31	27.6	27.3	19.0	-0.01	0.15
12.5	25	-0.84	27.8	27.0	19.4	0.03	0.18
13.0	26	-1.33	27.3	26.0	19.8	-0.02	0.17
13.5	27	-1.85	27.9	26.1	20.2	0.03	0.19
14.0	28	-2.35	28.0	25.7	20.7	0.00	0.19
14.5	29	-2.87	28.2	25.3	21.1	0.02	0.21
15.0	30	-3.36	28.0	24.6	21.5	0.00	0.20
15.5	31	-3.89	28.1	24.2	22.0	0.03	0.23

Figure 12. Downconverter RF-IF Conversion Gain, IIP3, OIP3 and Noise Figure vs IF Attenuation.

Individual Stage Performance

The LTC5566 is characterized, specified and productiontested as a complete downconverter, from the RF inputs to the final IF outputs. For some applications, it may be preferred to insert a higher selectivity IF filter between the mixer and IF DVGA. To help with system performance calculations, the nominal performance of the mixer is shown in Table 5 and the IF DVGA performance is listed in Table 6. This information is provided for reference only as these blocks are not production-tested independently.

Table 5. Mixer Power Conversion Gain, IIP3 and SSB NF ($\mathrm{RF}=2.6 \mathrm{GHz}$, IF = 153MHz, High Side LO, Band 1 RF Tune)

FULL PWR MODE			REDUCED PWR MODE		
$\mathrm{G}_{\mathrm{p}}(\mathrm{dB})$	IIP3 (dBm)	NF (dB)	Gp (dB)	IIP3 (dBm)	NF (dB)
-0.5	28.0	12.2	-0.7	23.0	11.8

Table 6. IF DVGA Power Gain, OIP3 and SSB NF (153MHz)

$\begin{aligned} & \text { IF } \\ & \text { ATT } \\ & \text { (dB) } \end{aligned}$	FULL PWR MODE			REDUCED PWR MODE		
	GAIN (dB)	$\begin{gathered} \hline \text { OIP3 } \\ (\mathrm{dBm}) \end{gathered}$	$\begin{gathered} \mathrm{NF} \\ (\mathrm{~dB}) \end{gathered}$	GAIN (dB)	$\begin{gathered} \text { OIP3 } \\ \text { (dBm) } \end{gathered}$	$\begin{gathered} \mathrm{NF} \\ \text { (dB) } \end{gathered}$
0	12.0	36.4	5.7	11.8	33.2	5.6
3	9.0	35.7	9.3	8.8	33.0	9.3
6	6.0	35.7	12.3	5.8	33.1	12.3
9	3.0	35.7	15.4	2.8	32.9	15.3
12	0.0	35.4	18.4	-0.2	32.9	18.4
15	-3.0	35.0	21.4	-3.2	32.7	21.4

APPLICATIONS InFORMATION

Enable Inputs

Figure 13 shows a schematic of the Channel 1 enable interface. Channel 2 is identical and not shown. As shown, the positive ESD diodes for EN1 are connected to $\mathrm{V}_{\text {CC1 }}$. The positive ESD diodes for channel 2 are connected to $V_{C C 2}$ (not shown). To enable a channel, the applied voltage must be greater than 1.4 V . An applied voltage less than 0.5 V will disable the channel. If the enable function is not needed, the enable pin can be connected directly to the adjacent $\mathrm{V}_{\text {CC }}$ pin. If left floating, the internal $330 \mathrm{k} \Omega$ pull-down resistor will disable the channel.

The voltage on the enable pins should never exceed $V_{C C}$ by more than 0.3 V , otherwise supply current may be sourced through the upper ESD diodes. Under no circumstances should voltage be applied to the enable pins before supply voltage is applied to the $\mathrm{V}_{\text {CC }}$ pins. If this occurs, damage to the IC may result.

Figure 13. Channel 1 Enable Pin Interface

Supply Voltage Ramping

Fast ramping of the supply can cause a current glitch in the internal ESD protection circuits. Depending on the supply inductance, this could result in a supply voltage transient that exceeds the maximum rating. A supply voltage ramp time greater than 1 ms is recommended.

SPI DESCRIPTION

IF DVGA attenuator control, RF input tuning and reduced power mode for each downconverter channel is programmed through the 3-wire SPI consisting of CSB, CLK and SDI. A fourth pin, SDO, is a serial output available to read out the contents of the registers. The SDO pin may also be used to daisy-chain multiple SPI interfaces on a single bus. For example, in an 8-channel MIMO receiver application, all four LTC5566 dual downconverters can be programmed with a single, 64-bit load, while sharing a common CSB line.

A block diagram of the SPI is shown in Figure 14. As shown, it is a 16-bit double-buffered FIFO slave architecture, with 8-bits for each channel. Logic levels for the digital inputs and SDO output are 1.8 V to 3.3 V CMOS compatible, determined by the supply voltage on the $V_{D D}$ pin. An internal POR (power-on-reset) connected to the $V_{D D}$ pin, resets all 16 bits to logic 0 at power-up, or when $V_{D D}$ drops below 0.9 V and then rises back above 1.2 V . The POR requires approximately 100μ s to reset the registers.

SPI PROGRAMMING

Data transfers to the part are accomplished by first taking CSB low to enable the port. Then, serial input data on SDI is captured on the rising edge of CLK and shifted into a 16-bit shift register, MSB first. Serial data from the registers is driven out to SDO on the clock's falling edge. The communication burst is terminated by taking CSB high. The rising edge on CSB will then latch the shiftregister's contents into a 16-bit buffer D-latch. The buffer latch prevents the downconverter's gain, RF input tuning and power mode from changing while data is loaded. See Figure 15 for timing details.

When CSB is high, the clock and data inputs are internally gated off, minimizing current consumption when not selected, and the SDO output is high impedance. However, it is recommended that the serial interface signals should remain idle between data transfers to avoid digital noise coupling into the RF signal paths.

APPLICATIONS Information

Figure 14. SPI Block Diagram

Figure 15. SPI Timing Diagram

APPLICATIONS InFORMATION

A memory map of the register contents is shown in Table 7, with detailed bit descriptions in Table 8. Each register's default power-up value is also shown in Table 8, which is:

- OdB IF attenuation (maximum gain)
- Full power mode
- RF inputs tuned to band 0 (highest frequency)

Table 7. Serial Port Register Contents

CHANNEL 2 (8 bits)							
MSB D15	D14	D13	D12	D11	D10	D9	D8
RP2	RT2[1]	RT2[0]	IF2[4]	IF2[3]	IF2[2]	IF2[1]	IF2[0]

CHANNEL 1 (8 bits)								
D7	D6	D5	D4	D3	D2	D1	LSB D0	
RP1	RT1[1]	RT1[0]	IF1[4]	IF1[3]	IF1[2]	IF1[1]	IF1[0]	

Table 8. Serial Port Register Bit Field Summary

BITS	DESCRIPTION	DEFAULT
IF1[4:0]	Ch. 1 IF Attenuator Control	00000 (Max Gain)
RT1[1:0]	Ch. 1 RF Tuning	00 (Band 0)
RP1	Ch. 1 Reduced Power	0 (Full Power)
IF2[4:0]	Ch. 2 IF Attenuator Control	00000 (Max Gain)
RT2[1:0]	Ch. 2 RF Tuning	00 (Band 0)
RP2	Ch. 2 Reduced Power	0 (Full Power)

Spurious Output Levels

Spurious output levels vs harmonics of the RF and LO are tabulated in Table 9. The spur levels were measured using the test circuit shown in Figure 1, with an RF input power of -6 dBm and 6 dB of IF attenuation. Table 9a shows the relative spur levels in full power mode and Tables 9b shows the relative spur levels in reduced power mode. The mixer spur levels are insensitive to the IF attenuation setting.

The spur frequencies can be calculated using the following equation:

$$
f_{S P U R}=\left(M \bullet f_{R F}\right)-\left(N \bullet f_{L O}\right)
$$

Table 9. IF Output Spur Levels (dBc).
(RF = $2.6 \mathrm{GHz}, \mathrm{P}_{\mathrm{RF}}=-6 \mathrm{dBm}, \mathrm{IF}=153 \mathrm{MHz}$, High Side LO, $\mathrm{P}_{\mathrm{L} 0}=0 \mathrm{dBm}, 6 \mathrm{~dB}$ IF Attenuation, $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$)
Table 9a. Full Power Mode

		N							
		0	1	2	3	4	5	6	7
M	0		-52	*	*	-80	-79	-79	*
	1	*	0	*	*	*	*	-80	-80
	2	*	*	-68	*	*	*	*	-80
	3	*	*	*	-77	*	*	*	*
	4	*	*	*	*	*	*	*	*
	5	*	*	*	*	*	*	*	*
	6	-80	*	*	*	*	*	*	*
	7	*	-80	*	*	*	*	*	*

*Less than -80 dBC
Table 9b. Reduced Power Mode

		N							
		0	1	2	3	4	5	6	7
M	0		-52	*	*	-80	-79	-78	*
	1	*	0	*	*	*	*	-80	-80
	2	*	*	-68	*	*	*	*	-79
	3	*	*	*	-72	*	*	*	*
	4	*	*	*	*	*	*	*	*
	5	*	*	*	*	*	*	*	*
	6	-79	*	*	*	*	*	*	*
	7	*	-80	*	*	*	*	*	*

*Less than - 80 dBC

RF and LO Port S-Parameters

S11 vs frequency for the RF and LO port are listed in Table 10. Data is shown for all four RF tuning states. The data is referenced to the IC pin with no external matching.

LTC5566

APPLICATIONS INFORMATION

Table 10. RF and LO Port S11

	RF INPUT								LO INPUT (SINGLE-ENDED)	
	$\mathrm{RT}=00$		$\mathrm{RT}=01$		$\mathrm{RT}=10$		RT = 11			
FREQ (MHz)	MAG	ANGLE (${ }^{\circ}$)								
200	0.77	-160.1	0.77	-160.1	0.77	-160.1	0.77	-160.1	0.29	-61.1
300	0.72	179	0.71	178	0.72	178	0.71	178	0.21	-63.5
400	0.68	167	0.65	167	0.67	167	0.66	167	0.18	-65.2
500	0.64	160	0.61	160	0.63	160	0.62	160	0.17	-66.2
600	0.61	154	0.57	155	0.60	154	0.59	155	0.16	-68.7
700	0.60	149	0.55	150	0.58	149	0.56	150	0.16	-71.8
800	0.58	146	0.52	147	0.56	146	0.54	146	0.16	-75.0
900	0.57	142	0.49	144	0.54	142	0.52	143	0.16	-77.9
1000	0.56	139	0.47	142	0.53	139	0.50	140	0.16	-81.3
1500	0.51	124	0.36	136	0.46	126	0.40	130	0.16	-102.8
2000	0.46	110	0.26	143	0.37	113	0.29	124	0.19	-128.6
2500	0.39	91.5	0.24	165	0.26	100	0.19	133	0.24	-142.9
3000	0.32	68.7	0.31	172	0.14	89	0.17	160	0.26	-154.6
3500	0.24	40.0	0.38	167	0.04	119	0.23	172	0.28	-175.1
4000	0.11	-3.0	0.47	158	0.15	-174	0.34	168	0.35	165.4
4500	0.11	-139	0.54	148	0.30	174	0.45	157	0.42	156.9
5000	0.29	173	0.58	139	0.43	158	0.52	147	0.42	147.3
5500	0.40	153	0.61	135	0.50	147	0.57	141	0.43	127.5
5800	0.46	137	0.65	129	0.55	137	0.61	133	0.45	115.0
6000	0.48	128	0.66	125	0.56	130	0.62	129	0.47	108.8

Figure 16. Test Circuit and Measured Conversion Gain Using 200Ω Output Matching with a 4:1 IF Transformer to
Realize a 50Ω Single-Ended IF Output

