# imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



## Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



### LTC5589



700MHz to 6GHz Low Power Direct Quadrature Modulator DESCRIPTION

The LTC<sup>®</sup>5589 is a direct conversion I/Q modulator de-

signed for low power wireless applications that enables

direct modulation of differential baseband I and Q signals

on an RF carrier. Single side-band modulation or side-band

suppressed upconversion can be achieved by applying

90° phase-shifted signals to the I and Q inputs. The I/Q

baseband input ports can be either AC or DC coupled to a

source with a common mode voltage level of about 1.4V.

The SPI interface controls the supply current, modulator

gain, and allows adjustments of I and Q gain and phase

imbalance to optimize the LO carrier feedthrough and

side-band suppression. The LO port can be driven with

sine wave or square wave LO drive. A fixed LC network

on the LO and RF ports covers 700MHz to 6GHz operating range. An on-chip thermometer can be activated to compensate for gain-temperature variations. More ac-

curate temperature measurements can be made using an on-chip diode. In addition, a continuous analog gain

control (V<sub>CTRL</sub>) pin can be used for fast power control.

of their respective owners

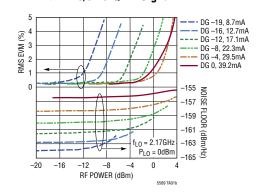
### FEATURES

- Frequency Range: 700MHz to 6GHz
- Low Power: 2.7V to 3.6V Supply; 29.5mA
- Low LO Carrier Leakage: –43dBm at 1.8GHz
- Side-Band Suppression: –50dBc at 1.8GHz
- Output IP3: 19dBm at 1.8GHz
- Low RF Output Noise Floor: -157dBm/Hz at 30MHz Offset, P<sub>RF</sub> = 1.8dBm, f<sub>RF</sub> = 2.17GHz
- Sine Wave or Square Wave LO Drive
- SPI Control:

Adjustable Gain: 19dB in 1dB Steps Effecting Supply Current from 9mA to 39mA I/Q Offset Adjust: –64dBm LO Carrier Leakage I/Q Gain/Phase Adjust: –61dBc Side-Band Suppressed

24-Lead 4mm × 4mm Plastic QFN Package

### **APPLICATIONS**


- Wireless Microphones
- Battery Powered Radios
- Vector Modulator
- 2.45GHz and 5.8GHz Transmitters
- Software Defined Radios (SDR)
- Military Radios

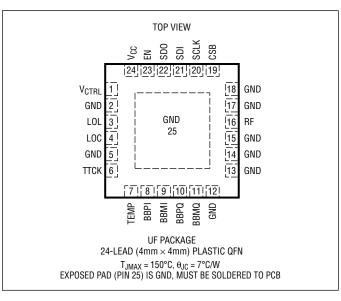
### TYPICAL APPLICATION

VCTRI 3.3\ 1nF + 4.7uF Ξ LTC5589 Vcc SPI RF = 700MHz TO 6GHz I-DAC -CHANNE 100pF 0.2pF FN 90 Q-CHANNEL Q-DAC THERMOMETER ттск BASEBAND GENERATOR Ŧ 0.8nH VCO/SYNTHESIZER 0.1pF 0.4pF 5580 TA01:

700MHz to 6GHz Direct Conversion Transmitter Application

### EVM and Noise Floor vs RF Output Power and Digital Gain Setting with 1Ms/s 16-QAM Signal




LINEAR TECHNOLOGY 5589f

## **ABSOLUTE MAXIMUM RATINGS**

(Note 1)

| Supply Voltage<br>Common Mode Voltage of BBPI, BBMI, | 3.8V                      |
|------------------------------------------------------|---------------------------|
| and BBPQ, BBMQ                                       | 2V                        |
| LOL, LOC DC Voltage                                  | ±50mV                     |
| LOL, LOC Input Power (Note 15)                       | 20dBm                     |
| Output Current TEMP, SDO                             | 10mA                      |
| Voltage on Any Pin (Note 16)0.3V                     | to V <sub>CC</sub> + 0.3V |
| Т <sub>ЈМАХ</sub>                                    | 150°C                     |
| Case Operating Temperature Range4                    | 40°C to 105°C             |
| Storage Temperature Range                            | 65°C to 150°C             |
|                                                      |                           |

### PIN CONFIGURATION



### ORDER INFORMATION

(http://www.linear.com/product/LTC5589#orderinfo)

| LEAD FREE FINISH | TAPE AND REEL    | PART MARKING | PACKAGE DESCRIPTION                   | CASE TEMPERATURE RANGE |
|------------------|------------------|--------------|---------------------------------------|------------------------|
| LTC5589IUF#PBF   | LTC5589IUF#TRPBF | 5589         | 24-Lead (4mm $	imes$ 4mm) Plastic QFN | –40°C to 105°C         |

Consult LTC Marketing for parts specified with wider operating temperature ranges..

For more information on lead free part marking, go to: http://www.linear.com/leadfree/

For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/. Some packages are available in 500 unit reels through designated sales channels with #TRMPBF suffix.

Please refer to: http://www.linear.com/designtools/packaging/ for the most recent package drawings.

### **ELECTRICAL CHARACTERISTICS**

**ELECTRICAL CHARACTERISTICS** The • denotes the specifications which apply over the full operating temperature range, otherwise specifications are at  $T_C = 25^{\circ}C$ .  $V_{CC} = 3.3V$ , EN = 3.3V,  $V_{CTRL} = 3.3V$ ,  $P_{LO} = 0dBm$ , BBPI, BBMI, BBPQ, BBMQ common mode DC voltage  $V_{CMBB} = 1.4V_{DC}$ , I and Q baseband input signal = 2MHz, 2.1MHz,  $1V_{P-P(DIFF, I \text{ or } Q)}$ , I and Q 90° bitide laws independent of the specification of the specif shifted, lower sideband selection, all registers set to default values, unless otherwise noted. Test circuit is shown in Figure 12.

| SYMBOL                 | PARAMETER                                                | CONDITIONS                                                           | MIN              | ТҮР          | MAX | UNITS  |
|------------------------|----------------------------------------------------------|----------------------------------------------------------------------|------------------|--------------|-----|--------|
| f <sub>LO</sub> = 800M | Hz, f <sub>RF1</sub> = 797.9MHz, f <sub>RF2</sub> = 798M | Hz, Register 0x00 = 0x70 (Decimal 112), L1 = 4.7n                    | H, C5 = 2pF, C18 | = 0.2pF      |     | ·      |
| S <sub>22(ON)</sub>    | RF Port Return Loss                                      |                                                                      |                  | -24          |     | dB     |
| f <sub>lo(match)</sub> | LO Match Frequency Range                                 | S <sub>11</sub> < -10dB                                              |                  | 0.74 to 1.97 |     | GHz    |
| Gain                   | Conversion Voltage Gain                                  | 20 • Log (V <sub>RF(OUT)(50Ω)</sub> /V <sub>IN(DIFF)(I or Q)</sub> ) |                  | -10.5        |     | dB     |
| P <sub>OUT</sub>       | Absolute Output Power                                    | 1V <sub>P-P(DIFF)</sub> CW Signal, I and Q                           |                  | -6.5         |     | dBm    |
| OP1dB                  | Output 1dB Compression                                   |                                                                      |                  | 4.1          |     | dBm    |
| OIP2                   | Output 2nd Order Intercept                               | (Note 5)                                                             |                  | 70.6         |     | dBm    |
| OIP3                   | Output 3rd Order Intercept                               | (Note 6)                                                             |                  | 19.9         |     | dBm    |
| NFloor                 | RF Output Noise Floor                                    | No Baseband AC Input Signal (Note 3)                                 |                  | -159.6       |     | dBm/Hz |
| SB                     | Side-Band Suppression                                    | (Note 7)                                                             |                  | -48          |     | dBc    |

5589f

**ELECTRICAL CHARACTERISTICS** The • denotes the specifications which apply over the full operating temperature range, otherwise specifications are at  $T_C = 25$ °C.  $V_{CC} = 3.3V$ , EN = 3.3V,  $V_{CTRL} = 3.3V$ ,  $P_{LO} = 0dBm$ , BBPI, BBMI, BBPQ, BBMQ common mode DC voltage  $V_{CMBB} = 1.4V_{DC}$ , I and Q baseband input signal = 2MHz, 2.1MHz,  $1V_{P-P(DIFF, 1 \text{ or } Q)}$ , I and Q 90° shifted, lower sideband selection, all registers set to default values, unless otherwise noted. Test circuit is shown in Figure 12.

| SYMBOL                  | PARAMETER                                                  | CONDITIONS                                                                                                                        | MIN TYP MAX              | UNITS      |
|-------------------------|------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------|------------|
| LOFT                    | Carrier Leakage (LO Feedthrough)                           | (Note 7)<br>EN = Low (Note 7)                                                                                                     | -46<br>-71               | dBm<br>dBm |
| 2L0FT                   | LO Feedthrough at 2xLO                                     |                                                                                                                                   | -62.5                    | dBm        |
| 2L0                     | Signal Powers at 2xL0                                      | Maximum of $2f_{LO} - 2f_{BB}$ ; $2f_{LO} - f_{BB}$ ; $2f_{LO} + f_{BB}$ ,<br>$2f_{LO} + 2f_{BB}$                                 | -49.1                    | dBc        |
| 3L0FT                   | LO Feedthrough at 3xLO                                     |                                                                                                                                   | -57.9                    | dBm        |
| 3L0                     | Signal Powers at 3xLO                                      | Maximum of $3f_{LO} - f_{BB}$ ; $3f_{LO} + f_{BB}$                                                                                | -10.6                    | dBc        |
| BW1dB <sub>BB</sub>     | –1dB Baseband Bandwidth                                    | $R_{SOURCE} = 50\Omega$ , Differential                                                                                            | 43                       | MHz        |
| BW3dB <sub>BB</sub>     | –3dB Baseband Bandwidth                                    | $R_{SOURCE} = 50\Omega$ , Differential                                                                                            | 91                       | MHz        |
| f <sub>L0</sub> = 1800M | Hz, f <sub>RF1</sub> = 1797.9MHz, f <sub>RF2</sub> = 1798N | IHz, Register 0x00 = 0x4B (Decimal 75), L1 = 4.7nł                                                                                | H, C5 = 2pF, C18 = 0.2pF | ·          |
| S <sub>22(0N)</sub>     | RF Port Return Loss                                        |                                                                                                                                   | -21                      | dB         |
| f <sub>lo(match)</sub>  | LO Match Frequency Range                                   | S <sub>11</sub> < -10dB                                                                                                           | 0.84 to 5.8              | GHz        |
| Gain                    | Conversion Voltage Gain                                    | 20 • Log (V <sub>RF(OUT)(50Ω)</sub> /V <sub>IN(DIFF)(I or Q)</sub> )                                                              | -9.7                     | dB         |
| P <sub>OUT</sub>        | Absolute Output Power                                      | 1V <sub>P-P(DIFF)</sub> CW Signal, I and Q                                                                                        | -5.7                     | dBm        |
| OP1dB                   | Output 1dB Compression                                     |                                                                                                                                   | 4.6                      | dBm        |
| 0IP2                    | Output 2nd Order Intercept                                 | (Note 5)                                                                                                                          | 60.4                     | dBm        |
| OIP3                    | Output 3rd Order Intercept                                 | (Note 6)                                                                                                                          | 19                       | dBm        |
| NFloor                  | RF Output Noise Floor                                      | No Baseband AC Input Signal (Note 3)                                                                                              | -158.8                   | dBm/Hz     |
| SB                      | Side-Band Suppression                                      | (Note 7)                                                                                                                          | -50                      | dBc        |
| LOFT                    | Carrier Leakage (LO Feedthrough)                           | (Note 7)<br>EN = Low (Note 7)                                                                                                     | -43<br>-52               | dBm<br>dBm |
| 2L0FT                   | LO Feedthrough at 2xLO                                     |                                                                                                                                   | -61.3                    | dBm        |
| 2L0                     | Signal Powers at 2xL0                                      | $ \begin{array}{ c c c c c } \mbox{Maximum of } 2f_{L0}-2f_{BB}; 2f_{L0}-f_{BB}; 2f_{L0}+f_{BB}, \\ 2f_{L0}+2f_{BB} \end{array} $ | -47                      | dBc        |
| 3L0FT                   | LO Feedthrough at 3xLO                                     |                                                                                                                                   | -73.8                    | dBm        |
| 3L0                     | Signal Powers at 3xLO                                      | Maximum of $3f_{LO} - f_{BB}$ ; $3f_{LO} + f_{BB}$                                                                                | -18.6                    | dBc        |
|                         | Gain from LO to RF                                         | BBPI = BBPQ = 1.9V                                                                                                                | 10                       | dB         |
|                         | LO Input Noise Figure                                      | BBMI = BBMQ = 0.9V                                                                                                                | 12.5                     | dB         |
|                         | LO Input 3rd Order Intercept                               | (Vector Modulator)                                                                                                                | -2                       | dBm        |
| BW1dB <sub>BB</sub>     | –1dB Baseband Bandwidth                                    | $R_{SOURCE} = 50\Omega$ , Differential                                                                                            | 92                       | MHz        |
| BW3dB <sub>BB</sub>     | –3dB Baseband Bandwidth                                    | $R_{SOURCE} = 50\Omega$ , Differential                                                                                            | 168                      | MHz        |
| f <sub>L0</sub> = 2500M | Hz, f <sub>RF1</sub> = 2497.9MHz, f <sub>RF2</sub> = 2498N | 1Hz, Register 0x00 = 0x3F (Decimal 63), L1 = 4.7nH                                                                                | l, C5 = 2pF, C18 = 0.2pF |            |
| S <sub>22(0N)</sub>     | RF Port Return Loss                                        |                                                                                                                                   | -21                      | dB         |
| f <sub>lo(match)</sub>  | LO Match Frequency Range                                   | S <sub>11</sub> < -10dB                                                                                                           | 0.86 to 6                | GHz        |
| Gain                    | Conversion Voltage Gain                                    | 20 • Log (V <sub>RF(OUT)(50Ω)</sub> /V <sub>IN(DIFF)(I or Q)</sub> )                                                              | -10.2                    | dB         |
| P <sub>OUT</sub>        | Absolute Output Power                                      | 1V <sub>P-P(DIFF)</sub> CW Signal, I and Q                                                                                        | -6.2                     | dBm        |
| OP1dB                   | Output 1dB Compression                                     |                                                                                                                                   | 3.9                      | dBm        |
| 0IP2                    | Output 2nd Order Intercept                                 | (Note 5)                                                                                                                          | 62                       | dBm        |
| 0IP3                    | Output 3rd Order Intercept                                 | (Note 6)                                                                                                                          | 17.5                     | dBm        |

**ELECTRICAL CHARACTERISTICS** The  $\bullet$  denotes the specifications which apply over the full operating temperature range, otherwise specifications are at  $T_C = 25^{\circ}C$ .  $V_{CC} = 3.3V$ , EN = 3.3V,  $V_{CTRL} = 3.3V$ ,  $P_{LO} = 0dBm$ , BBPI, BBMI, BBPQ, BBMQ common mode DC voltage  $V_{CMBB} = 1.4V_{DC}$ , I and Q baseband input signal = 2MHz, 2.1MHz,  $1V_{P-P(DIFF, 1 \text{ or } Q)}$ , I and Q 90° shifted, lower sideband selection, all registers set to default values, unless otherwise noted. Test circuit is shown in Figure 12.

| POIT         1.80Bm (Noie 17)         -157         dBm/Hz           S8         Side-Band Suppression         (Note 7)         -41.5         dBm/Hz           LOFF         Carrier Leskage (LO Feedthrough)         (Note 7)         -40.2         dBm           2LOFT         LO Feedthrough at 2xL0         -65.4         dBm           2LOFT         LO Feedthrough at 2xL0         -48.8         dBe           3LOFT         LO Feedthrough at 3xL0         -77.2         dBm           3LOFT         LO Feedthrough at 3xL0         Maximum of 31.0 - 186. 31.0 + 188         -25.9         dBe           SUGT         LO Feedthrough at 3xL0         Maximum of 31.0 - 186. 31.0 + 188         -25.9         dBE           Signal Powers at 3xL0         Maximum of 31.0 - 186. 31.0 + 188         -25.9         dBE         MHz           MV10Bag         -14B Baseband Bandwidth         Rogunect = 500.0. Differential         16.7         MHz           Lo Parto Eturn Los         -25         dB         -25         dB         dB           Lo Parto Parto Eturn Los         -25         dB         dB         -10.0         -25         dB           Lo Parto Parto Eturn Los         -1.2         -0.0         -25         dB         dB <td< th=""><th>SYMBOL</th><th>PARAMETER</th><th>CONDITIONS</th><th>MIN</th><th>ТҮР</th><th>MAX</th><th>UNITS</th></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SYMBOL                  | PARAMETER                                                   | CONDITIONS                                                                         | MIN              | ТҮР            | MAX        | UNITS            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------------------------------------------------------------|------------------------------------------------------------------------------------|------------------|----------------|------------|------------------|
| LOFT         Carrier Leakage (LO Feedthrough)         (Note 7)<br>EN = Low (Note 7)         -40.2         dBm           2LOFT         LO Feedthrough at 2xLO         Maximum of 2/L <sub>0</sub> - 2/BB; 2/L <sub>0</sub> - fBe; 2/L <sub>0</sub> + fBB.         -66.4         dBm           3LOFT         LO Feedthrough at 3xLO         Maximum of 2/L <sub>0</sub> - 2/BB; 2/L <sub>0</sub> - fBe; 2/L <sub>0</sub> + fBB.         -48.8         dBc           3LO         Signal Powers at 3xLO         Maximum of 3/L <sub>0</sub> - fBe; 3/L <sub>0</sub> + fBB         -77.2         dBm           3LO         Signal Powers at 3xLO         Maximum of 3/L <sub>0</sub> - fBe; 3/L <sub>0</sub> + fBB         -25.9         dBc           BW3/BBB         -1dB Baseband Bandwidth         R <sub>SOURCE</sub> = 50Ω. Differential         65         MHz           BW3/BBB         -1dB Baseband Bandwidth         R <sub>SOURCE</sub> = 50Ω. Differential         167         MHz           Gain         Conversion Voltage Gain         20 + Log (VER;OUT;GGG)/VII;DIFP;(I or 0))         -12.7         dBB           OP10         Absolute Output Power         TVP=POIFT         OVER;OUT;GGG)/VII;DIFP;(I or 0)         -12.7         dBB           OIP2         Output 2nd Order Intercept         (Note 5)         441.8         dBm           OIP3         Output 2nd Order Intercept         (Note 6)         14.6         dBm           OIP3         Output 2nd Order Intercept                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NFloor                  | RF Output Noise Floor                                       |                                                                                    |                  |                |            | dBm/Hz<br>dBm/Hz |
| Low Text         EN = Low (Note 7)        50         dBm           2LOFT         LO Feedthrough at 2xLO         Maximum of 2(L_0 = 2f_{BS}; 2f_{L_0} - f_{BS}; 2f_{L_0} + f_{BS}, 2f_{                                                     | SB                      | Side-Band Suppression                                       | (Note 7)                                                                           | -41.5            |                | dBc        |                  |
| LO         Signal Powers at 2xL0         Maximum of $2t_{1,0} - 2t_{BB}$ : $2t_{1,0} - t_{BB}$ .         -48.8         dBc           2LO         Signal Powers at 3xL0         Maximum of $2t_{1,0} - 2t_{BB}$ : $2t_{1,0} - t_{BB}$ .         -77.2         dBm           3LO         Signal Powers at 3xL0         Maximum of $3t_{1,0} - t_{BB}$ .         -77.2         dBm           3LO         Signal Powers at 3xL0         Maximum of $3t_{1,0} - t_{BB}$ .         -77.2         dBm           BW14B <sub>BB</sub> -1dB Baseband Bandwidth         Rsource = 502. Differential         65         MHz           10         -3dB Baseband Bandwidth         Rsource = 502. Differential         167         MHz           10         -3dB Baseband Bandwidth         Rsource = 502. Differential         167         MHz           10         -3dB Baseband Bandwidth         Rsource = 502. Differential         167         MHz           10         -3dB Baseband Bandwidth         Rsource = 502. Differential         167         17.2         04B           10         -3dB Baseband Bandwidth         Rsource = 502. Differential         17.1         16.3         11.1         11.1         11.1         11.1         11.1         11.1         11.1         11.1         11.1         11.1         11.1         11.1         11.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | LOFT                    | Carrier Leakage (LO Feedthrough)                            |                                                                                    |                  |                |            | dBm<br>dBm       |
| $2l_0 + 2l_{BB}$ $-77.2$ dBm           3LOFT         LO Fedthrough at 3xL0         Maximum of $3l_{L0} - f_{BE}$ , $3l_{L0} + f_{BB}$ $-25.9$ dBE           BW1dBgg         -1dB Baseband Bandwidth         R <sub>SOURCE</sub> = 502, Differential         167         MHz           BW3dBgg         -3dB Baseband Bandwidth         R <sub>SOURCE</sub> = 502, Differential         167         MHz           S22(0N)         RF Port Return Loss         -225         dB         dB           S22(0N)         RF Port Return Loss         -225         dB           Gain         Conversion Votage Gain         20 - Log (VRF(OUT)/SOG)/VIN(DIFP)(I or 0)         -12.7         dB           Pour         Absolute Output Power         1V <sub>P-P(DIFP</sub> , CW Signal, I and Q         -8.7         dBm           OIP2         Output 3rd Order Intercept         (Note 18)         1.1         dBm           OIP3         Output 3rd Order Intercept         (Note 5)         41.8         dBm           NFloor         RF Output Noise Floor         No Baseband AC Input Signal (Note 3)         -159.6         dBm/Hz           S10         Signal Powers at 2xL0         Maximum of $3l_{1,0} - f_{BB}$ , $2l_{1,0} - l_{BB}$ , $2l_{1,0} - l_{BB}$ , $2l_{1,0} - l_{BB}$ , $2l_{1,0} + l_{BB}$ -34.5         dBm           S10F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2L0FT                   | LO Feedthrough at 2xLO                                      |                                                                                    |                  | -65.4          |            | dBm              |
| 3L0Signal Powers at 3xL0Maximum of $3f_{10} - f_{BB}$ ; $3f_{10} + f_{BB}$ 25.9dBcBW1dBgB-1dB Baseband BandwidthR <sub>50URCE</sub> = 500, Differential65MHzBW3dBgB-3dB Baseband BandwidthR <sub>50URCE</sub> = 502, Differential167MHz $f_{L0}$ = 3500MHz, $f_{RT}$ = 3498MHz, Register 0x00 = 0x2F (Decimal 47), L1 = 0.8nH, C5 = 0.4pF, C18 = 0.1pF (5.8GHz L0 Match)S2ciON)RF Port Return Loss-25dB(LoMatch)L0 Match Frequency RangeS <sub>11</sub> < -10dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2L0                     | Signal Powers at 2xLO                                       |                                                                                    |                  | -48.8          |            | dBc              |
| BW1dBgB<br>BW1dBgB-1dB Baseband Bandwidth $P_{SOURCE} = 50\Omega$ , Differential65MHzBW3dBgB<br>BW3dBgB-3dB Baseband Bandwidth $P_{SOURCE} = 50\Omega$ , Differential167MHz $I_0 = 3500MHz$ , $I_{RF2} = 3493.MHz$ , $I_{RF2} = 3498MHz$ , Register 0x00 = 0x2F (Decimal 47), L1 = 0.8nH, C5 = 0.4pF, C18 = 0.1pF (5.8GHz L0 Match) $S_{22(0N)}$ RF Port Return Loss-25dB $I_{LO(MATCH)}$ L0 Match Frequency Range $S_{11} < -10dB$ 12 to 6GHzGainConversion Voltage Gain20 • Log (V <sub>RF(0UT)(500,V</sub> /V <sub>IN(DIF)(1 or 0)</sub> )-12.7dBPourAbsolute Output Power $IV_{P-P(DIF)}$ CW Signal, I and Q-8.7dBmOP1dBOutput 1dB Compression(Note 18)1.1dBmOIP2Output 2nd Order Intercept(Note 5)441.8dBmOIP3Output 3nd Order Intercept(Note 6)14.6dBmNFloorRF Output Noise FloorNo Baseband AC Input Signal (Note 3)-159.6dBm/ZLOFTCarrier Leakage (L0 Feedthrough)(Note 7)-34.5dBmZLOTL0 Feedthrough at 2xLOMaximum of $2I_{LO} - 2I_{BB}$ : $2I_{LO} - I_{BB}$ : $2I_{LO} + I_{BB}$ -46.3dBc3UOTL0 Feedthrough at 3xLOMaximum of $3I_{LO} - I_{BB}$ : $3I_{LO} + I_{BB}$ -71.4dBm3UOSignal Powers at 3xLOMaximum of $3I_{LO} - I_{BB}$ : $3I_{LO} + I_{BB}$ -71.4dBm3UOSignal Powers at 3xLOMaximum of $3I_{LO} - I_{BB}$ : $3I_{LO} + I_{BB}$ -71.4dBm3UOSignal Powers at 3xLOMaximu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3L0FT                   | LO Feedthrough at 3xLO                                      |                                                                                    |                  | -77.2          |            | dBm              |
| BW3dB8         -3dB Baseband Bandwidth         Rsource = 502, Differential         167         MHz $t_{L0} = 3500MHz, t_{Rr1} = 3497.9MHz, t_{Rr2} = 3498MHz, Register 0x00 = 0x2F (Decimal 47), L1 = 0.8nH, C5 = 0.4pF, C18 = 0.1pF (5.8GHz L0 Match)           S22(0M)         RF Port Return Loss         -25         dB           L_{0}(MATCH)         LO Match Frequency Range         S_{11} < -10dB         1.2 to 6         GHz           Gain         Conversion Voltage Gain         20 - Log (VRF(0UT)(50CU)/VIN(DIFF)(1 or 0))         -12.7         dB           OP1dB         Output 1dB Compression         (Note 18)         1.1         dBm           OIP2         Output 2nd Order Intercept         (Note 5)         41.8         dBm           OIP3         Output 2nd Order Intercept         (Note 6)         -43.3         dBs           SIG=Band Suppression         (Note 7)         -39.8         dBm           SIG         Signal Powers at 2xLO         (Note 7)         -34.5         dBm           LOFT         LO Feedthrough at 2xLO         Maximum of 3t_{10} - f_{BB}; 3t_{10} + f_{BB}         -46.3         dBs           3LOFT         LO Feedthrough at 3xLO         Maximum of 3t_{10} - f_{BB}; 3t_{10} + f_{BB}         -71.4         dBm           3LOFT         LO Feedthrough at 3xLO         <$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3L0                     | Signal Powers at 3xLO                                       | Maximum of 3f <sub>LO</sub> – f <sub>BB</sub> ; 3f <sub>LO</sub> + f <sub>BB</sub> |                  | -25.9          |            | dBc              |
| Lg = 3500MHz, f <sub>BF1</sub> = 3497.9MHz, f <sub>BF2</sub> = 3498MHz, Register 0x00 = 0x2F (Decimal 47), L1 = 0.8nH, C5 = 0.4pF, C18 = 0.1pF (5.8GHz L0 Match)           S22(01)         RF Port Return Loss         -25         dB           f_L0(MATCH)         L0 Match Frequency Range         S <sub>11</sub> < -10dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | BW1dB <sub>BB</sub>     | –1dB Baseband Bandwidth                                     | $R_{SOURCE} = 50\Omega$ , Differential                                             |                  | 65             |            | MHz              |
| Sp2_2(QN)         RF Port Return Loss        25         dB           Sp2_2(QN)         LO Match Frequency Range         S <sub>11</sub> < -10dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | BW3dB <sub>BB</sub>     | –3dB Baseband Bandwidth                                     | $R_{SOURCE} = 50\Omega$ , Differential                                             |                  | 167            |            | MHz              |
| LCUMATCHLO Match Frequency Range $S_{11} < -10dB$ 1.2 to 6GHzGainConversion Voltage Gain20 • Log (V <sub>RF(OUT)(50:2)</sub> /V <sub>IN(DIFF)(1 or O)</sub> )-12.7dBPOUTAbsolute Output Power $1V_{P-P(DIFF)}$ CW Signal, I and Q-8.7dBmOP1dBOutput 1dB Compression(Note 18)1.1dBmOIP3Output 3rd Order Intercept(Note 5)41.8dBmOIP3Output 3rd Order Intercept(Note 6)14.6dBmNFloorRF Output Noise FloorNo Baseband AC Input Signal (Note 3)-159.6dBm/HzSBSide-Band Suppression(Note 7)-44.3dBcLOFTCarrier Leakage (LO Feedthrough)(Note 7)-34.5dBmLOFTLO Feedthrough at 2xLO-66.5dBm2LOSignal Powers at 2xLOMaximum of $2f_{LO} - 2f_{BB}$ ; $2f_{LO} - f_{BB}$ ; $2f_{LO} + f_{BB}$ -203LOFTLO Feedthrough at 3xLOMaximum of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | f <sub>LO</sub> = 3500M | MHz, f <sub>RF1</sub> = 3497.9MHz, f <sub>RF2</sub> = 3498N | 1Hz, Register 0x00 = 0x2F (Decimal 47), L1 = 0.8nł                                 | l, C5 = 0.4pF, ( | C18 = 0.1pF (5 | .8GHz LO M | atch)            |
| Gain         Conversion Voltage Gain         20 • Log (V <sub>RF(OUT)(500)</sub> V(N <sub>IDIFF)(1 or O)</sub> )         -12.7         dB           Pour         Absolute Output Power         1V <sub>P-P(DIFF)</sub> CW Signal, I and Q         -8.7         dBm           OP1dB         Output 1dB Compression         (Note 18)         1.1         dBm           OIP2         Output 2nd Order Intercept         (Note 5)         41.8         dBm           OIP3         Output 3rd Order Intercept         (Note 6)         14.6         dBm           NFloor         RF Output Noise Floor         No Baseband AC Input Signal (Note 3)         -159.6         dBm/Hz           SB         Side-Band Suppression         (Note 7)         -34.5         dBm           LOFT         Carrier Leakage (LO Feedthrough)         (Note 7)         -34.5         dBm           2LOFT         LO Feedthrough at 2xLO         Maximum of 2f <sub>LO</sub> - 2f <sub>BB</sub> ; 2f <sub>LO</sub> - f <sub>BB</sub> ; 2f <sub>LO</sub> + f <sub>BB</sub> ,         -46.3         dBc           2LOFT         LO Feedthrough at 3xLO         Maximum of 3f <sub>LO</sub> - f <sub>BB</sub> ; 3f <sub>LO</sub> + f <sub>BB</sub> ,         -71.4         dBm           3LO         Signal Powers at 3xLO         Maximum of 3f <sub>LO</sub> - f <sub>BB</sub> ; 3f <sub>LO</sub> + f <sub>BB</sub> ,         -31.7         dBc           3UO         Signal Powers at 3xLO         Maximum of 3f <sub>LO</sub> - f <sub>BB</sub> ; 3f <sub>LO</sub> + f <sub>BB</sub> ,         -20.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | S <sub>22(ON)</sub>     | RF Port Return Loss                                         |                                                                                    |                  | -25            |            | dB               |
| PourAbsolute Output Power $1V_{P-P(DIF)} (OK Signal, I and Q-8.7dBmOP1dBOutput 1dB Compression(Note 18)1.1dBmOIP2Output 2nd Order Intercept(Note 5)41.8dBmOIP3Output 3rd Order Intercept(Note 6)14.6dBmNFloorRF Output Noise FloorNo Baseband AC Input Signal (Note 3)-159.6dBm/HzSBSide-Band Suppression(Note 7)-43dBcLOFTCarrier Leakage (LO Feedthrough)EN = Low (Note 7)-34.5dBm2LOFTLO Feedthrough at 2xLOMaximum of 2t_{LO} - 2t_{BB}; 2t_{LO} - t_{BB}; 2t_{LO} + t_{BB}-46.3dBc2LOSignal Powers at 2xLOMaximum of 3t_{LO} - t_{BB}; 3t_{LO} + t_{BB}-71.4dBm3LOSignal Powers at 3xLOMaximum of 3t_{LO} - t_{BB}; 3t_{LO} + t_{BB}-31.7dBcBW1dBBB-3dB Baseband BandwidthRSOURCE = 50Q, Differential76MHzBW3dBBB-3dB Baseband BandwidthRSOURCE = 50Q, Differential173MHzS2(ON)RF Port Return Loss-20dBdBf_LO 4bootHz, threquency RangeS11 < -10dB$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | f <sub>LO(MATCH)</sub>  | LO Match Frequency Range                                    | S <sub>11</sub> < -10dB                                                            |                  | 1.2 to 6       |            | GHz              |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Gain                    | Conversion Voltage Gain                                     | 20 • Log (V <sub>RF(OUT)(50Ω)</sub> /V <sub>IN(DIFF)(I or Q)</sub> )               |                  | -12.7          |            | dB               |
| OIP2Output 2nd Order Intercept(Note 5)41.8dBmOIP3Output 3rd Order Intercept(Note 6)14.6dBmNFloorRF Output Noise FloorNo Baseband AC Input Signal (Note 3)-159.6dBm/HzSBSide-Band Suppression(Note 7)-43dBcLOFTCarrier Leakage (LO Feedthrough)(Note 7)-34.5dBmLOFTLO Feedthrough at 2xLO-66.5dBm2LOFTLO Feedthrough at 2xLOMaximum of $2f_{LO} - 2f_{BB}$ : $2f_{LO} - f_{BB}$ : $2f_{LO} + f_{BB}$ -46.3dBc2LOSignal Powers at 2xLOMaximum of $2f_{LO} - 2f_{BB}$ : $3f_{LO} + f_{BB}$ -71.4dBm3LOSignal Powers at 3xLOMaximum of $3f_{LO} - f_{BB}$ : $3f_{LO} + f_{BB}$ -31.7dBc3LO FILO Feedthrough at 3xLO-71.4dBm3LOSignal Powers at 3xLOMaximum of $3f_{LO} - f_{BB}$ : $3f_{LO} + f_{BB}$ -31.7dBcBW1dB <sub>BB</sub> -1dB Baseband Bandwidth $R_{SOURCE} = 50\Omega$ , Differential76MHzBW3dB <sub>BB</sub> -3dB Baseband Bandwidth $R_{SOURCE} = 50\Omega$ , Differential173MHzS2(ON)RF Port Return Loss-20dBdBf_LO(MATCH)LO Match Frequency Range $S_{11} < -10dB$ 1.3 to 6GHzGainConversion Voltage Gain20 • Log (V <sub>RF(OUT)(50Ω)</sub> /V <sub>IN(DIFF)(1 or 0)</sub> )-16.3dBPOUTAbsolute Output Power $1V_{P-P(DIFF)}$ CW Signal, I and Q-12.3dBmOP1dBOutput 1dB Compression(Note 18)-2.2 <td< td=""><td>P<sub>OUT</sub></td><td>Absolute Output Power</td><td>1V<sub>P-P(DIFF)</sub> CW Signal, I and Q</td><td></td><td>-8.7</td><td></td><td>dBm</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | P <sub>OUT</sub>        | Absolute Output Power                                       | 1V <sub>P-P(DIFF)</sub> CW Signal, I and Q                                         |                  | -8.7           |            | dBm              |
| OIP3Output 3rd Order Intercept(Note 6)14.6dBmNFloorRF Output Noise FloorNo Baseband AC Input Signal (Note 3)-159.6dBm/hzSBSide-Band Suppression(Note 7)-43dBcLOFTCarrier Leakage (LO Feedthrough)(Note 7)-34.5dBm2LOFTLO Feedthrough at 2xLO-39.8dBm2LOFTLO Feedthrough at 2xLOMaximum of $2f_{LO} - 2f_{BB}$ ; $2f_{LO} - f_{BB}$ ; $2f_{LO} + f_{BB}$ ,-46.3dBc2LOSignal Powers at 2xLOMaximum of $3f_{LO} - f_{BB}$ ; $3f_{LO} + f_{BB}$ -71.4dBm3LO Signal Powers at 3xLOMaximum of $3f_{LO} - f_{BB}$ ; $3f_{LO} + f_{BB}$ -31.7dBcBW1dB <sub>BB</sub> -1dB Baseband BandwidthR <sub>SOURCE</sub> = 50\Omega, Differential76MHzBW3dB <sub>BB</sub> -3dB Baseband BandwidthR <sub>SOURCE</sub> = 50\Omega, Differential173MHzS2(ON)RF Port Return Loss-20dBfLo = 4500MHz, f_{RF1} = 4497.9MHz, f_{RF2} = 4498MHz, Register 0x00 = 0x24 (Decimal 36), L1 = 0.8nH, C5 = 0.4pF, C18 = 0.1pF (5.8GHz LO Match)S2(ON)S2(ON)RF Port Return Loss-20dBfLo(MATCH)LO Match Frequency RangeS11 < -10dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | OP1dB                   | Output 1dB Compression                                      | (Note 18)                                                                          | 1.1              |                | dBm        |                  |
| NFloorRF Output Noise FloorNo Baseband AC Input Signal (Note 3) $-159.6$ dBm/HzSBSide-Band Suppression(Note 7) $-43$ dBcLOFTCarrier Leakage (LO Feedthrough)(Note 7) $-34.5$ dBm2LOFTLO Feedthrough at 2xLO(Note 7) $-34.5$ dBm2LOFTLO Feedthrough at 2xLOMaximum of $2f_{LO} - 2f_{BB}$ ; $2f_{LO} - f_{BB}$ ; $2f_{LO} + f_{BB}$ $-66.5$ dBm2LOSignal Powers at 2xLOMaximum of $2f_{LO} - 2f_{BB}$ ; $2f_{LO} + f_{BB}$ $-71.4$ dBm3LO Signal Powers at 3xLOMaximum of $3f_{LO} - f_{BB}$ ; $3f_{LO} + f_{BB}$ $-31.7$ dBcBW1dB <sub>BB</sub> -1dB Baseband Bandwidth $R_{SOURCE} = 50\Omega$ , Differential173MHzBW3dB <sub>BB</sub> -3dB Baseband Bandwidth $R_{SOURCE} = 50\Omega$ , Differential173MHzS2(ON)RF Port Return Loss $-20$ dBfLo = 4500MHz, f_{RF1} = 4497.9MHz, f_{RF2} = 4498MHz, Register 0x00 = 0x24 (Decimal 36), L1 = 0.8nH, C5 = 0.4pF, C18 = 0.1pF (5.8GHz LO Match)S2(ON)RF Port Return Loss $-20$ dBfLo(MATCH)LO Match Frequency Range $S_{11} < -10dB$ 1.3 to 6GHzGainConversion Voltage Gain20 • Log (V <sub>RF(OUT)(50Ω)</sub> /V <sub>IN(DIFF)(1 or 0)</sub> ) $-16.3$ dBOP1dBOutput 1dB Compression(Note 5) $35.2$ dBmOP2Output 2nd Order Intercept(Note 5) $35.2$ dBmOP3Output 3rd Order Intercept(Note 6)11.2dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0IP2                    | Output 2nd Order Intercept                                  | (Note 5)                                                                           |                  | 41.8           |            | dBm              |
| SB         Side-Band Suppression         (Note 7)         -43         dBc           LOFT         Carrier Leakage (LO Feedthrough)         (Note 7)         -34.5         dBm           EN         LOFT         LO Feedthrough at 2xLO         -34.5         dBm           2LOFT         LO Feedthrough at 2xLO         -66.5         dBm           2LO         Signal Powers at 2xLO         Maximum of $2f_{LO} - 2f_{BB}$ ; $2f_{LO} - f_{BB}$ ; $2f_{LO} + f_{BB}$ .         -46.3         dBc           3LOFT         LO Feedthrough at 3xLO         Maximum of $3f_{LO} - f_{BB}$ ; $3f_{LO} + f_{BB}$ .         -71.4         dBm           3LO         Signal Powers at 3xLO         Maximum of $3f_{LO} - f_{BB}$ ; $3f_{LO} + f_{BB}$ .         -31.7         dBc           8U/dB <sub>BB</sub> -1dB Baseband Bandwidth         R <sub>SOURCE</sub> = 50Ω, Differential         76         MHz           BW3dB <sub>BB</sub> -3dB Baseband Bandwidth         R <sub>SOURCE</sub> = 50Ω, Differential         173         MHz           S2(ON)         RF Port Return Loss         -20         dB         dB           fLo + 4497.9MHz, f_{RF2} = 4498MHz, Register 0x00 = 0x24 (Decimal 36), L1 = 0.8nH, C5 = 0.4pF, C18 = 0.1pF (5.8GHz LO Match)         -20         dB           S2(ON)         RF Port Return Loss         -20         dB         -20         dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | OIP3                    | Output 3rd Order Intercept                                  | (Note 6)                                                                           |                  | 14.6           |            | dBm              |
| LOFTCarrier Leakage (LO Feedthrough)(Note 7)<br>EN = Low (Note 7) $-34.5$<br>$-39.8$ dBm<br>dBm2LOFTLO Feedthrough at 2xLO $-66.5$ dBm2LOSignal Powers at 2xLOMaximum of $2f_{LO} - 2f_{BB}$ ; $2f_{LO} - f_{BB}$ ; $2f_{LO} + f_{BB}$ ,<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NFloor                  | RF Output Noise Floor                                       | No Baseband AC Input Signal (Note 3)                                               |                  | -159.6         |            | dBm/Hz           |
| ENE of wE of wNote 7 of the sector of the | SB                      | Side-Band Suppression                                       | (Note 7)                                                                           |                  | -43            |            | dBc              |
| 2L0Signal Powers at 2xL0Maximum of $2f_{LO} - 2f_{BB}$ ; $2f_{LO} - f_{BB}$ ; $2f_{LO} + f_{BB}$ ,-46.3dBc3L0FTL0 Feedthrough at 3xL0-71.4dBm3L0Signal Powers at 3xL0Maximum of $3f_{LO} - f_{BB}$ ; $3f_{LO} + f_{BB}$ -31.7dBcBW1dB <sub>BB</sub> -1dB Baseband BandwidthR <sub>SOURCE</sub> = 50 $\Omega$ , Differential76MHzBW3dB <sub>BB</sub> -3dB Baseband BandwidthR <sub>SOURCE</sub> = 50 $\Omega$ , Differential173MHzfLo = 4500MHz, f <sub>RF1</sub> = 4497.9MHz, f <sub>RF2</sub> = 4498MHz, Register 0x00 = 0x24 (Decimal 36), L1 = 0.8nH, C5 = 0.4pF, C18 = 0.1pF (5.8GHz L0 Match)S22(0N)S22(0N)RF Port Return Loss-20dBfL0(MATCH)L0 Match Frequency Range $S_{11} < -10dB$ 1.3 to 6GHzGainConversion Voltage Gain20 • Log (V <sub>RF(OUT)(50Ω)</sub> /V <sub>IN(DIFF)(I or Q)</sub> )-16.3dBPOUTAbsolute Output Power $1V_{P-P(DIFF)}$ CW Signal, I and Q-12.3dBmOIP2Output 1dB Compression(Note 18)-2.2dBmOIP3Output 3rd Order Intercept(Note 6)11.2dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | LOFT                    | Carrier Leakage (LO Feedthrough)                            |                                                                                    |                  |                |            | dBm<br>dBm       |
| $2f_{L0} + 2f_{BB}$ $-71.4$ $dBm$ $3LOFT$ LO Feedthrough at $3xLO$ Maximum of $3f_{LO} - f_{BB}$ ; $3f_{LO} + f_{BB}$ $-71.4$ $dBm$ $3LO$ Signal Powers at $3xLO$ Maximum of $3f_{LO} - f_{BB}$ ; $3f_{LO} + f_{BB}$ $-31.7$ $dBc$ $BW1dB_{BB}$ $-1dB$ Baseband Bandwidth $R_{SOURCE} = 50\Omega$ , Differential76MHz $BW3dB_{BB}$ $-3dB$ Baseband Bandwidth $R_{SOURCE} = 50\Omega$ , Differential173MHz $f_{LO} = 4500MHz$ , $f_{RF1} = 4497.9MHz$ , $f_{RF2} = 4498MHz$ , Register $0x00 = 0x24$ (Decimal 36), L1 = 0.8nH, C5 = 0.4pF, C18 = 0.1pF (5.8GHz L0 Match) $S_{22(0N)}$ RF Port Return Loss $-20$ dB $f_{LO(MATCH)}$ LO Match Frequency Range $S_{11} < -10dB$ 1.3 to 6GHzGainConversion Voltage Gain $20 \cdot Log (V_{RF(OUT)(50\Omega)}/V_{IN(DIFF)(I or Q)})$ $-16.3$ dB $P_{OUT}$ Absolute Output Power $1V_{P-P(DIFF)}$ CW Signal, I and Q $-12.3$ dBm $OP1dB$ Output 1dB Compression(Note 18) $-2.2$ dBm $OIP2$ Output 2nd Order Intercept(Note 6)11.2dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2L0FT                   | LO Feedthrough at 2xLO                                      |                                                                                    |                  | -66.5          |            | dBm              |
| 3L0Signal Powers at $3xL0$ Maximum of $3f_{L0} - f_{BB}$ ; $3f_{L0} + f_{BB}$ $-31.7$ dBcBW1dB <sub>BB</sub> $-1dB$ Baseband Bandwidth $R_{SOURCE} = 50\Omega$ , Differential76MHzBW3dB <sub>BB</sub> $-3dB$ Baseband Bandwidth $R_{SOURCE} = 50\Omega$ , Differential173MHz <b>fL0 = 4500MHz, f_{RF1} = 4497.9MHz, f_{RF2} = 4498MHz, Register 0x00 = 0x24 (Decimal 36), L1 = 0.8nH, C5 = 0.4pF, C18 = 0.1pF (5.8GHz L0 Match)<math>S_{22(0N)}</math>RF Port Return Loss<math>-20</math>dBfL0(MATCH)L0 Match Frequency Range<math>S_{11} &lt; -10dB</math><math>1.3 to 6</math>GHzGainConversion Voltage Gain<math>20 \cdot Log (V_{RF(0UT)(50\Omega)}/V_{IN(DIFF)(1 or Q)})</math><math>-16.3</math>dBPOUTAbsolute Output Power<math>V_{P-P(DIFF)}</math> CW Signal, 1 and Q<math>-12.3</math>dBmOP1dBOutput 1dB Compression(Note 18)<math>-2.2</math>dBmOIP2Output 3rd Order Intercept(Note 6)11.2dBm</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2L0                     | Signal Powers at 2xLO                                       |                                                                                    |                  | -46.3          |            | dBc              |
| BW1dB <sub>BB</sub> -1dB Baseband Bandwidth $R_{SOURCE} = 50\Omega$ , Differential76MHzBW3dB <sub>BB</sub> -3dB Baseband Bandwidth $R_{SOURCE} = 50\Omega$ , Differential173MHzfL0 = 4500MHz, f <sub>RF1</sub> = 4497.9MHz, f <sub>RF2</sub> = 4498MHz, Register 0x00 = 0x24 (Decimal 36), L1 = 0.8nH, C5 = 0.4pF, C18 = 0.1pF (5.8GHz LO Match)S22(0N)RF Port Return Loss-20dBfL0(MATCH)LO Match Frequency RangeS11 < -10dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3L0FT                   | LO Feedthrough at 3xLO                                      |                                                                                    |                  | -71.4          |            | dBm              |
| BW3dBBB-3dB Baseband Bandwidth $R_{SOURCE} = 50\Omega$ , Differential173MHzfL0 = 4500MHz, f_{RF1} = 4497.9MHz, f_{RF2} = 4498MHz, Register 0x00 = 0x24 (Decimal 36), L1 = 0.8nH, C5 = 0.4pF, C18 = 0.1pF (5.8GHz L0 Match)S22(0N)RF Port Return Loss-20dBfL0(MATCH)LO Match Frequency RangeS11 < -10dB1.3 to 6GHzGainConversion Voltage Gain20 • Log (V_{RF(0UT)(50\Omega)}/V_{IN(DIFF)(1 or Q)})-16.3dBPOUTAbsolute Output Power $1V_{P-P(DIFF)}$ CW Signal, I and Q-12.3dBmOP1dBOutput 1dB Compression(Note 18)-2.2dBmOIP2Output 2nd Order Intercept(Note 5)35.2dBmOIP3Output 3rd Order Intercept(Note 6)11.2dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3L0                     | Signal Powers at 3xLO                                       | Maximum of $3f_{LO} - f_{BB}$ ; $3f_{LO} + f_{BB}$                                 |                  | -31.7          |            | dBc              |
| fL0 = 4500MHz, $f_{RF1}$ = 4497.9MHz, $f_{RF2}$ = 4498MHz, Register 0x00 = 0x24 (Decimal 36), L1 = 0.8nH, C5 = 0.4pF, C18 = 0.1pF (5.8GHz L0 Match)S2(0N)RF Port Return Loss-20dBfL0(MATCH)LO Match Frequency RangeS11 < -10dB1.3 to 6GHzGainConversion Voltage Gain20 • Log (V_{RF(OUT)(50\Omega)}/V_{IN(DIFF)(1 or Q)})-16.3dBPOUTAbsolute Output Power $1V_{P-P(DIFF)}$ CW Signal, I and Q-12.3dBmOP1dBOutput 1dB Compression(Note 18)-2.2dBmOIP2Output 2nd Order Intercept(Note 5)35.2dBmOIP3Output 3rd Order Intercept(Note 6)11.2dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | BW1dB <sub>BB</sub>     | –1dB Baseband Bandwidth                                     | $R_{SOURCE} = 50\Omega$ , Differential                                             |                  | 76             |            | MHz              |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | BW3dB <sub>BB</sub>     | –3dB Baseband Bandwidth                                     | $R_{SOURCE} = 50\Omega$ , Differential                                             |                  | 173            |            | MHz              |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | f <sub>LO</sub> = 4500M | MHz, f <sub>RF1</sub> = 4497.9MHz, f <sub>RF2</sub> = 4498N | 1Hz, Register 0x00 = 0x24 (Decimal 36), L1 = 0.8nł                                 | l, C5 = 0.4pF, ( | C18 = 0.1pF (5 | .8GHz LO M | atch)            |
| Gain       Conversion Voltage Gain       20 • Log (V <sub>RF(OUT)(50Ω)</sub> /V <sub>IN(DIFF)(I or Q)</sub> )       -16.3       dB         P <sub>OUT</sub> Absolute Output Power       1V <sub>P-P(DIFF)</sub> CW Signal, I and Q       -12.3       dBm         OP1dB       Output 1dB Compression       (Note 18)       -2.2       dBm         OIP2       Output 2nd Order Intercept       (Note 5)       35.2       dBm         OIP3       Output 3rd Order Intercept       (Note 6)       11.2       dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | S <sub>22(ON)</sub>     | RF Port Return Loss                                         |                                                                                    |                  | -20            |            | dB               |
| POUT       Absolute Output Power       IVP-P(DIFF) CW Signal, I and Q       -12.3       dBm         OP1dB       Output 1dB Compression       (Note 18)       -2.2       dBm         OIP2       Output 2nd Order Intercept       (Note 5)       35.2       dBm         OIP3       Output 3rd Order Intercept       (Note 6)       11.2       dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | f <sub>LO(MATCH)</sub>  | LO Match Frequency Range                                    | S <sub>11</sub> < -10dB                                                            |                  | 1.3 to 6       |            | GHz              |
| OP1dBOutput 1dB Compression(Note 18)-2.2dBmOIP2Output 2nd Order Intercept(Note 5)35.2dBmOIP3Output 3rd Order Intercept(Note 6)11.2dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Gain                    | Conversion Voltage Gain                                     | 20 • Log ( $V_{RF(OUT)(50\Omega)}/V_{IN(DIFF)(I \text{ or } Q)}$ )                 |                  | -16.3          |            | dB               |
| OIP2Output 2nd Order Intercept(Note 5)35.2dBmOIP3Output 3rd Order Intercept(Note 6)11.2dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | P <sub>OUT</sub>        | Absolute Output Power                                       | 1V <sub>P-P(DIFF)</sub> CW Signal, I and Q                                         |                  | -12.3          |            | dBm              |
| OIP3 Output 3rd Order Intercept (Note 6) 11.2 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | OP1dB                   | Output 1dB Compression                                      | (Note 18)                                                                          |                  | -2.2           |            | dBm              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0IP2                    | Output 2nd Order Intercept                                  | (Note 5)                                                                           |                  | 35.2           |            | dBm              |
| NFloor RF Output Noise Floor No Baseband AC Input Signal (Note 3) -161.3 dBm/Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0IP3                    | Output 3rd Order Intercept                                  | (Note 6)                                                                           |                  | 11.2           |            | dBm              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NFloor                  | RF Output Noise Floor                                       | No Baseband AC Input Signal (Note 3)                                               |                  | -161.3         |            | dBm/Hz           |



**ELECTRICAL CHARACTERISTICS** The  $\bullet$  denotes the specifications which apply over the full operating temperature range, otherwise specifications are at T<sub>C</sub> = 25°C. V<sub>CC</sub> = 3.3V, EN = 3.3V, V<sub>CTRL</sub> = 3.3V, P<sub>LO</sub> = 0dBm, BBPI, BBMI, BBPQ, BBMQ common mode DC voltage V<sub>CMBB</sub> = 1.4V<sub>DC</sub>, I and Q baseband input signal = 2MHz, 2.1MHz, 1V<sub>P-P(DIFF, 1 or Q)</sub>, I and Q 90° shifted, lower sideband selection, all registers set to default values, unless otherwise noted. Test circuit is shown in Figure 12.

| SYMBOL                  | PARAMETER                                                   | CONDITIONS                                                                                                                               | MIN TYP                    | MAX UN            | NITS       |
|-------------------------|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-------------------|------------|
| SB                      | Side-Band Suppression                                       | (Note 7)                                                                                                                                 | -44                        |                   | dBc        |
| LOFT                    | Carrier Leakage (LO Feedthrough)                            | (Note 7)<br>EN = Low (Note 7)                                                                                                            | -33<br>-34                 |                   | dBm<br>dBm |
| 2L0FT                   | LO Feedthrough at 2xLO                                      |                                                                                                                                          | -67                        | (                 | dBm        |
| 2L0                     | Signal Powers at 2xL0                                       | $ \begin{array}{ c c c c c } \mbox{Maximum of } 2f_{L0}-2f_{BB}; 2f_{L0}-f_{BB}; 2f_{L0}+f_{BB}, \\ \mbox{2}f_{L0}+2f_{BB} \end{array} $ | -45                        |                   | dBc        |
| 3L0FT                   | LO Feedthrough at 3xLO                                      |                                                                                                                                          | -73                        | (                 | dBm        |
| 3L0                     | Signal Powers at 3xL0                                       | Maximum of 3f <sub>LO</sub> – f <sub>BB</sub> ; 3f <sub>LO</sub> + f <sub>BB</sub>                                                       | -42                        |                   | dBc        |
| BW1dB <sub>BB</sub>     | –1dB Baseband Bandwidth                                     | $R_{SOURCE} = 50\Omega$ , Differential                                                                                                   | 98                         | 1                 | MHz        |
| BW3dB <sub>BB</sub>     | –3dB Baseband Bandwidth                                     | $R_{SOURCE} = 50\Omega$ , Differential                                                                                                   | 176                        | 1                 | MHz        |
| f <sub>LO</sub> = 5800N | 1Hz, f <sub>RF1</sub> = 5797.9MHz, f <sub>RF2</sub> = 5798N | 1Hz, Register 0x00 = 0x1A (Decimal 26), L1 = 0.8nH                                                                                       | l, C5 = 0.4pF, C18 = 0.1pF | (5.8GHz LO Match) |            |
| S <sub>22(ON)</sub>     | RF Port Return Loss                                         |                                                                                                                                          | -14.8                      |                   | dB         |
| f <sub>LO(MATCH)</sub>  | LO Match Frequency Range                                    | S <sub>11</sub> < -10dB                                                                                                                  | 1.3 to 6                   |                   | GHz        |
| Gain                    | Conversion Voltage Gain                                     | $20 \bullet \text{Log} (V_{\text{RF}(\text{OUT})(50\Omega)}/V_{\text{IN}(\text{DIFF})(1 \text{ or } Q)})$                                | -21                        |                   | dB         |
| P <sub>OUT</sub>        | Absolute Output Power                                       | 1V <sub>P-P(DIFF)</sub> CW Signal, I and Q                                                                                               | -17                        | (                 | dBm        |
| OP1dB                   | Output 1dB Compression                                      | (Note 18)                                                                                                                                | -7.1                       | (                 | dBm        |
| 0IP2                    | Output 2nd Order Intercept                                  | (Note 5)                                                                                                                                 | 28.3                       | (                 | dBm        |
| OIP3                    | Output 3rd Order Intercept                                  | (Note 6)                                                                                                                                 | 7                          | (                 | dBm        |
| NFloor                  | RF Output Noise Floor                                       | No Baseband AC Input Signal (Note 3)                                                                                                     | -162.7                     | dBn               | n/Hz       |
| SB                      | Side-Band Suppression                                       | (Note 7)                                                                                                                                 | -31                        |                   | dBc        |
| LOFT                    | Carrier Leakage (LO Feedthrough)                            | (Note 7)<br>EN = Low (Note 7)                                                                                                            | -37.6<br>-29.9             |                   | dBm<br>dBm |
| 2L0FT                   | LO Feedthrough at 2xLO                                      |                                                                                                                                          | -72.5                      | (                 | dBm        |
| 2L0                     | Signal Powers at 2xL0                                       | Maximum of $2f_{LO} - 2f_{BB}$ ; $2f_{LO} - f_{BB}$ ; $2f_{LO} + f_{BB}$ ,<br>$2f_{LO} + 2f_{BB}$                                        | -46.9                      |                   | dBc        |
| 3L0FT                   | LO Feedthrough at 3xLO                                      |                                                                                                                                          | -78.6                      | (                 | dBm        |
| 3L0                     | Signal Powers at 3xL0                                       | Maximum of 3f <sub>L0</sub> – f <sub>BB</sub> ; 3f <sub>L0</sub> + f <sub>BB</sub>                                                       | -53.3                      |                   | dBc        |
| BW1dB <sub>BB</sub>     | –1dB Baseband Bandwidth                                     | $R_{SOURCE} = 50\Omega$ , Differential                                                                                                   | 100                        | 1                 | MHz        |
| BW3dB <sub>BB</sub>     | –3dB Baseband Bandwidth                                     | $R_{SOURCE} = 50\Omega$ , Differential                                                                                                   | 181                        | 1                 | MHz        |
| Analog Vari             | able Gain Control (V <sub>CTRL</sub> )                      | · · ·                                                                                                                                    | · .                        |                   |            |
| V <sub>CTRL</sub> R     | Gain Control Voltage Range                                  | Set Bit 6 in Register 0x01                                                                                                               | 0.9 to 3.3                 | }                 | ٧          |
| G <sub>CTRL</sub>       | Gain Control Gain Range                                     | Set Bit 6 in Register 0x01                                                                                                               | -73 to -1                  | 0                 | dB         |
| τ <sub>CTRL</sub>       | Gain Control Response Time                                  | Set Bit 6 in Register 0x01 (Note 8)                                                                                                      | 20                         |                   | ns         |
| Z <sub>CTRL</sub>       | Gain Control Input Impedance                                | Set Bit 6 in Register 0x01                                                                                                               | 10                         |                   | pF         |
|                         | DC Input Current                                            | Set Bit 6 in Register 0x01<br>Clear Bit 6 in Register 0x01                                                                               | 2.55<br>0                  |                   | mA<br>mA   |



**ELECTRICAL CHARACTERISTICS** The • denotes the specifications which apply over the full operating temperature range, otherwise specifications are at  $T_C = 25$ °C.  $V_{CC} = 3.3V$ , EN = 3.3V,  $V_{CTRL} = 3.3V$ ,  $P_{LO} = 0dBm$ , BBPI, BBMI, BBPQ, BBMQ common mode DC voltage  $V_{CMBB} = 1.4V_{DC}$ , I and Q baseband input signal = 2MHz, 2.1MHz,  $1V_{P-P(DIFF, 1 \text{ or } Q)}$ , I and Q 90° shifted, lower sideband selection, all registers set to default values, unless otherwise noted. Test circuit is shown in Figure 12.

| SYMBOL                 | PARAMETER                         | CONDITIONS                                                |   | MIN                     | ΤΥΡ  | MAX | UNITS            |
|------------------------|-----------------------------------|-----------------------------------------------------------|---|-------------------------|------|-----|------------------|
| Baseband I             | nputs (BBPI, BBMI, BBPQ, BBMQ)    |                                                           |   |                         |      |     |                  |
| V <sub>CMBB</sub>      | DC Common Mode Voltage            | Internally Generated                                      |   |                         | 1.41 |     | V                |
| R <sub>IN(DIFF)</sub>  | Input Resistance                  | Differential                                              |   |                         | 1.8  |     | kΩ               |
| R <sub>IN(CM)</sub>    | Common Mode Input Resistance      | Four Baseband Pins Shorted                                |   |                         | 350  |     | Ω                |
| I <sub>BB(OFF)</sub>   | Baseband Leakage Current          | Four Baseband Pins Shorted, EN = Low                      |   |                         | 1.3  |     | nA               |
| V <sub>SWING</sub>     | Amplitude Swing                   | No Hard Clipping, Single-Ended, Digital Gain $(DG) = -10$ |   |                         | 1.2  |     | V <sub>P-P</sub> |
| Power Supp             | ply (V <sub>CC</sub> )            |                                                           |   |                         |      |     |                  |
| V <sub>CC</sub>        | Supply Voltage Range              |                                                           |   | 2.7                     |      | 3.6 | V                |
| V <sub>RET(MIN)</sub>  | Minimum Data Retention Voltage    | (Note 14)                                                 | • | 1.8                     | 1.5  |     | V                |
| I <sub>CC(ON)</sub>    | Supply Current                    | EN = High                                                 |   | 20                      | 29.5 | 37  | mA               |
| I <sub>CC(RANGE)</sub> | Supply Current Range              | EN = High, Register 0x01 = 0x00                           |   |                         | 39   |     | mA               |
|                        |                                   | EN = High, Register 0x01 = 0x13                           |   |                         | 9    |     | mA               |
| I <sub>CC(OFF)</sub>   | Supply Current, Sleep Mode        | EN = 0V                                                   |   |                         | 0.6  | 9   | μA               |
| t <sub>ON</sub>        | Turn-On Time                      | EN = Low to High (Notes 8, 12)                            |   |                         | 30   |     | ns               |
| t <sub>OFF</sub>       | Turn-Off Time                     | EN = High to Low (Notes 9, 12)                            |   |                         | 33   |     | ns               |
| t <sub>SB</sub>        | Side-Band Suppression Settling    | Register 0x00 Change, <-50dBc (Notes 12, 18)              |   |                         | 350  |     | ns               |
| t <sub>LO</sub>        | LO Suppression Settling           | Register 0x02 Change, <-60dBm (Note 12)                   |   |                         | 125  |     | ns               |
| Serial Port            | (CSB, SCLK, SDI, SDO), Enable (EN | ) and TTCK, SCLK = 20MHz                                  |   |                         |      |     |                  |
| VIH                    | Input High Voltage                |                                                           |   | 1.1                     |      | ,   | V                |
| V <sub>IL</sub>        | Input Low Voltage                 |                                                           | • |                         |      | 0.2 | V                |
| I <sub>IH</sub>        | Input High Current                |                                                           |   |                         | 0.02 |     | nA               |
| IIL                    | Input Low Current                 |                                                           |   |                         | -0.4 |     | nA               |
| V <sub>OH</sub>        | Output High Voltage               | (Note 13)                                                 |   | V <sub>CC_L</sub> - 0.2 |      |     | V                |
| V <sub>OL</sub>        | Output Low Voltage                | I <sub>SINK</sub> = 8mA (Note 10)                         | • |                         |      | 0.7 | V                |
| I <sub>OH</sub>        | SDO Leakage Current               | for SDO = High                                            |   |                         | 0.5  |     | nA               |
| V <sub>HYS</sub>       | Input Trip Point Hysteresis       |                                                           |   |                         | 110  |     | mV               |
| t <sub>CKH</sub>       | SCLK High Time                    |                                                           | • | 22.5                    |      |     | ns               |
| t <sub>CSS</sub>       | CSB Setup Time                    |                                                           | • | 20                      |      |     | ns               |
| t <sub>CSH</sub>       | CSB High Time                     |                                                           | • | 30                      |      |     | ns               |
| t <sub>CS</sub>        | SDI to SCLK Setup Time            |                                                           | • | 20                      |      |     | ns               |
| t <sub>CH</sub>        | SDI to SCLK Hold Time             |                                                           | • | 10                      |      |     | ns               |
| t <sub>DO</sub>        | SCLK to SDO Time                  |                                                           | • | 45                      |      |     | ns               |
| t <sub>C%</sub>        | SCLK Duty Cycle                   |                                                           | • | 45                      | 50   | 55  | %                |
| f <sub>CLK</sub>       | Maximum SCLK Frequency            |                                                           | • | 20                      |      |     | MHz              |
| V <sub>TEMP</sub>      | Temperature Diode Voltage         | I <sub>TEMP</sub> = 100μA                                 |   |                         | 772  |     | mV               |
|                        | Temperature Slope                 | I <sub>TEMP</sub> = 100μA                                 |   |                         | -1.5 |     | mV/°C            |

5589f

### **ELECTRICAL CHARACTERISTICS**

**Note 1:** Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.

**Note 2:** The LTC5589 is guaranteed functional over the operating case temperature range from -40°C to 105°C.

**Note 3:** At 6MHz offset from the LO signal frequency. 100nF between BBPI and BBMI, 100nF between BBPQ and BBMQ.

Note 4: The Default Register Settings are listed in Table 1.

Note 5: IM2 is measured at fL0 - 4.1MHz.

**Note 6:** IM3 is measured at  $f_{L0} - 2.2MHz$  and  $f_{L0} - 1.9MHz$ . OIP3 = lowest of  $(1.5 \bullet P\{f_{L0} - 2.1MHz\} - 0.5 \bullet P\{f_{L0} - 2.2MHz\})$  and  $(1.5 \bullet P\{f_{L0} - 2MHz\} - 0.5 \bullet P\{f_{L0} - 1.9MHz\})$ .

Note 7: Without side-band or LO feedthrough nulling (unadjusted).

Note 8: RF power is within 10% of final value.

Note 9: RF power is at least 30dB down from its ON state.

**Note 10:**  $V_{OL}$  voltage scales linear with current sink. For example for  $R_{PULL-UP} = 1k\Omega$ ,  $V_{CC\_L} = 3.3V$  the SDO sink current is about (3.3 - 0.2) /1 $k\Omega = 3.1$ mA. Max  $V_{OL} = 0.7 \cdot 3.1/8 = 0.271V$ , with  $R_{PULL-UP}$  the SDO pull-up resistor and  $V_{CC\_L}$  the digital supply voltage to which  $R_{PULL-UP}$  is connected to.

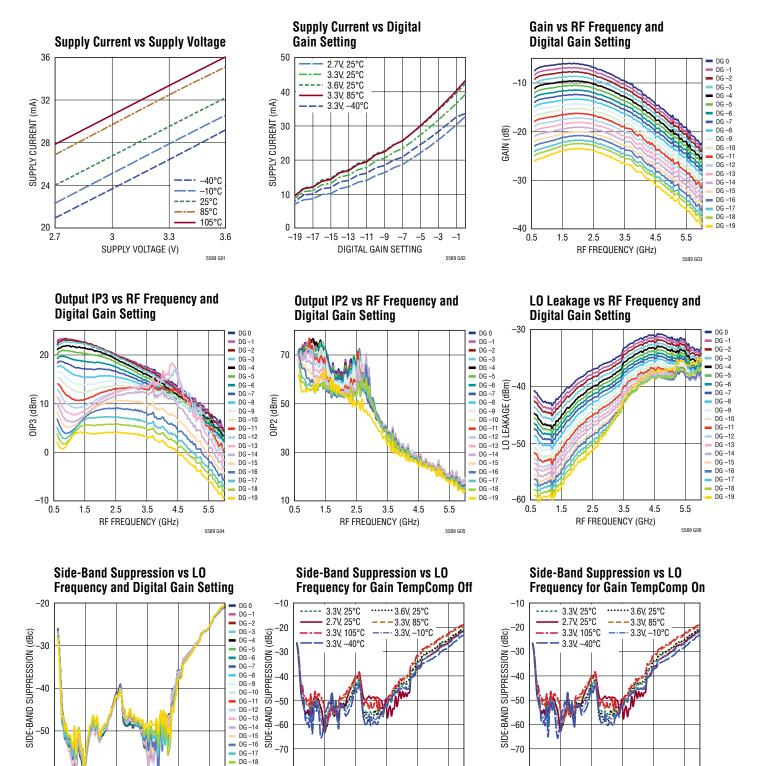
Note 11: I and Q baseband Input signal = 2MHz CW,  $0.8V_{P-P, DIFF}$  each, I and Q 0° shifted.

**Note 12:**  $f_{LO} = 1800MHz$ ,  $P_{LO} = 0dBm$ , C4 = 10pF

**Note 13:** Maximum V<sub>0H</sub> is derated for capacitive load using the following formula: V<sub>CC\_L</sub> • exp ( $-0.5 • T_{CLK}/(R_{PULL-UP} • C_{LOAD})$ , with  $T_{CLK}$  the time of one SCLK cycle,  $R_{PULL-UP}$  the SDO pull-up resistor,  $V_{CC_L}$  the digital supply voltage to which  $R_{PULL-UP}$  is connected to, and  $C_{LOAD}$  the capacitive load at the SDO pin. For example for  $T_{CLK} = 100$ ns (10MHz SCLK),  $R_{PULL-UP} = 1$ k $\Omega$ ,  $C_{LOAD} = 10$ pF and  $V_{CC_L} = 3.3$ V the derating is 3.3 • exp(-5) = 22.2mV, thus maximum  $V_{OH} = 3.3$ V - 0.1 - 0.0222 = 3.177V.

Note 14: Minimum V<sub>CC</sub> in order to retain register data content.

**Note 15:** Guaranteed by design and characterization. This parameter is not tested.


**Note 16:** RF pin guaranteed by design while using a 100pF coupling capacitor. The RF pin is not tested.

**Note 17:**  $f_{LO} = 2.17$ GHz,  $f_{NOISE} = 2.14$ GHz,  $f_{BB} = 2$ kHz. 100nF between BBPI and BBMI, 100nF between BBPQ and BBMQ.

**Note 18:** Using 2.14GHz bandpass filter with BW = 5MHz,  $f_{BB}$  = 25MHz,  $f_{LO}$  = 2.115GHz, measured from parallel load (see Figure 7).



**TYPICAL PERFORMANCE CHARACTERISTICS**  $V_{CC} = 3.3V$ , EN = 3.3V,  $V_{CTRL} = 3.3V$ ,  $T_C = 25^{\circ}C$ ,  $P_{L0} = 0dBm$ ,  $f_{L0} = 1.8GHz$ , BBPI, BBMI, BBPQ, BBMQ common mode DC voltage  $V_{CMBB} = 1.4V_{DC}$ , I and Q baseband input signal = 2MHz, 2.1MHz,  $1V_{P-P(DIFF, 1 \text{ or } Q)}$ , I and Q 90° shifted, lower sideband selection, TEMPUPDT = 0, register 0x00 value according to Table 6, all other registers set to default values, unless otherwise noted. Test circuit is shown in Figure 12.



2.5

3.5

LO FREQUENCY (GHz)

4.5

5.5

5589 G08

-80

0.5

1.5

2.5

3.5

LO FREQUENCY (GHz)

4.5

DG -19

-80

0.5

1.5

-60

0.5

1.5

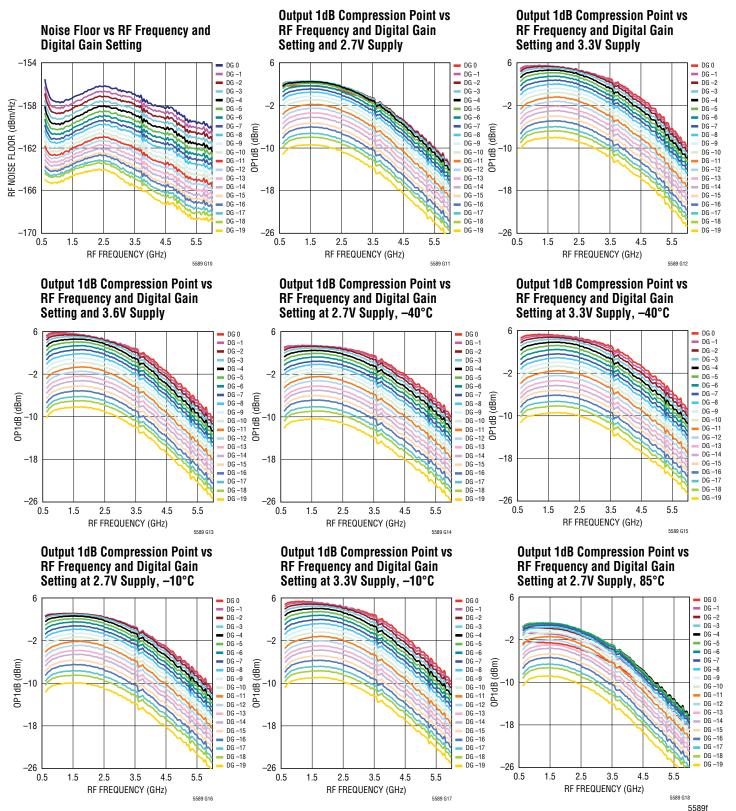
2.5

3.5

LO FREQUENCY (GHz)

4.5

5.5


5589 G07



5.5

5589 G09 5589f

**TYPICAL PERFORMANCE CHARACTERISTICS**  $V_{CC} = 3.3V$ , EN = 3.3V,  $V_{CTRL} = 3.3V$ ,  $T_C = 25^{\circ}C$ ,  $P_{L0} = 0dBm$ ,  $f_{L0} = 1.8GHz$ , BBPI, BBMI, BBPQ, BBMQ common mode DC voltage  $V_{CMBB} = 1.4V_{DC}$ , I and Q baseband input signal = 2MHz, 2.1MHz,  $1V_{P-P(DIFF, I \text{ or } Q)}$ , I and Q 90° shifted, lower sideband selection, TEMPUPDT = 0, register 0x00 value according to Table 6, all other registers set to default values, unless otherwise noted. Test circuit is shown in Figure 12.





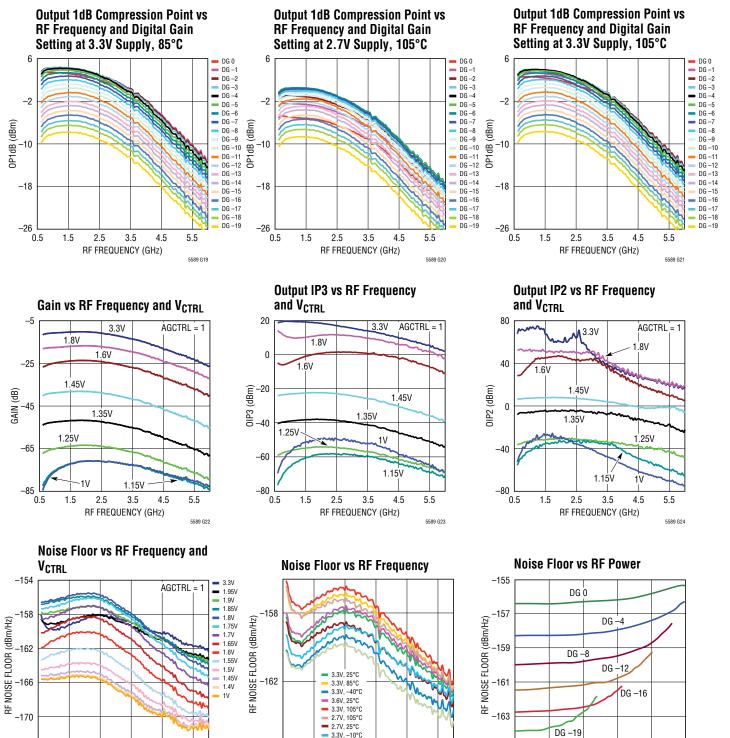
-174

0.5

1.5

2.5

3.5


**RF FREQUENCY (GHz)** 

4.5

5.5

5589 G25

**TYPICAL PERFORMANCE CHARACTERISTICS**  $V_{CC} = 3.3V$ , EN = 3.3V,  $V_{CTRL} = 3.3V$ ,  $T_C = 25^{\circ}C$ ,  $P_{L0} = 0dBm$ ,  $f_{L0} = 1.8GHz$ , BBPI, BBMI, BBPQ, BBMQ common mode DC voltage  $V_{CMBB} = 1.4V_{DC}$ , I and Q baseband input signal = 2MHz, 2.1MHz,  $1V_{P-P(DIFF, I \text{ or } Q)}$ , I and Q 90° shifted, lower sideband selection, TEMPUPDT = 0, register 0x00 value according to Table 6, all other registers set to default values, unless otherwise noted. Test circuit is shown in Figure 12.





-165

\_16

-12

-8

RF POWER (dBm)

-4

0

3.5

RF FREQUENCY (GHz)

4.5

5.5

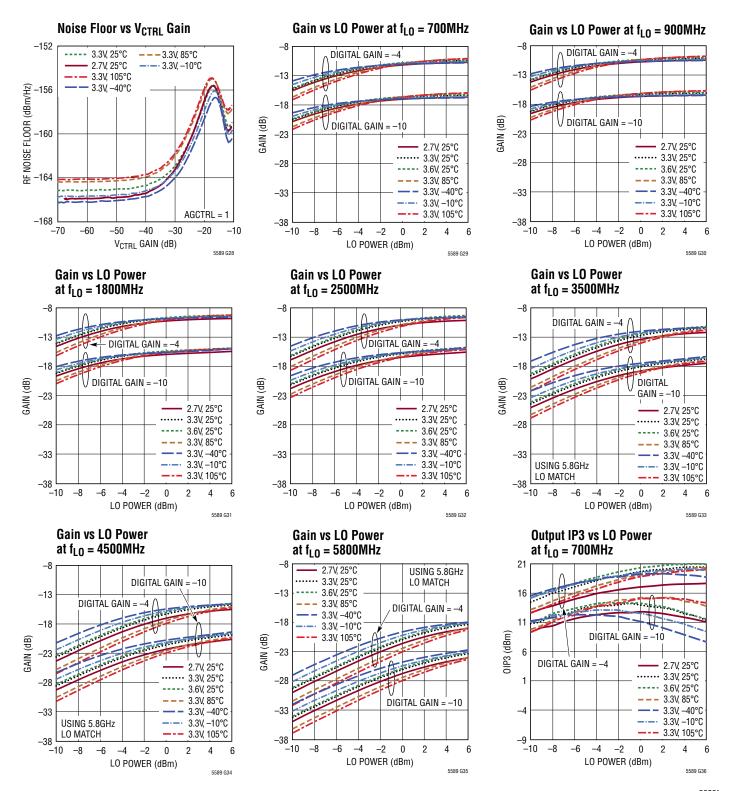
5589 G26

2.7V, -40°C

2.5

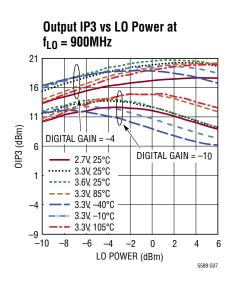
-166

0.5

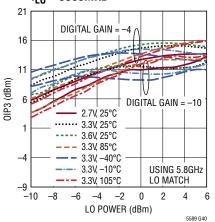

1.5

5589f

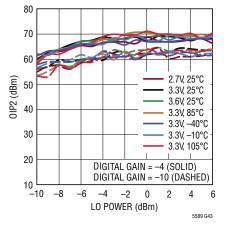
4

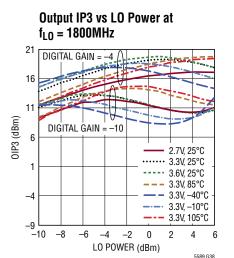

5589 G27

**TYPICAL PERFORMANCE CHARACTERISTICS**  $V_{CC} = 3.3V$ , EN = 3.3V,  $V_{CTRL} = 3.3V$ ,  $T_C = 25^{\circ}C$ ,  $P_{LO} = 0dBm$ ,  $f_{LO} = 1.8GHz$ , BBPI, BBMI, BBPQ, BBMQ common mode DC voltage  $V_{CMBB} = 1.4V_{DC}$ , I and Q baseband input signal = 2MHz, 2.1MHz, 1VP-P(DIFF, I or Q), I and Q 90° shifted, lower sideband selection, TEMPUPDT = 0, register 0x00 value according to Table 6, all other registers set to default values, unless otherwise noted. Test circuit is shown in Figure 12.

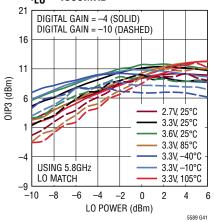






**TYPICAL PERFORMANCE CHARACTERISTICS**  $V_{CC} = 3.3V$ , EN = 3.3V,  $V_{CTRL} = 3.3V$ ,  $T_C = 25^{\circ}C$ ,  $P_{L0} = 0dBm$ ,  $f_{L0} = 1.8GHz$ , BBPI, BBMI, BBPQ, BBMQ common mode DC voltage  $V_{CMBB} = 1.4V_{DC}$ , I and Q baseband input signal = 2MHz, 2.1MHz, 1VP-P(DIFE, 1 or Q), I and Q 90° shifted, lower sideband selection, TEMPUPDT = 0, register 0x00 value according to Table 6, all other registers set to default values, unless otherwise noted. Test circuit is shown in Figure 12.

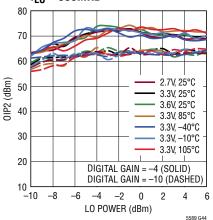



**Output IP3 vs LO Power at**  $f_{L0} = 3500 MHz$ 

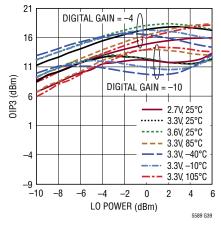




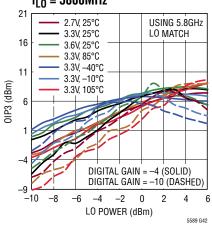
**Output IP2 vs LO Power at**  $f_{LO} = 700MHz$ 



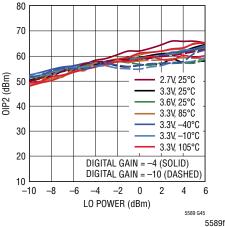




**Output IP3 vs LO Power at**  $f_{L0} = 4500 MHz$ 



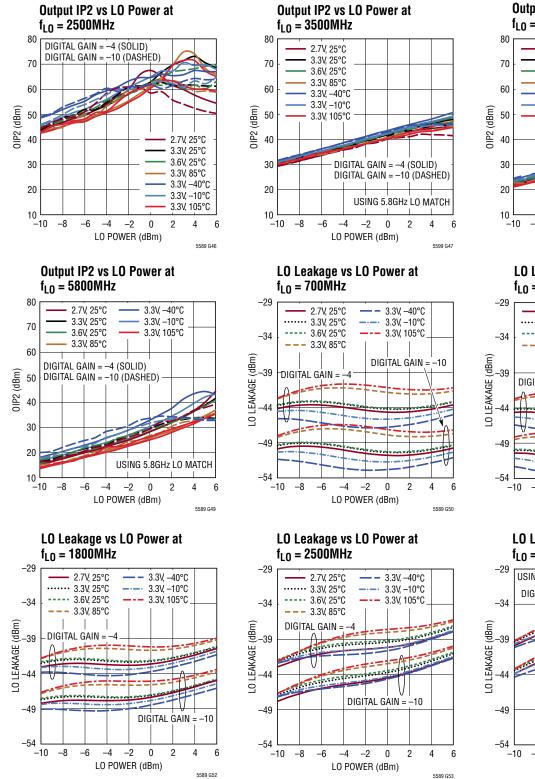




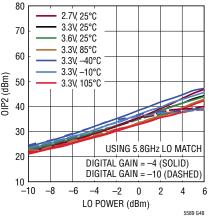


**Output IP3 vs LO Power at**  $f_{LO} = 2500MHz$ 



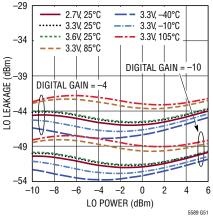
**Output IP3 vs LO Power at**  $f_{10} = 5800 MHz$ 



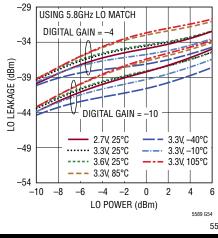

**Output IP2 vs LO Power at**  $f_{L0} = 1800MHz$ 







**TYPICAL PERFORMANCE CHARACTERISTICS**  $V_{CC} = 3.3V$ , EN = 3.3V,  $V_{CTRL} = 3.3V$ ,  $T_C = 25^{\circ}C$ ,  $P_{L0} = 0dBm$ ,  $f_{L0} = 1.8GHz$ , BBPI, BBMI, BBPQ, BBMQ common mode DC voltage  $V_{CMBB} = 1.4V_{DC}$ , I and Q baseband input signal = 2MHz, 2.1MHz, 1VP-P(DIFE, 1 or Q), I and Q 90° shifted, lower sideband selection, TEMPUPDT = 0, register 0x00 value according to Table 6, all other registers set to default values, unless otherwise noted. Test circuit is shown in Figure 12.

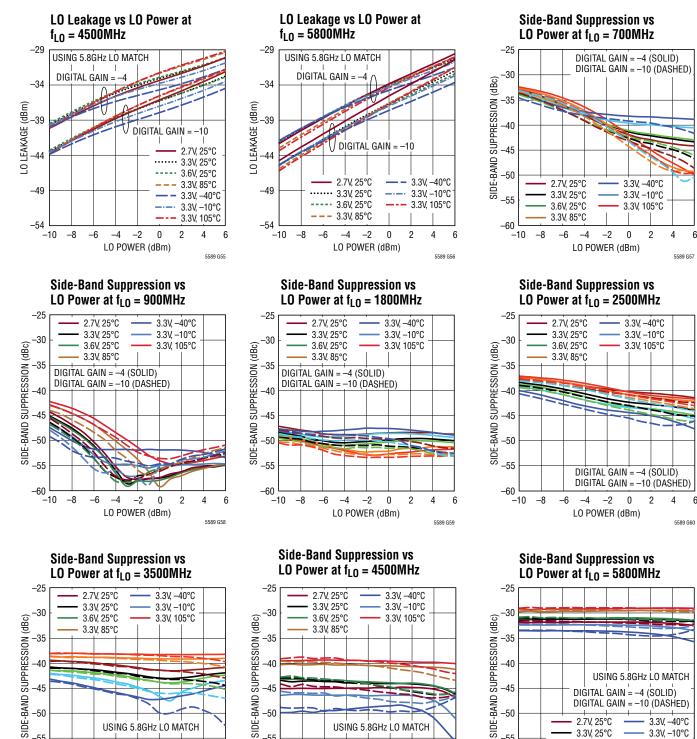



**Output IP2 vs LO Power at**  $f_{L0} = 4500 MHz$ 



LO Leakage vs LO Power at  $f_{1,0} = 900MHz$ 




LO Leakage vs LO Power at  $f_{LO} = 3500MHz$ 





5589f

**TYPICAL PERFORMANCE CHARACTERISTICS**  $V_{CC} = 3.3V$ , EN = 3.3V,  $V_{CTRL} = 3.3V$ ,  $T_C = 25^{\circ}C$ ,  $P_{L0} = 0dBm$ ,  $f_{L0} = 1.8GHz$ , BBPI, BBMI, BBPQ, BBMQ common mode DC voltage  $V_{CMBB} = 1.4V_{DC}$ , I and Q baseband input signal = 2MHz, 2.1MHz, 1VP-P(DIFE, 1 or Q), I and Q 90° shifted, lower sideband selection, TEMPUPDT = 0, register 0x00 value according to Table 6, all other registers set to default values, unless otherwise noted. Test circuit is shown in Figure 12.





3.3V, -40°C

3.3V, -10°C

3.3V, 105°C

6

5589f

5589 G63

LO POWER (dBm)

USING 5.8GHz LO MATCH

DIGITAL GAIN = -4 (SOLID)

DIGITAL GAIN = -10 (DASHED)

-50

-55

-60

-10 -8 -6 -4 -2 0 2 4 -50

-55

-60

6

5589 662

-10 -8 -6 -4 -2 0 2 4

2.7V, 25°C

3.3V, 25°C

3.6V. 25°C

3.3V, 85°C

LO POWER (dBm)

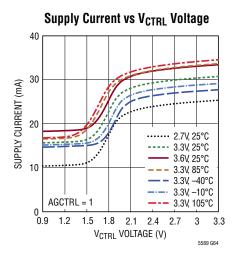
-50

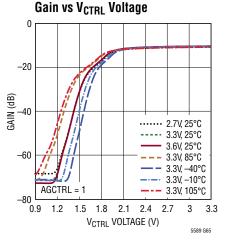
-55

-60

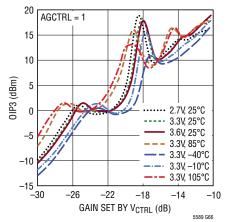
-10 -8 -6 -4 -2 0 2 4 6

USING 5.8GHz LO MATCH

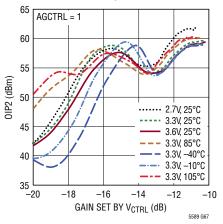

DIGITAL GAIN = -4 (SOLID)


LO POWER (dBm)

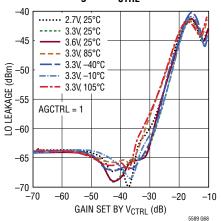
DIGITAL GAIN = -10 (DASHED)


5589 G61

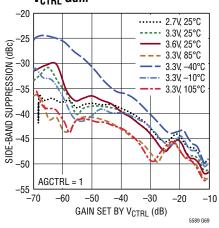
**TYPICAL PERFORMANCE CHARACTERISTICS**  $V_{CC} = 3.3V$ , EN = 3.3V,  $V_{CTRL} = 3.3V$ ,  $T_C = 25^{\circ}C$ ,  $P_{L0} = 0dBm$ ,  $f_{L0} = 1.8GHz$ , BBPI, BBMI, BBPQ, BBMQ common mode DC voltage  $V_{CMBB} = 1.4V_{DC}$ , I and Q baseband input signal = 2MHz, 2.1MHz,  $1V_{P-P(DIFF, 1 \text{ or } Q)}$ , I and Q 90° shifted, lower sideband selection, TEMPUPDT = 0, register 0x00 value according to Table 6, all other registers set to default values, unless otherwise noted. Test circuit is shown in Figure 12.



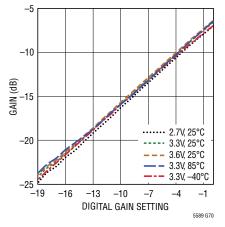




Output IP3 vs V<sub>CTBL</sub> Gain

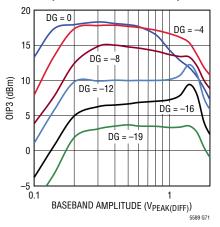



Output IP2 vs V<sub>CTRL</sub> Gain

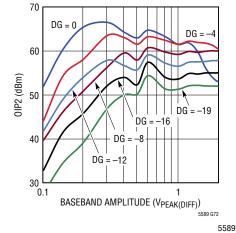



LO Leakage vs V<sub>CTRL</sub> Gain

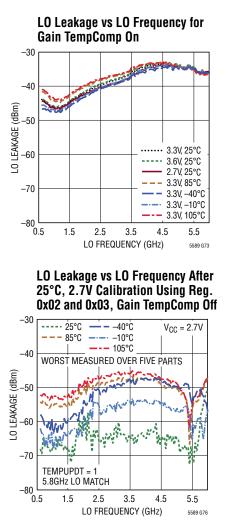



Side-Band Suppression vs V<sub>CTRL</sub> Gain

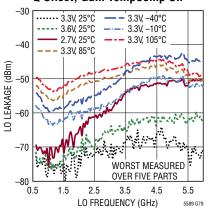



Gain vs Digital Gain Setting

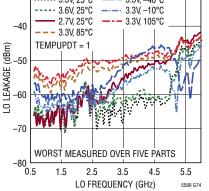



**Output IP3 vs Baseband Amplitude** 

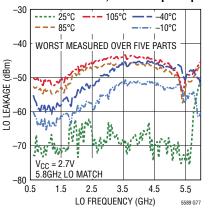



**Output IP2 vs Baseband Amplitude** 

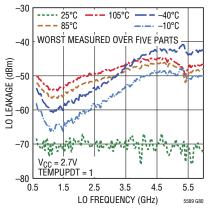



**TYPICAL PERFORMANCE CHARACTERISTICS**  $V_{CC} = 3.3V$ , EN = 3.3V,  $V_{CTRL} = 3.3V$ ,  $T_C = 25^{\circ}C$ ,  $P_{L0} = 0dBm$ ,  $f_{L0} = 1.8GHz$ , BBPI, BBMI, BBPQ, BBMQ common mode DC voltage  $V_{CMBB} = 1.4V_{DC}$ , I and Q baseband input signal = 2MHz, 2.1MHz,  $1V_{P-P(DIFF, 1 \text{ or } Q)}$ , I and Q 90° shifted, lower sideband selection, TEMPUPDT = 0, register 0x00 value according to Table 6, all other registers set to default values, unless otherwise noted. Test circuit is shown in Figure 12.

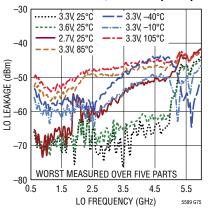



LO Leakage vs LO Frequency After 25°C, 3.3V Calibration Using I and Q Offset, Gain TempComp On

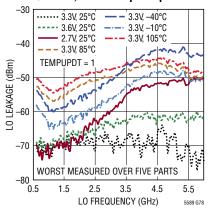



LO Leakage vs LO Frequency After 25°C, 3.3V Calibration Using Reg. 0x02 and 0x03, Gain TempComp Off -30 •••••• 3.3V, 25°C 

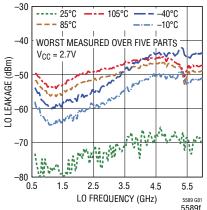



LO Leakage vs LO Frequency After 25°C, 2.7V Calibration Using Reg. 0x02 and 0x03, Gain TempComp On



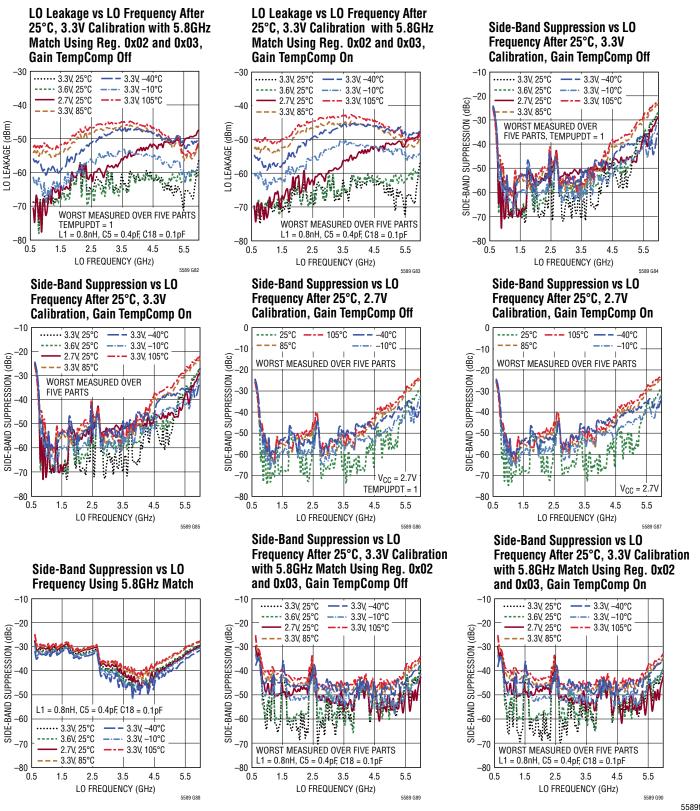

LO Leakage vs LO Frequency After 25°C, 2.7V Calibration Using I and Q Offset, Gain TempComp Off




LO Leakage vs LO Frequency After 25°C, 3.3V Calibration Using Reg. 0x02 and 0x03, Gain TempComp On

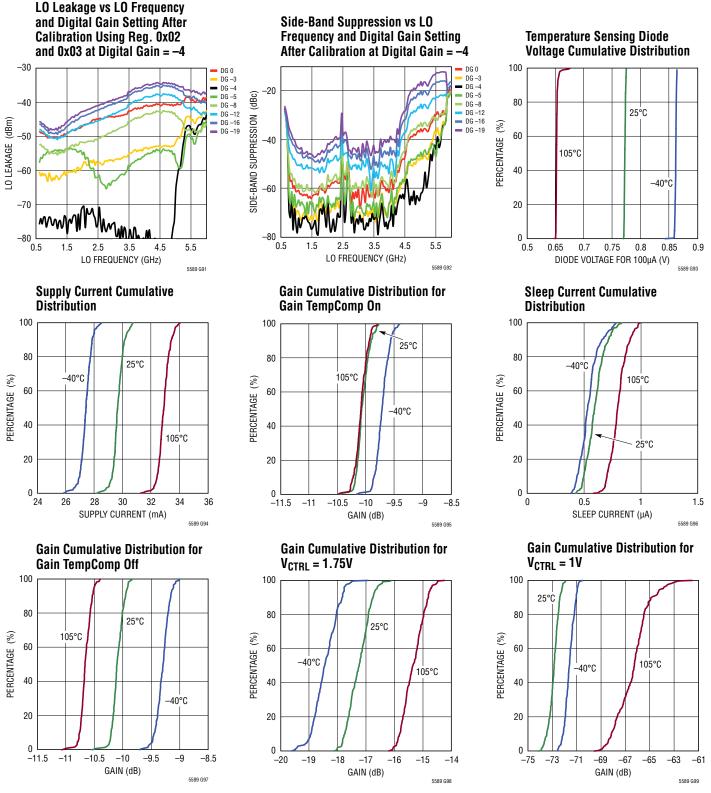


LO Leakage vs LO Frequency After 25°C, 3.3V Calibration Using I and Q Offset, Gain TempComp Off



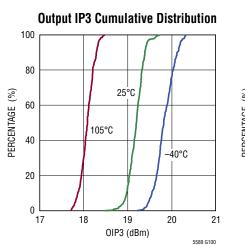

LO Leakage vs LO Frequency After 25°C, 2.7V Calibration Using I and Q Offset, Gain TempComp On



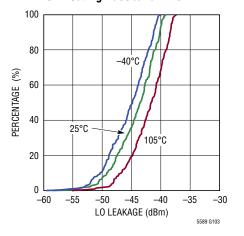



**TYPICAL PERFORMANCE CHARACTERISTICS**  $V_{CC} = 3.3V$ , EN = 3.3V,  $V_{CTRL} = 3.3V$ ,  $T_C = 25^{\circ}C$ ,  $P_{L0} = 0dBm$ ,  $f_{L0} = 1.8GHz$ , BBPI, BBMI, BBPQ, BBMQ common mode DC voltage  $V_{CMBB} = 1.4V_{DC}$ , I and Q baseband input signal = 2MHz, 2.1MHz, 1V<sub>P-P(DIFE, 1 or Q)</sub>, I and Q 90° shifted, lower sideband selection, TEMPUPDT = 0, register 0x00 value according to Table 6, all other registers set to default values, unless otherwise noted. Test circuit is shown in Figure 12.

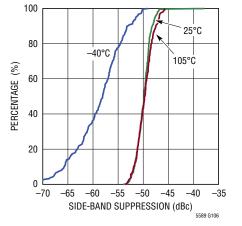


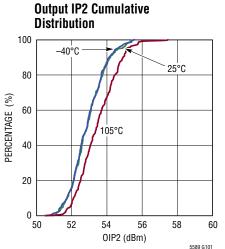



**TYPICAL PERFORMANCE CHARACTERISTICS**  $V_{CC} = 3.3V$ , EN = 3.3V,  $V_{CTRL} = 3.3V$ ,  $T_C = 25^{\circ}C$ ,  $P_{L0} = 0dBm$ ,  $f_{L0} = 1.8GHz$ , BBPI, BBMI, BBPQ, BBMQ common mode DC voltage  $V_{CMBB} = 1.4V_{DC}$ , I and Q baseband input signal = 2MHz, 2.1MHz,  $1V_{P-P(DIFF, I \text{ or } Q)}$ , I and Q 90° shifted, lower sideband selection, TEMPUPDT = 0, register 0x00 value according to Table 6, all other registers set to default values, unless otherwise noted. Test circuit is shown in Figure 12.







**TYPICAL PERFORMANCE CHARACTERISTICS**  $V_{CC} = 3.3V$ , EN = 3.3V,  $V_{CTRL} = 3.3V$ ,  $T_C = 25^{\circ}C$ ,  $P_{L0} = 0dBm$ ,  $f_{L0} = 1.8GHz$ , BBPI, BBMI, BBPQ, BBMQ common mode DC voltage  $V_{CMBB} = 1.4V_{DC}$ , I and Q baseband input signal = 2MHz, 2.1MHz,  $1V_{P-P(DIFF, I \text{ or } Q)}$ , I and Q 90° shifted, lower sideband selection, TEMPUPDT = 0, register 0x00 value according to Table 6, all other registers set to default values, unless otherwise noted. Test circuit is shown in Figure 12.




LO Leakage Cumulative Distribution for Floating Baseband Pins



**Side-Band Suppression Cumulative Distribution** 





LO Leakage Cumulative

40

105°C

-40

-35

-30

5589 G104

Distribution

25°C

-55

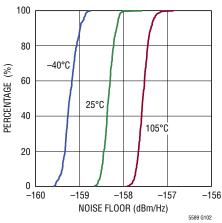
-50

100

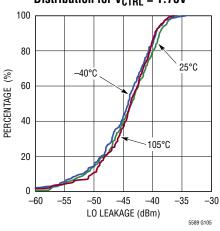
80

60

40


20

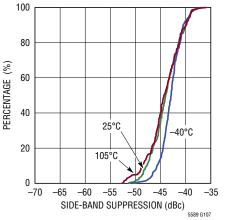
0


-60

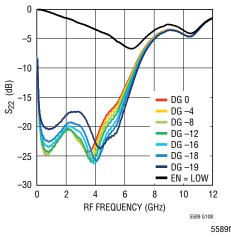
PERCENTAGE (%)

**Output Noise Floor Cumulative** Distribution

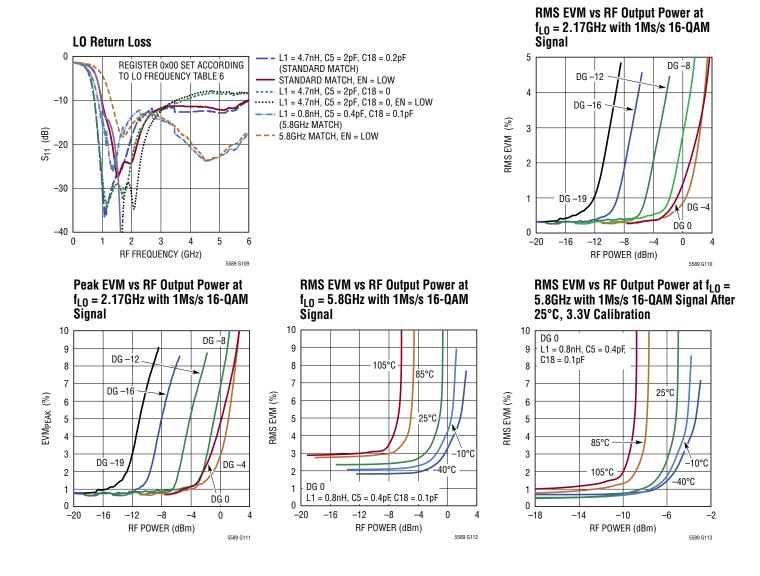



LO Leakage Cumulative Distribution for V<sub>CTRL</sub> = 1.75V




**Side-Band Suppression Cumulative** Distribution for V<sub>CTRL</sub> = 1.75V

-45


LO LEAKAGE (dBm)



**RF Return Loss** 



**TYPICAL PERFORMANCE CHARACTERISTICS**  $V_{CC} = 3.3V$ , EN = 3.3V,  $V_{CTRL} = 3.3V$ ,  $T_C = 25^{\circ}C$ ,  $P_{L0} = 0dBm$ ,  $f_{L0} = 1.8GHz$ , BBPI, BBMI, BBPQ, BBMQ common mode DC voltage  $V_{CMBB} = 1.4V_{DC}$ , I and Q baseband input signal = 2MHz, 2.1MHz,  $1V_{P-P(DIFF, I \text{ or } Q)}$ , I and Q 90° shifted, lower sideband selection, TEMPUPDT = 0, register 0x00 value according to Table 6, all other registers set to default values, unless otherwise noted. Test circuit is shown in Figure 12.





### PIN FUNCTIONS

**V<sub>CTRL</sub> (Pin 1):** Variable Gain Control Input. This analog control pin sets the gain. Write a "1" to bit 6 in register 0x01 (AGCTRL = 1) to activate this pin, resulting in about 2.5mA current draw from a positive supply. Typical V<sub>CTRL</sub> voltage range is 0.9V to 3.3V. Gain transfer function is not linear-in-dB. Tie to V<sub>CC</sub> when not used.

**GND** (Pins 2, 5, 12, 13, 14, 15, 17, 18, Exposed Pad 25): Ground. All these pins are connected together internally. For best RF performance all ground pins should be connected to RF ground.

**LOL, LOC (Pins 3, 4):** LO Inputs. This is not a differential input. Both pins are  $50\Omega$  inputs. An LC diplexer is recommended to be used at these pins (see Figure 12). AC-coupling capacitors are required at these pins if the applied DC level is higher than  $\pm 50$ mV.

**TTCK (Pin 6):** Temperature Update. When the TTCK temperature update mode is selected in register 0x01 (bit 7 = High, TEMPUPDT = 1), the temperature readout and digital gain compensation vs temperature can be updated through a logic low to logic high transition at this pin. Do not float.

**TEMP (Pin 7):** Temperature Sensing Diode. This pin is connected to the anode of a diode that may be used to measure the die temperature, by forcing a current and measuring the voltage. This diode is not part of the on-chip thermometer.

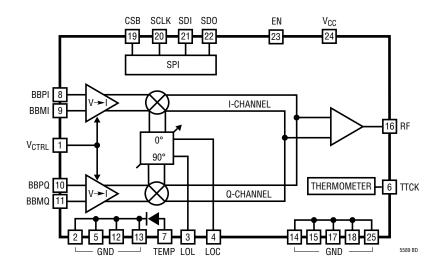
**BBPI, BBMI (Pins 8, 9):** Baseband Inputs of the I-Channel. The input impedance of each input is about  $1k\Omega$ . It should be externally biased to a 1.4V common mode level, or ACcoupled. Do not apply common mode voltage beyond  $2V_{DC}$ . **BBPQ, BBMQ (Pins 10, 11):** Baseband Inputs of the Q-Channel. The input impedance of each input is about  $1k\Omega$ . It should be externally biased to a 1.4V common mode level, or AC-coupled. Do not apply common mode voltage beyond  $2V_{DC}$ . Float if Q-channel is disabled.

**RF (Pin 16):** RF Output. The output impedance at RF frequencies is  $50\Omega$ . Its DC output voltage is about 1.7V if enabled. An AC-coupling capacitor should be used at this pin with a recommended value of 100pF.

**CSB (Pin 19):** Serial Port Chip Select. This CMOS input initiates a serial port transaction when driven low, ending the transaction when driven back high. Do not float.

**SCLK (Pin 20):** Serial Port Clock. This CMOS input clocks serial port input data on its rising edge. Do not float.

**SDI (Pin 21):** Serial Port Data Input. The serial port uses this CMOS input for data. Do not float.


**SDO (Pin 22):** Serial Port Data Output. This NMOS output presents data from the serial port during a read transaction. Connect this pin to the digital supply voltage through a pull-up resistor of sufficiently large value, to ensure that the current does not exceed 10mA when pulled low.

**EN (Pin 23):** Enable Pin. The chip is completely turned on when a logic high voltage is applied to this pin, and completely turned off for a logic low voltage. Do not float.

 $V_{CC}$  (Pin 24): Power Supply. It is recommended to use 1nF and 4.7  $\mu$ F capacitors for decoupling to ground on this pin.



### **BLOCK DIAGRAM**







### **APPLICATIONS INFORMATION**

The LTC5589 consists of I and Q input differential voltageto-current converters, I and Q upconverting mixers, an RF output buffer and an LO quadrature phase generator. An SPI bus addresses nine control registers, enabling optimization of side-band suppression, LO leakage, and adjustment of the modulator gain. See Table 1 for a summary of the writable registers and their default values. A full map of all the registers in the LTC5589 is listed in Table 8 and Table 9 in the Appendix.

| ADDRESS | DEFAULT<br>VALUE | SETTING | REGISTER FUNCTION                  |
|---------|------------------|---------|------------------------------------|
| 0x00    | 0x3E             | 2.56GHz | LO Frequency Tuning                |
| 0x01    | 0x84             | DG = -4 | Gain                               |
| 0x02    | 0x80             | 0mV     | Offset I-Channel                   |
| 0x03    | 0x80             | 0mV     | Offset Q-Channel                   |
| 0x04    | 0x80             | OdB     | I/Q Gain Ratio                     |
| 0x05    | 0x10             | 0°      | I/Q Phase Balance                  |
| 0x06    | 0x50             | OFF     | LO Port Matching Override          |
| 0x07    | 0x06             | OFF     | Temperature Correction<br>Override |
| 0x08    | 0x00             | NORMAL  | Operating Mode                     |

 Table 1. SPI Writable Registers and Default Register Values.

Without using the SPI the registers will use the default values which may not result in the optimum side-band suppression (SB). For example: for LO frequency from about 2.44GHz to about 2.72GHz, the SB is about –40dBc; from 1.7GHz to 2.44GHz and 2.72GHz to 2.93GHz it falls to about –35dBc.

Aside of powering up the LTC5589, the register values can be reset to the default values by setting SRESET = 1 (bit 3, register 0x08). After about 50ns SRESET is automatically set back to 0.

External I and Q baseband signals are applied to the differential baseband input pins: BBPI, BBMI and BBPQ, BBMQ. These voltage signals are converted to currents and translated to RF frequency by means of double-balanced upconverting mixers. The mixer outputs are combined at the inputs of the RF output buffer, which also transforms the output impedance to  $50\Omega$ . The center frequency of the resulting RF signal is equal to the LO signal frequency. The LO inputs drive a phase shifter which splits the LO signal into in-phase and quadrature signals which drive the upconverting mixers. In most applications, the LOL input is driven by the LO source via a 4.7nH inductor, while the LOC input is driven by the LO source via a 2pF capacitor. This inductor and capacitor form a diplexer circuit tuned to 1.4GHz. The RF output is single-ended and internally  $50\Omega$  matched across a wide RF frequency range from 55MHz to 6.6GHz with better than 10dB return loss using C4 = 100pF and C17 = 0.2pF. See Figure 12.

### **Baseband Interface**

The baseband inputs (BBPI, BBMI, BBPQ, BBMQ) present a differential input impedance of about  $1.8k\Omega$ , as depicted in Figure 1. The baseband bandwidth depends on the source impedance and the frequency setting (register 0x00). It is recommended to compensate the baseband input impedance in the baseband lowpass filter design in order to achieve best gain flatness vs baseband frequency. The S-parameters for (each of) the baseband inputs are given in Table 2 for various LO frequency and gain settings.

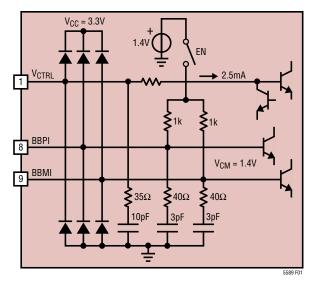



Figure 1. Simplified Circuit Schematic of the Base Band Input Interface (Only One Channel Is Shown).



## **APPLICATIONS INFORMATION**

Table 2. Differential Baseband (BB) Input Impedance vs Frequency for EN = High and  $V_{CMBB} = 1.4V$ 

| BB<br>Frequency | INI       | PUT IMPEDANCE (Ω)          | REFL<br>Coefficient |           |
|-----------------|-----------|----------------------------|---------------------|-----------|
| (MHz)           | REAL*     | IMAG* (CAP)                | MAG                 | ANGLE(°)  |
| LO FREQUE       | NCY = 0.8 | 3GHz (REG. 0x00 = 0x70), D | GITAL GA            | IN = -4dB |
| 1               | 1.84k     | –12.8k (12pF)              | 0.897               | -0.9      |
| 10              | 1.76k     | –1.4k (11.3pF)             | 0.893               | -8.2      |
| 20              | 1.55k     | –705 (11.2pF)              | 0.881               | -16       |
| 40              | 1.08k     | -360(11pF)                 | 0.841               | -31       |
| 100             | 368       | -157 (9.8pF)               | 0.680               | -68       |
| LO FREQUE       | NCY = 1.8 | 3GHz (REG. 0x00 = 0x4B), D | IGITAL GA           | IN = –4dB |
| 1               | 1.84k     | -16.8k (9.2pF)             | 0.897               | -0.7      |
| 10              | 1.79k     | –1.74k (9.1pF)             | 0.895               | -6.6      |
| 20              | 1.65k     | -876 (9pF)                 | 0.887               | -13       |
| 40              | 1.27      | –444 (8.9pF)               | 0.860               | -26       |
| 100             | 501       | -186 (8.3pF)               | 0.733               | -58       |
| 200             | 204       | -113 (6.9pF)               | 0.591               | -91       |
| LO FREQUE       | NCY = 2.5 | 5GHz (REG. 0x00 = 0x3F), D | GITAL GA            | N = -4dB  |
| 1               | 1.84k     | –17.7k (8.7pF)             | 0.897               | -0.6      |
| 10              | 1.8k      | –1.84k (8.6pF)             | 0.895               | -6.2      |
| 20              | 1.67k     | –924 (8.5pF)               | 0.888               | -12       |
| 40              | 1.31k     | –468 (8.5pF)               | 0.864               | -24       |
| 100             | 539       | –194 (7.9pF)               | 0.745               | -56       |
| 200             | 219       | –116 (6.7pF)               | 0.602               | -89       |
| 400             | 100       | –81 (4.8pF)                | 0.524               | -122      |
| LO FREQUE       | NCY = 3.8 | 3GHz (REG. 0x00 = 0x2B), D | GITAL GA            | IN = -4dB |
| 1               | 1.84k     | -18.8k (8.2pF)             | 0.897               | -0.6      |
| 10              | 1.8k      | –1.96k (8.1pF)             | 0.895               | -5.9      |
| 20              | 1.69k     | -985 (8pF)                 | 0.889               | -12       |
| 40              | 1.36k     | –499 (7.9pF)               | 0.868               | -23       |
| 100             | 585       | –206 (7.5pF)               | 0.758               | -53       |
| 200             | 238       | -120 (6.4pF)               | 0.616               | -85       |
| 400             | 106       | –83 (4.7pF)                | 0.528               | -119      |
| LO FREQUE       | NCY = 5.8 | 3GHz (REG. 0x00 = 0x1A), D | GITAL GA            | IN = -4dB |
| 1               | 1.84k     | –19.6k (7.8pF)             | 0.897               | -0.6      |
| 10              | 1.81k     | –2k (7.8pF)                | 0.895               | -5.7      |
| 20              | 1.69k     | -1.02 (7.7pF)              | 0.890               | -11       |
| 40              | 1.38k     | –516 (7.7pF)               | 0.869               | -22       |
| 100             | 611       | –212 (7.2pF)               | 0.765               | -51       |
| 200             | 250       | –123 (6.3pF)               | 0.623               | -84       |
| 400             | 110       | -84 (4.6pF)                | 0.530               | -118      |

| Frequency fo    | r EN = H  | igh and $V_{CMBB} = 1.4V$ ( | continue   | d)              |
|-----------------|-----------|-----------------------------|------------|-----------------|
| BB<br>FREQUENCY | IN        | PUT IMPEDANCE (Ω)           | -          | REFL<br>Ficient |
| (MHz)           | REAL*     | IMAG* (CAP)                 | MAG        | ANGLE(°)        |
| LO FREQUI       | ENCY = 1. | 8GHz (REG. 0x00 = 0x4B), D  | DIGITAL GA | VIN = OdB       |
| 1               | 1.78k     | –16.9k (9.1pF)              | 0.902      | -0.7            |
| 10              | 1.73k     | –1.75k (9pF)                | 0.891      | -6.6            |
| 20              | 1.6k      | -878 (9pF)                  | 0.884      | -13             |
| 40              | 1.24k     | -445 (8.9pF)                | 0.857      | -25             |
| 100             | 497       | -186 (8.3pF)                | 0.732      | -58             |
| 200             | 203       | –113 (6.8pF)                | 0.590      | -91             |
| LO FREQUEI      | NCY = 1.8 | GHz (REG. 0x00 = 0x4B), DI  | GITAL GAI  | N = -19dB       |
| 1               | 1.94k     | –16.7k (9.2pF)              | 0.893      | -0.7            |
| 10              | 1.88k     | –1.74k (9.1pF)              | 0.899      | -6.6            |
| 20              | 1.72k     | -874 (9pF)                  | 0.892      | -13             |
| 40              | 1.31k     | -443 (8.9pF)                | 0.865      | -26             |
| 100             | 507       | -185 (8.3pF)                | 0.736      | -58             |
| 200             | 205       | -112 (6.9pF)                | 0.592      | -91             |
|                 |           | EN = Low (Chip Disabled)    |            |                 |
| 1               | 1.96k     | –20.1k (7.6pF)              | 0.903      | -0.6            |
| 10              | 1.92k     | -2.08k (7.6pF)              | 0.901      | -5.5            |
| 20              | 1.8k      | –1.05k (7.5pF)              | 0.895      | -11             |
| 40              | 1.46k     | -530 (8.9pF)                | 0.876      | -21             |
| 100             | 639       | -218 (8.3pF)                | 0.772      | -50             |
| 200             | 260       | -126 (6.1pF)                | 0.629      | -82             |
| *Parallel Equiv | alent     |                             |            |                 |

Table 2. Differential Baseband (BB) Input Impedance vs

In Table 3 the common-mode S-parameters of the differential baseband inputs are given. The circuit is optimized for a common mode voltage of 1.4V which can be internally or externally applied. In case of AC-coupling to the baseband pins (1.4V internally generated bias) make sure that the high pass filter corner is not affecting the low frequency components of the baseband signal. Even a small error for low baseband frequencies can result in degraded EVM.

The baseband input offset voltage depends on the source resistance. In case of AC-coupling the 1 sigma offset is about 1.7mV, resulting in about -43.7dBm LO leakage. For shorted baseband pins ( $0\Omega$  source resistance), the LO leakage improves to about -45.6dBm. In case of AC-coupling the LO leakage can be reduced by connecting a resistor in parallel with the baseband inputs, thus



5589f

## **APPLICATIONS INFORMATION**

Table 3. Common-Mode Baseband (BB) Input Impedance vs Frequency for EN = High and  $V_{CMBB}$  = 1.4V

| BB<br>FREQUENCY |           | PUT IMPEDANCE (Ω)           | REFL<br>Coefficient |           |
|-----------------|-----------|-----------------------------|---------------------|-----------|
| (MHz)           | REAL*     | IMAG* (CAP)                 | MAG                 | ANGLE(°)  |
| LO FREQUE       | NCY = 0.8 | GHz (REG. 0x00 = 0x70), DI  | GITAL GA            | N = -4dB  |
| 1               | 536       | –5.82k (25pF)               | 0.911               | -0.5      |
| 10              | 534       | -605 (24.9pF)               | 0.911               | -4.7      |
| 20              | 541       | –301 (25pF)                 | 0.912               | -9.5      |
| 40              | 447       | -145 (26pF)                 | 0.897               | -20       |
| 100             | 165       | -61 (24.2pF)                | 0.771               | -46       |
| LO FREQUE       | NCY = 1.8 | GHz (REG. 0x00 = 0x4B), DI  | GITAL GA            | IN = –4dB |
| 1               | 536       | –8.71k (16.8pF)             | 0.911               | -0.3      |
| 10              | 547       | -907 (16.6pF)               | 0.913               | -3.2      |
| 20              | 599       | -445 (16.9pF)               | 0.920               | -6.4      |
| 40              | 620       | –203 (18.7pF)               | 0.924               | -14       |
| 100             | 322       | -78 (18.9pF)                | 0.869               | -36       |
| 200             | 135       | –41 (18.1pF)                | 0.764               | -64       |
| LO FREQUE       | NCY = 2.5 | iGHz (REG. 0x00 = 0x3F), DI | GITAL GA            | IN = –4dB |
| 1               | 537       | –9.76k (15pF)               | 0.911               | -0.3      |
| 10              | 550       | -1.02k (14.8pF)             | 0.913               | -2.8      |
| 20              | 609       | –496 (15.2pF)               | 0.921               | -5.8      |
| 40              | 654       | –223 (17pF)                 | 0.927               | -13       |
| 100             | 380       | -84 (17.4pF)                | 0.886               | -33       |
| 200             | 167       | –43 (17pF)                  | 0.799               | -61       |
| 400             | 55        | –22 (16.6pF)                | 0.697               | -102      |
| LO FREQUE       | NCY = 3.8 | GHz (REG. 0x00 = 0x2B), D   | GITAL GA            | IN = -4dB |
| 1               | 537       | –11.2k (13pF)               | 0.911               | -0.3      |
| 10              | 551       | –1.17k (12.8pF)             | 0.913               | -2.4      |
| 20              | 617       | –571 (13.1pF)               | 0.922               | -5        |
| 40              | 685       | –252 (15pF)                 | 0.930               | -11.3     |
| 100             | 449       | –94 (15.6pF)                | 0.901               | -30       |
| 200             | 217       | –48 (15.5pF)                | 0.835               | -56       |
| 400             | 71        | –24 (15.7pF)                | 0.722               | -97       |
| LO FREQUE       | NCY = 5.8 | GHz (REG. 0x00 = 0x1A), DI  | GITAL GA            | IN = -4dB |
| 1               | 537       | –12.3k (11.9pF)             | 0.911               | -0.2      |
| 10              | 552       | –1.28k (11.8pF)             | 0.913               | -2.2      |
| 20              | 620       | -620 (12.2pF)               | 0.923               | -4.6      |
| 40              | 698       | –271 (14pF)                 | 0.931               | -11       |
| 100             | 486       | -101 (14.6pF)               | 0.908               | -28       |
| 200             | 249       | -51 (14.6pF)                | 0.851               | -53       |
| 400             | 83        | –25 (14.9pF)                | 0.745               | -93       |

| Table 3. Common-Mode Baseband (BB) Input Impedance vs            |
|------------------------------------------------------------------|
| Frequency for EN = High and V <sub>CMBB</sub> = 1.4V (continued) |

| BB<br>Frequency<br>(MHz)                                       | INPUT IMPEDANCE ( $\Omega$ ) |                 | REFL<br>Coefficient |          |
|----------------------------------------------------------------|------------------------------|-----------------|---------------------|----------|
|                                                                | REAL*                        | IMAG* (CAP)     | MAG                 | ANGLE(°) |
| LO FREQUENCY = 1.8GHz (REG. 0x00 = 0x4B), DIGITAL GAIN = 0dB   |                              |                 |                     |          |
| 1                                                              | 515                          | –8.6k (17pF)    | 0.907               | -0.3     |
| 10                                                             | 523                          | –895 (16.8pF)   | 0.909               | -3.2     |
| 20                                                             | 564                          | –443 (17pF)     | 0.915               | -6.5     |
| 40                                                             | 587                          | –203 (18.7pF)   | 0.919               | -14      |
| 100                                                            | 313                          | –78 (18.9pF)    | 0.865               | -36      |
| 200                                                            | 133                          | –41 (18.1pF)    | 0.762               | -64      |
| LO FREQUENCY = 1.8GHz (REG. 0x00 = 0x4B), DIGITAL GAIN = -19dB |                              |                 |                     |          |
| 1                                                              | 569                          | –8.94k (16.4pF) | 0.916               | -0.3     |
| 10                                                             | 587                          | -929 (16.2pF)   | 0.918               | -3.1     |
| 20                                                             | 663                          | -447 (16.8pF)   | 0.928               | -6.4     |
| 40                                                             | 675                          | –203 (18.7pF)   | 0.930               | -14      |
| 100                                                            | 337                          | –78 (18.9pF)    | 0.874               | -36      |
| 200                                                            | 138                          | —41 (18pF)      | 0.768               | -64      |
| EN = Low (Chip Disabled)                                       |                              |                 |                     |          |
| 1                                                              | 1.01k                        | -10.6k (14.2pF) | 0.952               | -0.3     |
| 10                                                             | 1.07k                        | –1.08k (13.9pF) | 0.952               | -2.6     |
| 20                                                             | 975                          | –546 (13.8pF)   | 0.950               | -5.2     |
| 40                                                             | 898                          | –275 (13.8pF)   | 0.946               | -10      |
| 100                                                            | 612                          | –108 (13.6pF)   | 0.925               | -26      |
| 200                                                            | 314                          | –54 (13.6pF)    | 0.877               | -50      |
| *Devellet Fauityelent                                          |                              |                 |                     |          |

\*Parallel Equivalent

lowering baseband input impedance and offset. Further, the low combined baseband input leakage current of 1.3nA in shutdown mode retains the voltage over the coupling capacitors, which helps to settle faster when the part is enabled again. It is recommended to drive the baseband inputs differentially to maintain the linearity. When a DAC is used as the signal source, a reconstruction filter should be placed between the DAC output and the LTC5589 baseband inputs to avoid aliasing.

### **Internal Gain Trim DACs**

Four internal gain trim DACs (one for each baseband pin) are configured as 11-bit each. The usable DAC input value range is integer continuous from 64 to 2047 and 0 for shutdown. The DACs are not intended for baseband signal generation but for gain and offset setting only, because there are no reconstruction filters between the DACs and the mixer core, and there is only indirect access between