imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

LTC6954

FEATURES

- Low Noise Clock Distribution: Suitable for High Speed/High Resolution ADC Clocking
- Additive Jitter < 20fs_{RMS} (12kHz to 20MHz)
- Additive Jitter < 85fs_{RMS} (10Hz to Nyquist)
- 1.8GHz Maximum Input Frequency (LTC6954-1 When DELAY = 0)
- 1.4GHz Maximum Input Frequency (LTC6954-1 When DELAY > 0, LTC6954-2, -3, -4)
- EZSync[™] Clock Synchronization Compatible
- Three Independent, Low Noise Outputs
- Four Output Combinations Available
- Three Independent Programmable Dividers Covering All Integers From 1 to 63
- Three Independent Programmable Delays Covering All Integers From 0 to 63
- –40°C to 105°C Junction Temperature Range

APPLICATIONS

- Clocking High Speed, High Resolution ADCs, DACs and Data Acquisition Systems
- Low Jitter Clock Distribution

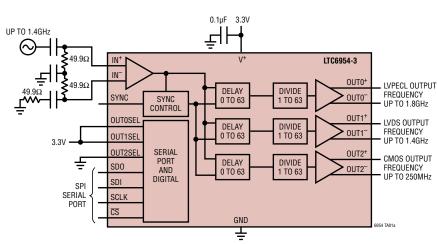
TYPICAL APPLICATION

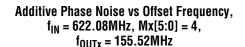
Low Phase Noise, Triple Output Clock Distribution Divider/Driver **DESCRIPTION**

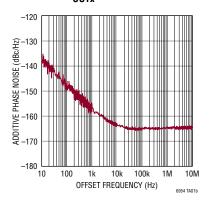
The LTC[®]6954 is a family of very low phase noise clock distribution parts. Each part has three outputs and each output has an individually programmable frequency divider and delay. There are four members of the family, differing in their output logic signal type:

LTC6954-1: Three LVPECL outputs

LTC6954-2: Two LVPECL and one LVDS/CMOS outputs

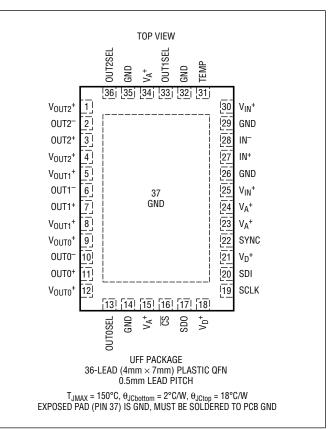

LTC6954-3: One LVPECL and two LVDS/CMOS outputs


LTC6954-4: Three LVDS/CMOS outputs


Each output is individually programmable to divide the input frequency by any integer from 1 to 63, and to delay each output by 0 to 63 input clock cycles. The output duty cycle is always 50%, regardless of the divide number. The LVDS/CMOS outputs are jumper selectable via the OUTxSEL pins to provide either an LVDS logic output or a CMOS logic output.

The LTC6954 also features Linear Technology's EZSync system for perfect clock synchronization and alignment every time.

All device settings are controlled through an SPI-compatible serial port.


TECHNOLOGY

ABSOLUTE MAXIMUM RATINGS

(Note 1)

Supply Voltages
$(V_A^+, V_D^+, V_{IN}^+, V_{OUT0}^+, V_{OUT1}^+$ and
V _{OUT2} ⁺ to GND)
LTC6954-1, -2, -3 LVPECL Outputs
OUTx Output Voltage HighV _{OUT} + + 0.3V
OUTx Output Voltage Low Source 25mA
LTC6954-2, -3, -4 LVDS/CMOS Outputs
OUTx0.3V to (V _A ⁺ +0.3V)
TEMP Input Current10mA
TEMP Low Voltage0.3V
Voltage on All Other Pins $-0.3V$ to $(V_A^+ + 0.3V)$
Operating Junction Temperature Range, T _J (Note 2)
LTC6954I–40°C to 105°C
Junction Temperature, T _{JMAX} 150°C
Storage Temperature Range –65°C to 150°C

PIN CONFIGURATION

ORDER INFORMATION

LEAD FREE FINISH	TAPE AND REEL	PART MARKING	PACKAGE DESCRIPTION	JUNCTION TEMPERATURE RANGE
LTC6954IUFF-1#PBF	LTC6954IUFF-1#TRPBF	69541	36-Lead (4mm × 7mm) Plastic QFN	–40°C to 105°C
LTC6954IUFF-2#PBF	LTC6954IUFF-2#TRPBF	69542	36-Lead (4mm × 7mm) Plastic QFN	-40°C to 105°C
LTC6954IUFF-3#PBF	LTC6954IUFF-3#TRPBF	69543	36-Lead (4mm × 7mm) Plastic QFN	-40°C to 105°C
LTC6954IUFF-4#PBF	LTC6954IUFF-4#TRPBF	69544	36-Lead (4mm × 7mm) Plastic QFN	-40°C to 105°C

Consult LTC Marketing for parts specified with wider operating temperature ranges.

For more information on lead free part markings, go to: http://www.linear.com/leadfree/

For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/. Some packages are available in 500 unit reels through designated sales channels with #TRMPBF suffix.

6954f

SYMBOL	PARAMETER	CONDITIONS		MIN	ТҮР	MAX	UNITS
Input (IN+, I	N ⁻)			1			
f _{IN}	Input Frequency	LTC6954-1, DELx = 0 LTC6954-1 (DELx > 0), LTC6954-2, -3, -4	•			1800 1400	MHz MHz
V _{IN}	Input Signal Level	Single-Ended		0.2	0.8	1.5	V _{P-P}
	Input Slew Rate			100			V/µs
DCIN	Input Duty Cycle				50		%
	Self-Bias Voltage			1.9	2.05	2.2	V
	Minimum Common Mode Level	400mV _{P-P} Differential Input			1.8		V
	Maximum Common Mode Level	400mV _{P-P} Differential Input			2.3		V
	Input Resistance	Differential		1.8	2.2	2.7	kΩ
	Input Capacitance	Differential			0.5		pF
Output Divid	ier (M)						
Mx[5:0]	Divider Range M0[5:0], M1[5:0], M2[5:0]	All Integers Included	•	1		63	Cycles
DELx[5:0]	Divider Delay in Input Clock Cycles DEL0[5:0], DEL1[5:0], DEL2[5:0]	All Integers Included	•	0		63	Cycles
LVPECL Clo	ck Outputs						
f _{OUT}	Frequency	LTC6954-1, DELx = 0 LTC6954-1 (DELx > 0), LTC6954-2, -3, -4	•			1800 1400	MHz MHz
V _{OD}	Differential Voltage	Single-Ended Termination = 50Ω to (V _{OUTx} ⁺ - 2V)	•	640	775	950	mV _{PK}
	(Output Static)	Differential Termination = 100Ω , Internal Bias On		640	780	950	mV _{PK}
V _{CM}	Common Mode Voltage (Output Static)	Single-Ended Termination = 50Ω to (V _{OUTx} ⁺ - 2V)	•	V _{OUTx} + - 1.67	V _{OUTx} + - 1.42	V _{OUTx} + - 1.14	V
		Differential Termination = 100Ω , Internal Bias On	•	V _{OUTx} + - 1.67	V _{OUTx} + - 1.42	V _{OUTx} + - 1.14	V
t _{RISE}	Rise Time, 20% to 80%	Single-Ended Termination = 50Ω to (V _{OUTx} ⁺ - 2V)			110		ps
		Differential Termination = 100Ω , Internal Bias On			110		ps
t _{FALL}	Fall Time, 80% to 20%	Single-Ended Termination = 50Ω to (V _{OUTx} ⁺ - 2V)			110		ps
		Differential Termination = 100Ω , Internal Bias On			110		ps
DCLVPECL	Duty Cycle	Mx[5:0] = 1			DCIN		%
		Mx[5:0] > 1 (Even or Odd)		45	50	55	%
CMOS Clock	c Outputs						
f _{OUT}	Frequency					250	MHz
V _{OH}	High Voltage (Output Static)	2.5mA Load		V ⁺ - 0.4			V
V _{OL}	Low Voltage (Output Static)	2.5mA Load				0.4	V
t _{RISE}	Rise Time, 20% to 80%	$C_{LOAD} = 2pF, CMSINV = 1$			200		ps
t _{FALL}	Fall Time, 80% to 20%	$C_{LOAD} = 2pF, CMSINV = 1$			170		ps
DC _{CMOS}	Duty Cycle	Mx[5:0] = 1			DCIN		%
		Mx[5:0] > 1 (Even or Odd)		45	50	55	%

SYMBOL	PARAMETER	CONDITIONS		MIN	ТҮР	MAX	UNITS
LVDS Clock	Outputs						
f _{OUT}	Frequency	Differential Termination = 100Ω , 3.5mA Mode				800	MHz
		Differential Termination = 50Ω , 7mA Mode	•			1400	MHz
V _{OD}	Differential Voltage	Differential Termination = 100Ω , 3.5mA Mode	•	290	370	450	mV _{PK}
	(Output Static)	Differential Termination = 50Ω , 7mA Mode	•	290	370	450	mV _{PK}
ΔV _{OD}	Delta V _{OD} (Output Static)	Differential Termination = 100Ω , 3.5mA Mode		-30		30	mV
		Differential Termination = 50Ω , 7mA Mode		-30		30	mV
V _{OS}	Offset Voltage (Output Static)	Differential Termination = 100Ω , 3.5mA Mode		1.16	1.23	1.32	V
		Differential Termination = 50Ω , 7mA Mode	•	1.15	1.23	1.32	V
$ \Delta V_{OS} $	Delta V _{OS} (Output Static)	Differential Termination = 100Ω , 3.5mA Mode	•	-15		15	mV
		Differential Termination = 50Ω , 7mA Mode		-15		15	mV
t _{RISE}	Rise Time, 20% to 80%	Differential Termination = 100Ω , 3.5mA Mode			240		ps
		Differential Termination = 50Ω , 7mA Mode			120		ps
t _{FALL}	Fall Time, 80% to 20%	Differential Termination = 100Ω , 3.5mA Mode			240		ps
		Differential Termination = 50Ω , 7mA Mode			120		ps
I _{SA} , I _{SB}	Short-Circuit Current to Common	Shorted to GND, 3.5mA Mode			16		mA
		Shorted to GND, 7mA Mode			25		mA
I _{SAB}	Short-Circuit Current to	3.5mA Mode			4		mA
	Complementary	7mA Mode			8		mA
DC _{LVDS}	Duty Cycle	Mx[5:0] = 1			DC _{IN}		%
		Mx[5:0] > 1 (Even or Odd)	•	45	50	55	%
Output Propa	agation Delays						
t _{PD(LVPECL)}	Propagation Delay From IN to	Mx[5:0] = 1	٠	290	360	480	ps
	Any LVPECL Output Temperature Variation of the	Mx[5:0] > 1	٠	360	430	550	ps
		Mx[5:0] = 1	٠		0.65		ps/°C
	Propagation Delay From IN to Any LVPECL Output	Mx[5:0] > 1	•		0.68		ps/°C
t _{pd(LVDS)}	Propagation Delay From IN to	Mx[5:0] = 1	•	350	420	545	ps
	Any LVDS Output, LVCSx = 1 (7mA Mode)	Mx[5:0] > 1	•	415	480	625	ps
	Temperature Variation of the	Mx[5:0] = 1	•		0.8		ps/°C
	Propagation Delay From IN to Any LVDS Output, LVCSx = 1 (7mA Mode)	Mx[5:0] > 1	•		0.85		ps/°C
	Propagation Delay From IN to	Mx[5:0] = 1	_		480		ps
	Any LVDS Output, LVCSx = 0 (3.5mA Mode)	Mx[5:0] > 1			550		ps
	Temperature Variation of the	Mx[5:0] = 1	•		0.8		ps/°C
	Propagation Delay From IN to Any LVDS Output, LVCSx = 0 (3.5mA Mode)	Mx[5:0] > 1	•		0.85		ps/°C
t _{pd(CMOS)}	Propagation Delay From IN to	Mx[5:0] = 1			1.25		ns
-2(000)	Any CMOS Output, Complementary Outputs (CMSINVx = 1)	Mx[5:0] > 1			1.32		ns
	Temperature Variation of the	Mx[5:0] = 1	•		1.3		ps/°C
	Propagation Delay From IN to	[Mix[0:0] = 1	-				

6954f

SYMBOL	PARAMETER	CONDITIONS		MIN	ТҮР	MAX	UNITS
Output Ske	ews						
	Skew: Any LVPECL Output to Any LVPECL Output	Mx[5:0], My[5:0] Both = 1 or Both > 1 IBIASx = 0 or 1	•	-50		50	ps
	Skew: Any LVPECL Output to Any LVDS Output	M _{LVPECL} [5:0], M _{LVDS} [5:0] Both = 1 or Both > 1 IBIASx = 0 or 1, LVCSy = 1			65		ps
	Skew: Any LVPECL Output to Any LVDS Output	$ \begin{aligned} M_{\text{LVPECL}}[5:0] &= M_{\text{LVDS}}[5:0] = 1 \text{ or Both} > 1 \\ \text{IBIASx} &= 0 \text{ or } 1, \text{LVCSx} = 0 \end{aligned} $			120		ps
	Skew: Any LVPECL Output to Any CMOS Output	$M_{LVPECL}[5:0]$, $M_{CMOS}[5:0]$ Both = 1 or Both > 1 IBIASx = 0 or 1, CMSINVy = 1			875		ps
	Skew: Any LVDS Output to Any LVDS Output	Mx[5:0], My[5:0] Both = 1 or Both > 1 LVCSx = 1 for Both Outputs	•	-50		50	ps
t _{SKEW}	Skew: Any LVDS Output to Any LVDS Output	Mx[5:0], My[5:0] Both = 1 or Both > 1 LVCSx = 0 for Both Outputs			5		ps
SKEW	Skew: Any LVDS Output (LVCSx = 1) to Any LVDS Output (LVCSy = 0)	Mx[5:0], My[5:0] Both = 1 or Both > 1 LVCSx = 1, LVCSy = 0			50		ps
	Skew: Any LVDS Output to Any CMOS Output	M _{LVDS} [5:0], M _{CMOS} [5:0] Both = 1 or Both > 1 LVCSx = 1, CMSINV = 1			800		ps
	Skew: Any CMOS Output to Any CMOS Output	Mx[5:0], My[5:0] Both = 1 or Both > 1 CMSINV = 1			5		ps
	Skew: Any CMOS Output to Any CMOS Output, the First Output is Complementary, the Second Output is In-Phase	CMSINVx = 1, CMSINVy = 0			30		ps
	Additional Skew: Any Output to Any Output, Dividers Not the Same	Mx[5:0] = 1, My[5:0] > 1	•	35	70	120	ps

SYMBOL	PARAMETER	CONDITIONS		MIN	ТҮР	MAX	UNITS
Supply Vo	oltages						·
	V _A ⁺ Supply Range		•	3.15	3.3	3.45	V
	V _D ⁺ Supply Range		•	3.15	3.3	3.45	V
	V _{IN} ⁺ Supply Range		٠	3.15	3.3	3.45	V
	V _{OUTO} ⁺ , V _{OUT1} ⁺ , V _{OUT2} ⁺ Supply Range		•	3.15	3.3	3.45	V
Supply Cu	irrent (Sum of V _A ⁺ , V _D ⁺ , V _{IN} ⁺ , V _{OU}	T0 ⁺ , V _{OUT1} ⁺ , V _{OUT2} ⁺ Supply Currents)					
	LTC6954-1	f_{IN} = 1400MHz, Power-Up Default Configuration, OUTOSEL = OUT1SEL = OUT2SEL = V _A ⁺ , IBIAS On for All Outputs, Outputs Terminated with 100 Ω Differential	•		300	335	mA
		f_{IN} = 1400MHz, Power-Up Default Configuration, OUT0SEL = OUT1SEL = OUT2SEL = GND, IBIAS Off for All Outputs, Outputs Terminated with 50 Ω to (V _{OUTx} ⁺ - 2V)	•		310	350	mA
	LTC6954-2	$f_{IN} = 1400MHz$, Power-Up Default Configuration, OUTOSEL = OUT1SEL = OUT2SEL = V _A ⁺ , IBIAS On for LVPECL Outputs, LVDS/CMOS = LVDS, Outputs Terminated with 100 Ω Differential	•		290	325	mA
		f_{IN} = 1400MHz, Power-Up Default Configuration, OUT0SEL = OUT1SEL = V _A ⁺ , OUT2SEL = GND, IBIAS On for LVPECL Outputs, LVDS/CMOS = CMOS, M2[5:0] = 28, f _{OUT2} = 50MHz, LVPECL Outputs Terminated with 100 Ω Differential	•		280	320	mA
	LTC6954-3	$f_{IN} = 1400MHz$, Power-Up Default Configuration, OUTOSEL = OUT1SEL = OUT2SEL = V_A^+ , IBIAS On for LVPECL Output, LVDS/CMOS = LVDS, Outputs Terminated with 100 Ω Differential	•		280	320	mA
		$ f_{IN} = 1400 MHz, Power-Up Default Configuration, \\ OUTOSEL = V_A^+, OUT1SEL = OUT2SEL = GND, \\ IBIAS On for LVPECL Output, \\ LVDS/CMOS = CMOS, M1[5:0] = M2[5:0] = 28, \\ f_{OUT1} = f_{OUT2} = 50 MHz, \\ LVPECL Output Terminated with 100 \Omega Differential $			278	315	mA
	LTC6954-4	$ \begin{array}{l} f_{IN} = 1400 \text{MHz}, \text{ Power-Up Default Configuration, OUTOSEL} \\ = 0 \text{UT1SEL} = 0 \text{UT2SEL} = \text{V}_{\text{A}}^+, \\ \text{LVDS/CMOS} = \text{LVDS}, \\ \text{Outputs Terminated with 100} \Omega \text{ Differential} \end{array} $	•		270	315	
		$ f_{\text{IN}} = 1400 \text{MHz}, \text{Power-Up Default Configuration, OUTOSEL} \\ = 0UT1SEL = 0UT2SEL = GND, \\ \text{LVDS/CMOS} = CMOS, M0[5:0], M1[5:0] = M2[5:0] = 28, \\ f_{\text{OUT0}} = f_{\text{OUT1}} = f_{\text{OUT2}} = 50 \text{MHz} $	•		282	310	mA
	ALL LTC6954 Variants	$P_{D(ALL)} = 1$			0.8		mA

SYMBOL	PARAMETER	CONDITIONS		MIN	ТҮР	MAX	UNITS
Supply Cu	irrent Delta (Note 3)	· ·				-	<u> </u>
	Output Divider On, LVPECL	PD_DIVx = 0, Mx[5:0] = 1, PD_0UTx = 1	•		28	32	mA
	Output	PD_DIVx = 0, Mx[5:0] > 1, PD_OUTx = 1	•		46	54	mA
	Output Driver Only, LVPECL	PD_OUTx = 0, Termination = 50Ω to (V _{OUTx} ⁺ - 2V)	•		43	50	mA
		PD_OUTx = 0, IBIASx = 1 (Internal Bias On)	•		39	46	mA
		PD_OUTx = 0, No Internal/External Bias	•		19	24	mA
	Output Driver Only, LVDS	PD_OUTx = 0, 3.5mA Mode, LVCSx = 0	•		31	37	mA
		PD_OUTx = 0, 7mA Mode, LVCSx = 1	•		48	58	mA
	Output Driver Only, CMOS	PD_OUTx = 0, CMOS at 50MHz	•		35	43	mA
Digital In	puts (CS , SDI, SCLK, SYNC, OUT	OSEL, OUT1SEL, OUT2SEL)					
V _{IH}	Input High Voltage		•	1.55			V
V _{IL}	Input Low Voltage		•			0.8	V
V _{IHYS}	Input Voltage Hysteresis	CS, SDI and SCLK Only			250		mV
	Input Current		•	-1		1	μA
Digital Ou	ıtputs (SDO)						
I _{OH}	High Level Output Current	SDO, $V_{OH} = V_{D}^{+} - 400 \text{mV}$	•		-2.4	-1.5	mA
I _{OL}	Low Level Output Current	SD0, V _{0L} = 400mV	•	2.2	3.4		mA
	SDO Hi-Z Current		•	-1		1	μA
Digital Ti	ming Specifications (See Figure	11 and Figure 12)					
t _{CKH}	SCLK HIGH Pulse Width		•	25			ns
t _{CKL}	SCLK LOW Pulse Width		•	25			ns
t _{CSS}	CS Setup Time		•	10			ns
t _{CSH}	CS HIGH Pulse Width		•	10			ns
t _{CS}	SDI to SCLK Setup Time		•	6			ns
t _{CH}	SDI to SCLK Hold Time		•	6			ns
t _{DO}	SDO Propagation Delay	C _{LOAD} = 10pF			16		ns
t _{SYNCH}	SYNC HIGH Pulse Width		•	1			ms
t _{SYNCL}	Minimum SYNC LOW Pulse Width	Before Next SYNC HIGH Pulse			1		ms

For more information www.linear.com/LTC6954

MBOL	PARAMETER	CONDITIONS	MIN TYP MAX	UNITS
PECL /	Additive Phase Noise/Time Jitter (Note 5)			
	Phase Noise:	10Hz Offset	-130	dBc/H
	$f_{IN} = 622.08MHz, Mx[5:0] = 1, f_{OUT} = 622.08MHz$	100Hz Offset	-139	dBc/H
		1kHz Offset	-148	dBc/H
		10kHz Offset	-156	dBc/H
		100kHz Offset	-158	dBc/H
		>1MHz Offset	-158	dBc/H
	Jitter:	12kHz to 20MHz Integration Bandwidth	20	fs _{RM}
	$f_{IN} = 622.08MHz, Mx[5:0] = 1, f_{OUT} = 622.08MHz$	10Hz to 311.04MHz Integration Bandwidth	80	fs _{RM}
	Phase Noise:	10Hz Offset	-138	dBc/H
	f _{IN} = 622.08MHz, Mx[5:0] = 4, f _{OUT} = 155.52MHz	100Hz Offset	-147	dBc/H
	1ki	1kHz Offset	-156	dBc/H
		10kHz Offset	-163	dBc/H
		100kHz Offset	-165	dBc/H
		>1MHz Offset	-165	dBc/H
	Jitter:	12kHz to 20MHz Integration Bandwidth	36	fs _{RM}
	f _{IN} = 622.08MHz, Mx[5:0] = 4, f _{OUT} = 155.52MHz	10Hz to 77.75MHz Integration Bandwidth	72	fs _{RM}
	Phase Noise:	10Hz Offset	-147	dBc/H
	f _{IN} = 622.08MHz, Mx[5:0] = 16, f _{OUT} = 38.88MHz	100Hz Offset	-159	dBc/H
		1kHz Offset	-167	dBc/H
		10kHz Offset	-170	dBc/H
		100kHz Offset	-171	dBc/H
		>1MHz Offset	-171	dBc/H
	Phase Noise:	10Hz Offset	-137	dBc/H
	f _{IN} = 245.76MHz, Mx[5:0] = 1, f _{OUT} = 245.76MHz	100Hz Offset	-147	dBc/H
		1kHz Offset	-156	dBc/H
		10kHz Offset	-161	dBc/H
		100kHz Offset	-162	dBc/H
		>1MHz Offset	-162	dBc/H
	Jitter:	12kHz to 20MHz Integration Bandwidth	33	fs _{RM}
	f _{IN} = 245.76MHz, Mx[5:0] = 1, f _{OUT} = 245.76MHz	10Hz to 122.88MHz Integration Bandwidth	81	fs _{RM}
	Phase Noise:	10Hz Offset	-140	dBc/H
	f _{IN} = 245.76MHz, Mx[5:0] = 4, f _{OUT} = 61.44MHz	100Hz Offset	-153	dBc/H
		1kHz Offset	-161	dBc/H
		10kHz Offset	-166	dBc/H
		100kHz Offset	-168	dBc/H
		>1MHz Offset	-168	dBc/H
	Jitter: f _{IN} = 245.76MHz, Mx[5:0] = 4, f _{OUT} = 61.44MHz	12kHz to 20MHz Integration Bandwidth	65	fs _{RM}

6954f

SYMBOL	PARAMETER	CONDITIONS	MIN TYP MAX	UNITS
VPECL /	Additive Phase Noise/Time Jitter (Note 5)			-
	Phase Noise:	10Hz Offset	-126	dBc/Hz
	f _{IN} = 1400MHz, Mx[5:0] = 1, f _{OUT} = 1400MHz	100Hz Offset	-132	dBc/Hz
		1kHz Offset	-143	dBc/Hz
		10kHz Offset	-149	dBc/H
		100kHz Offset	-152.5	dBc/Hz
		>1MHz Offset	-152.5	dBc/H
	Jitter:	12kHz to 20MHz Integration Bandwidth	17	fs _{RMS}
	f _{IN} = 1400MHz, Mx[5:0] = 1, f _{OUT} = 1400MHz	10Hz to 700MHz Integration Bandwidth	100	fs _{RM} s
	Phase Noise:	10Hz Offset	-132	dBc/H
	f _{IN} = 1400MHz, Mx[5:0] = 4, f _{OUT} = 350MHz	100Hz Offset	-139	dBc/H
		1kHz Offset	-151	dBc/Hz
		10kHz Offset	-157	dBc/H
		100kHz Offset	-160	dBc/H
		>1MHz Offset	-160	dBc/H
	Jitter:	12kHz to 20MHz Integration Bandwidth	29	fs _{RM}
	f _{IN} = 1400MHz, Mx[5:0] = 4, f _{OUT} = 350MHz	10Hz to 175MHz Integration Bandwidth	85	fs _{RM}
DS Ad	ditive Phase Noise/Time Jitter LVCS = 1 (Note 5)	· · · · · ·		
	Phase Noise:	10Hz Offset	-130	dBc/H
	$f_{IN} = 622.08MHz, Mx[5:0] = 1, f_{OUT} = 622.08MHz$	100Hz Offset	-138	dBc/H
		1kHz Offset	-148	dBc/H
		10kHz Offset	-156	dBc/H
		100kHz Offset	-157.5	dBc/H
		>1MHz Offset	-157.5	dBc/H
	Jitter:	12kHz to 20MHz Integration Bandwidth	21	fs _{RM}
	$f_{IN} = 622.08MHz, Mx[5:0] = 1, f_{OUT} = 622.08MHz$	10Hz to 311.04MHz Integration Bandwidth	83	fs _{RMS}
	Phase Noise:	10Hz Offset	-140	dBc/H
	$f_{IN} = 622.08MHz, Mx[5:0] = 4, f_{OUT} = 155.52MHz$	100Hz Offset	-147	dBc/H
		1kHz Offset	-157	dBc/H
		10kHz Offset	-163	dBc/H
		100kHz Offset	-165	dBc/H
		>1MHz Offset	-165	dBc/H
	Jitter:	12kHz to 20MHz Integration Bandwidth	36	fs _{RM}
	f _{IN} = 622.08MHz, Mx[5:0] = 4, f _{OUT} = 155.52MHz	10Hz to 77.75MHz Integration Bandwidth	72	fs _{RMS}
	Phase Noise:	10Hz Offset	-147	dBc/H
	f _{IN} = 622.08MHz, Mx[5:0] = 16, f _{OUT} = 38.88MHz	100Hz Offset	-159	dBc/Hz
		1kHz Offset	-166	dBc/H
		10kHz Offset	-170	dBc/Hz
		100kHz Offset	-170	dBc/Hz
		>1MHz Offset	-170	dBc/Hz

SYMBOL	PARAMETER	CONDITIONS	MIN TYP MAX	UNITS
LVDS Ad	ditive Phase Noise/Time Jitter LVCS = 1 (Note 5)		·	
	Phase Noise:	10Hz Offset	-138	dBc/Hz
	f _{IN} = 245.76MHz, Mx[5:0] = 1, f _{OUT} = 245.76MHz	100Hz Offset	-146	dBc/Hz
		1kHz Offset	-155	dBc/Hz
		10kHz Offset	-160	dBc/Hz
		100kHz Offset	-162	dBc/Hz
		>1MHz Offset	-162	dBc/Hz
	Jitter:	12kHz to 20MHz Integration Bandwidth	34	fs _{RMS}
	f _{IN} = 245.76MHz, Mx[5:0] = 1, f _{OUT} = 245.76MHz	10Hz to 122.88MHz Integration Bandwidth	83	fs _{RMS}
	Phase Noise:	10Hz Offset	-142	dBc/Hz
	f _{IN} = 245.76MHz, Mx[5:0] = 4, f _{OUT} = 61.44MHz	100Hz Offset	-153	dBc/Hz
		1kHz Offset	-162	dBc/Hz
		10kHz Offset	-167	dBc/Hz
		100kHz Offset	-168	dBc/Hz
		>1MHz Offset	-168	dBc/Hz
	Jitter: f _{IN} = 245.76MHz, Mx[5:0] = 4, f _{OUT} = 61.4MHz	12kHz to 20MHz Integration Bandwidth	65	fs _{RMS}
	Phase Noise:	10Hz Offset	-121	dBc/Hz
	f _{IN} = 1400MHz, Mx[5:0] = 1, f _{OUT} = 1400MHz	100Hz Offset	-133	dBc/Hz
		1kHz Offset	-142	dBc/Hz
		10kHz Offset	-148	dBc/Hz
		100kHz Offset	-152	dBc/Hz
		>1MHz Offset	-152	dBc/Hz
	Jitter:	12kHz to 20MHz Integration Bandwidth	18	fs _{RMS}
	f _{IN} = 1400MHz, Mx[5:0] = 1, f _{OUT} = 1400MHz	10Hz to 700MHz Integration Bandwidth	109	fs _{RMS}
	Phase Noise:	10Hz Offset	-129	dBc/Hz
	f _{IN} = 1400MHz, Mx[5:0] = 4, f _{OUT} = 350MHz	100Hz Offset	-137	dBc/Hz
		1kHz Offset	-148	dBc/Hz
		10kHz Offset	-156	dBc/Hz
		100kHz Offset	-159	dBc/Hz
		>1MHz Offset	-160	dBc/Hz
	Jitter:	12kHz to 20MHz Integration Bandwidth	30	fs _{RMS}
	f _{IN} = 1400MHz, Mx[5:0] = 4, f _{OUT} = 350MHz	10Hz to 175MHz Integration Bandwidth	90	fs _{RMS}

6954f

SYMBOL	PARAMETER	CONDITIONS	M	IN TY	Р	MAX	UNITS
LVDS Add	ditive Phase Noise/Time Jitter LVCS = 0 (Note 5)						<u> </u>
	Phase Noise:	10Hz Offset		-12	23		dBc/Hz
	$f_{IN} = 622.08MHz, Mx[5:0] = 1, f_{OUT} = 622.08MHz$	100Hz Offset		-13	35		dBc/Hz
		1kHz Offset		-14	46		dBc/Hz
		10kHz Offset		-15	51		dBc/Hz
		100kHz Offset		-15	53		dBc/Hz
		>1MHz Offset		-15	53		dBc/Hz
		12kHz to 20MHz Integration Bandwidth		36	3		fs _{RMS}
	$f_{IN} = 622.08MHz, Mx[5:0] = 1, f_{OUT} = 622.08MHz$	10Hz to 311.04MHz Integration Bandwidth		14	0		fs _{RMS}
	Phase Noise:	10Hz Offset		-13	35		dBc/Hz
	$f_{IN} = 622.08MHz, Mx[5:0] = 4, f_{OUT} = 155.52MHz$	100Hz Offset		-14	16		dBc/Hz
		1kHz Offset		-15	54		dBc/Hz
		10kHz Offset		-16	30		dBc/Hz
		100kHz Offset		-16	31		dBc/Hz
		>1MHz Offset		-16	31		dBc/Hz
	Jitter:	12kHz to 20MHz Integration Bandwidth		29)		fs _{RMS}
	$f_{IN} = 622.08MHz, Mx[5:0] = 4, f_{OUT} = 155.52MHz$	10Hz to 77.75MHz Integration Bandwidth		11	4		fs _{RMS}
	Phase Noise:	10Hz Offset		-14	17		dBc/Hz
	$f_{IN} = 622.08MHz, Mx[5:0] = 16, f_{OUT} = 38.88MHz$	100Hz Offset		-15	57		dBc/Hz
	1	1kHz Offset		-16	35		dBc/Hz
		10kHz Offset		-16	37		dBc/Hz
		100kHz Offset		-16	37		dBc/Hz
		>1MHz Offset		-16	37		dBc/Hz

ELECTRICAL CHARACTERISTICS The • denotes the specifications which apply over the full operating

junction temperature range, otherwise specifications are at $T_A = 25^{\circ}C$. $V_A^+ = V_D^+ = V_{IN}^+ = V_{OUT0}^+ = V_{OUT1}^+ = V_{OUT2}^+ = 3.3V$, unless otherwise specified. All voltages are with respect to GND. (Note 2)

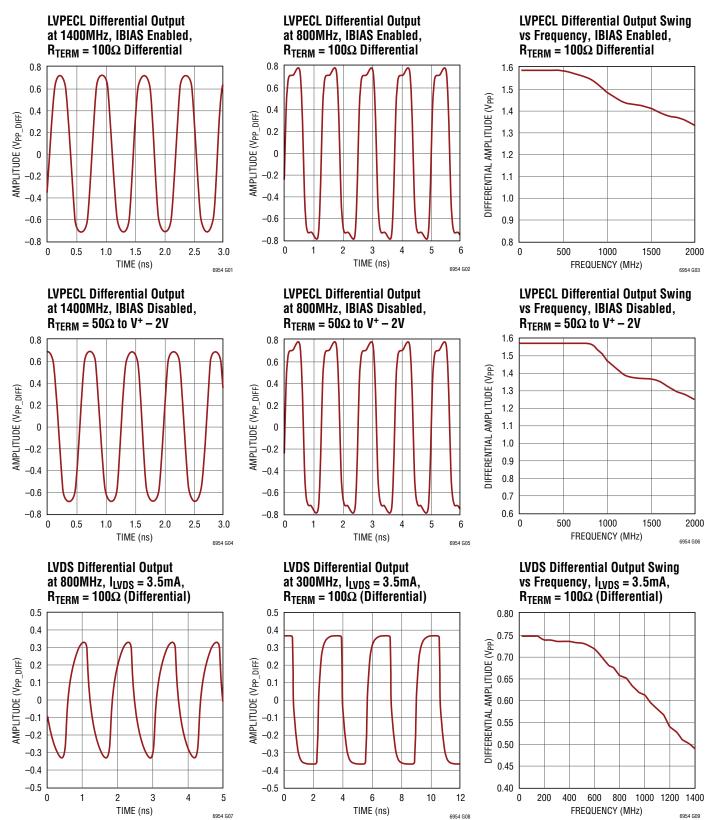
SYMBOL	PARAMETER	CONDITIONS	MIN TYP MAX	UNITS
CMOS Ad	ditive Phase Noise/Time Jitter (Note 5)		L	·
	Phase Noise:	10Hz Offset	-129	dBc/Hz
	f _{IN} = 622.08MHz, Mx[5:0] = 4, f _{OUT} = 155.52MHz	100Hz Offset	-143	dBc/Hz
		1kHz Offset	-158	dBc/Hz
		10kHz Offset	-161	dBc/Hz
		100kHz Offset	-162	dBc/Hz
		>1MHz Offset	-162	dBc/Hz
	Jitter:	12kHz to 20MHz Integration Bandwidth	52	fs _{RMS}
	f _{IN} = 622.08MHz, Mx[5:0] = 4, f _{OUT} = 155.52MHz	10Hz to 77.75MHz Integration Bandwidth	102	fs _{RMS}
	Phase Noise:	10Hz Offset	-129	dBc/Hz
	f _{IN} = 245.76MHz, Mx[5:0] = 1, f _{OUT} = 245.76MHz	100Hz Offset	-139	dBc/Hz
		1kHz Offset	-146	dBc/Hz
		10kHz Offset	-155	dBc/Hz
		100kHz Offset	-159	dBc/Hz
		>1MHz Offset	-160	dBc/Hz
	Jitter:	12kHz to 20MHz Integration Bandwidth	42	fs _{RMS}
	f _{IN} = 245.76MHz, Mx[5:0] = 1, f _{OUT} = 245.76MHz	10Hz to 122.88MHz Integration Bandwidth	102	fs _{RMS}
	Phase Noise:	10Hz Offset	-135	dBc/Hz
	f _{IN} = 245.76MHz, Mx[5:0] = 4, f _{OUT} = 61.44MHz	100Hz Offset	-147	dBc/Hz
		1kHz Offset	-156	dBc/Hz
		10kHz Offset	-163	dBc/Hz
		100kHz Offset	-166	dBc/Hz
		>1MHz Offset	-166	dBc/Hz
	Jitter: $f_{IN} = 245.76MHz$, Mx[5:0] = 4, $f_{OUT} = 61.44MHz$	12kHz to 20MHz Integration Bandwidth	82	fs _{RMS}

Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.

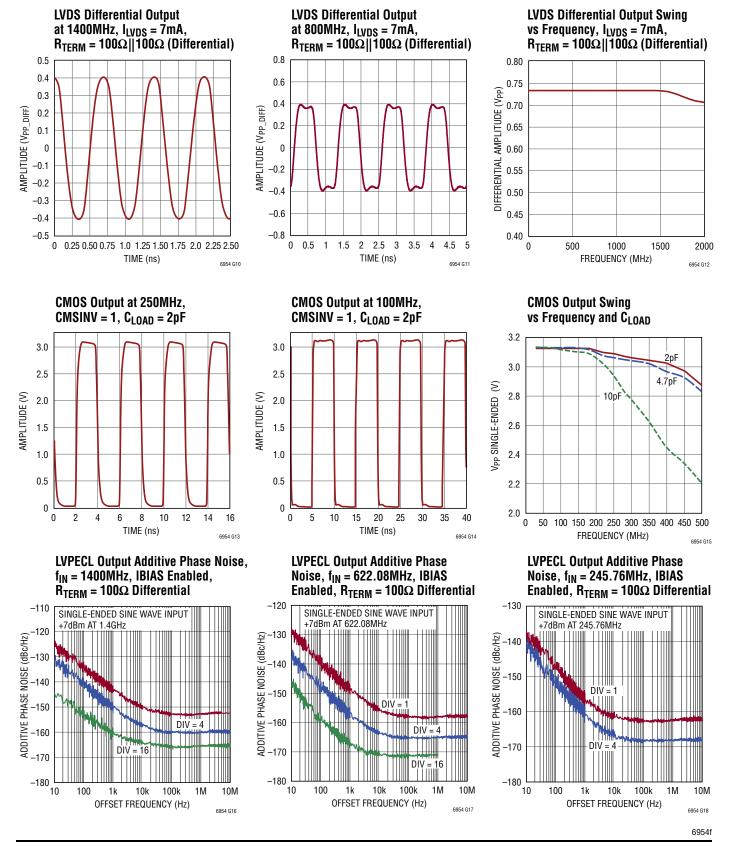
Note 2: The LTC6954I is guaranteed to meet specified performance limits over the full operating junction temperature range of -40° C to 105° C. Under maximum operating conditions, air flow or heat sinking may be required to maintain a junction temperature of 105° C or lower. It is strongly recommended that the exposed pad (pin 37) be soldered directly to the ground plane with an array of thermal vias as described in the Applications Information section.

Note 3: The supply current delta specifications refer to the amount of supply current that each individual block consumes. Powering on or off this circuit block adds or subtracts this much current from the total supply current consumed in any given configuration.

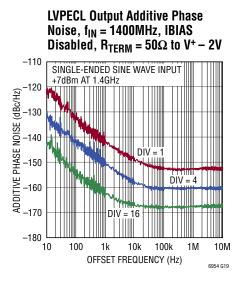
Note 4: The skews are defined as the second listed output's transition relative to the first listed output's transition. If the second listed output transitions after the first listed output, the skew is positive.

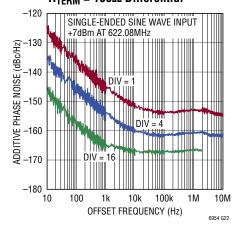

For the same divider setting, LVPECL outputs have nominally the same skew regardless of the IBIAS setting (IBIASx = 0 or 1), for the same divider setting, all LVDS and CMOS outputs transition after the LVPECL outputs, thus these skews are positive. For the same divider setting, all CMOS outputs transition after all LVDS outputs, thus these skews are positive. For the same divider setting, LVDS outputs with the 3.5mA current setting (LVCS = 0) transition after LVDS outputs with the 7mA current setting (LVCS = 1), thus these skews are positive. For the same divider setting, in-phase CMOS outputs (CMSINVx = 0) transition after complementary outputs (CMSINVx = 1), thus this skew is positive. For the same output type, outputs with the divider setting greater than one (Mx[5:0] > 1) transition after outputs with the divider equal to one (Mx[5:0] = 1), thus this additional skew is positive.

Note 5: Additive phase noise and jitter are the phase noise added by the LTC6954. It does not include noise from the external signal source.

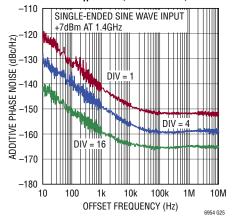

 $V_{A}^{+} = V_{D}^{+} = V_{IN}^{+} = V_{OUT0}^{+} = V_{OUT1}^{+} = V_{OUT2}^{+} = 3.3V.$

TYPICAL PERFORMANCE CHARACTERISTICS $T_A = 25^{\circ}C$, unless otherwise specified. All voltages are with respect to GND.

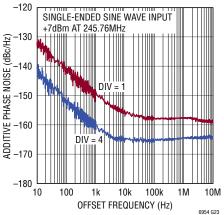

TYPICAL PERFORMANCE CHARACTERISTICS $T_A = 25^{\circ}C$, unless otherwise specified. All voltages are with respect to GND.

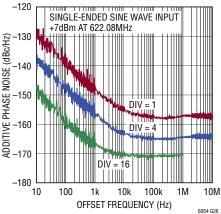

 $V_{A}^{+} = V_{D}^{+} = V_{IN}^{+} = V_{OUT0}^{+} = V_{OUT1}^{+} = V_{OUT2}^{+} = 3.3V.$

TYPICAL PERFORMANCE CHARACTERISTICS


 $T_A = 25^{\circ}C$, unless otherwise specified. All voltages are with respect to GND.

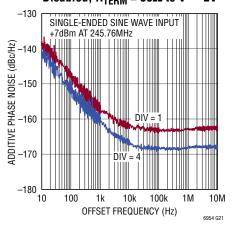
LVDS Output Additive Phase Noise, $f_{IN} = 622.08MHz, I_{LVDS} = 3.5mA,$ $R_{\text{TERM}} = 100\Omega$ Differential


LVDS Output Additive Phase Noise, $f_{IN} = 1400 MHz$, $I_{LVDS} = 7 mA$, R_{TERM} = $100\Omega || 100\Omega$ (Differential)

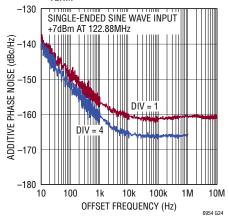

Noise, $f_{IN} = 622.08MHz$, IBIAS Disabled, $R_{TERM} = 50\Omega$ to V⁺ – 2V -120SINGLE-ENDED SINE WAVE INPUT +7dBm AT 622.08MHz -130 ADDITIVE PHASE NOISE (dBc/Hz) 140 -150 -160 DIV = 4-170 DIV = 16-18010k 100k 10 100 1k 1M 10M OFFSET FREQUENCY (Hz)

LVPECL Output Additive Phase

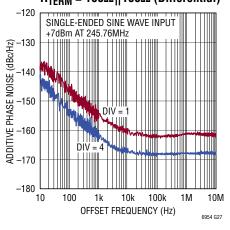
LVDS Output Additive Phase Noise, $f_{IN} = 245.76MHz, I_{LVDS} = 3.5mA,$ $R_{\text{TERM}} = 100\Omega$ Differential



LVDS Output Additive Phase Noise, $f_{IN} = 622.08 MHz, I_{LVDS} = 7 mA,$ $R_{\text{TERM}} = 100\Omega || 100\Omega$ (Differential)



 $V_{A}^{+} = V_{D}^{+} = V_{IN}^{+} = V_{OUT0}^{+} = V_{OUT1}^{+} = V_{OUT2}^{+} = 3.3V.$


LVPECL Output Additive Phase Noise, f_{IN} = 245.76MHz, IBIAS Disabled, $R_{TERM} = 50\Omega$ to V⁺ – 2V

LVDS Output Additive Phase Noise, f_{IN} = 122.88MHz, I_{LVDS} = 3.5mA, $R_{\text{TERM}} = 100\Omega$ Differential

LVDS Output Additive Phase Noise, $f_{IN} = 245.76 MHz, I_{LVDS} = 7 mA,$ $R_{\text{TERM}} = 100\Omega || 100\Omega$ (Differential)

-120

-130

140

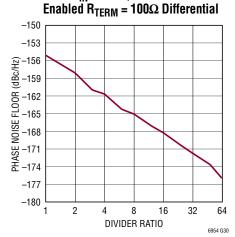
-150

-160

-170

-180

10


100

ADDITIVE PHASE NOISE (dBc/Hz)

TYPICAL PERFORMANCE CHARACTERISTICS $T_A = 25^{\circ}C$, unless otherwise specified. All voltages are with respect to GND.

 $V_{A}^{+} = V_{D}^{+} = V_{IN}^{+} = V_{OUT0}^{+} = V_{OUT1}^{+} = V_{OUT2}^{+} = 3.3V.$

Additive Phase Noise Floor vs Divider Ratio FIN = 1GHz, LVPECL IBIAS

Supply Current vs Frequency, LVPECL Output, IBIAS Enabled, $R_{\text{TERM}} = 100\Omega$ Differential

10k

OFFSET FREQUENCY (Hz)

100k

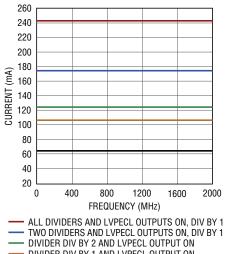
1M

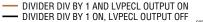
10M

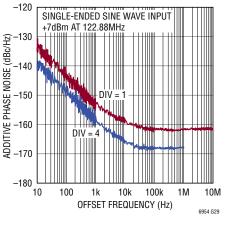
6954 G28

6954 G31

CMOS Output Additive Phase

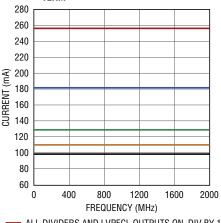

SINGLE-ENDED SINE WAVE INPUT +7dBm AT 245.76MHz


DIV


DIV

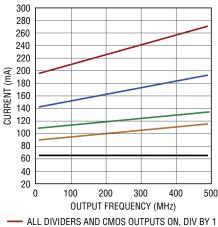
1k

Noise, $f_{IN} = 245.76MHz$



CMOS Output Additive Phase

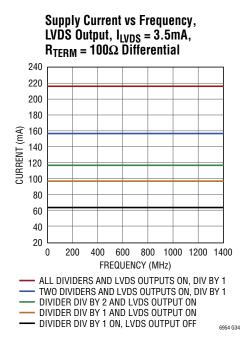
Noise, $f_{IN} = 122.88MHz$


Supply Current vs Frequency, LVPECL Output, IBIAS Disabled, $R_{\text{TERM}} = 50\Omega \text{ to } V^+ - 2V$

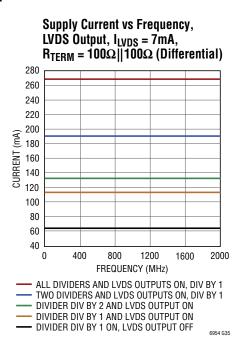
ALL DIVIDERS AND LVPECL OUTPUTS ON, DIV BY 1 TWO DIVIDERS AND LVPECL OUTPUTS ON, DIV BY 1

- DIVIDER DIV BY 2 AND LVPECL OUTPUT ON DIVIDER DIV BY 1 AND LVPECL OUTPUT ON
- DIVIDER DIV BY 1 ON, LVPECL OUTPUT OFF 6954 G32

Supply Current vs Frequency, **CMOS** Output


- TWO DIVIDERS AND CMOS OUTPUTS ON, DIV BY 1
- DIVIDER DIV BY 2 AND CMOS OUTPUT ON
- DIVIDER DIV BY 1 AND CMOS OUTPUT ON

 DIVIDER DIV BY 1 ON, CMOS OUTPUT OFF 6954 G33



6954f

TYPICAL PERFORMANCE CHARACTERISTICS $T_A = 25^{\circ}C$, unless otherwise specified. All voltages are with respect to GND.

 $V_{A}^{+} = V_{D}^{+} = V_{IN}^{+} = V_{OUT0}^{+} = V_{OUT1}^{+} = V_{OUT2}^{+} = 3.3V.$

PIN FUNCTIONS

LTC6954

V_{OUT0}⁺, **V_{OUT1}⁺**, **V_{OUT2}⁺** (Pins 1, 4, 5, 8, 9, 12): Output Supply Voltages. The supply range is from 3.15V to 3.45V. This supply should be kept free of noise and ripple. The use of a low impedance power plane is recommended. All V_{OUTx}^+ pins must be connected to the same supply voltage as the V_A⁺, V_D⁺ and V_{IN}⁺ pins. Each pin, or in some cases pin pairs, must be separately bypassed directly to GND with a 0.01µF ceramic capacitor as close to the pin as possible. Refer to the Applications Information section for more details on supply connections and bypassing.

GND (Pins 14, 26, 29, 32, 35): Ground Connections. Should be tied directly to the exposed pad (pin 37) and to a low impedance ground plane for best performance. Refer to the Applications Information section for more details on grounding for signal integrity and thermal considerations.

V_A⁺ (Pins 15, 23, 24, 34): Analog Supply Voltages. The supply range is from 3.15V to 3.45V. This supply should be kept free of noise and ripple. The use of a low impedance power plane is recommended. All V_A⁺ pins must be connected to the same supply voltage as the V_{OUTx}⁺, V_D⁺ and V_{IN}⁺ pins. Each pin, or in some cases pin pairs, must be separately bypassed directly to GND with a 0.1µF ceramic capacitor as close to the pin as possible. Refer to the Applications Information section for more details on supply connections and bypassing.

CS (Pin 16): Serial Port Chip Select Input. This active LOW CMOS logic input initiates a serial port transaction when brought LOW. It finalizes the serial port transaction when brought HIGH after 16 serial port clock cycles. Refer to the Operation section for more details.

SDO (Pin 17): Serial Data Output. Data read from the serial port is presented on this CMOS logic pin. Refer to the Operation section for more details.

 V_D^+ (Pins 18, 21): Digital Supply Voltages. The supply range is from 3.15V to 3.45V. This supply should be kept free of noise and ripple. The use of a low impedance power plane is recommended. All V_D^+ pins must be connected to the same supply voltage as the V_{OUTx}^+ , V_A^+ and V_{IN}^+ pins. Each pin must be separately bypassed directly to GND with a 0.1µF ceramic capacitor as close to the pin as possible. Refer to the Applications Informa-

tion section for more details on supply connections and bypassing.

SCLK (Pin 19): Serial Port Clock Input. This positive edge triggered CMOS logic input signal clocks serial port data in on the rising edge. Refer to the Operation section for more details.

SDI (Pin 20): Serial Port Data Input. Data written into the serial port is presented on this CMOS logic pin. Refer to the Operation section for more details.

SYNC (Pin 22): The Synchronization Input Pin. A rising edge on this CMOS logic input initiates an output clock synchronization sequence. Precision output synchronization of one or more parts is handled on-chip, so the timing of this signal is not critical. Refer to the Operation and the Applications Information sections for more details.

 V_{IN}^+ (Pins 25, 30): Analog Supply Voltages. The supply range is from 3.15V to 3.45V. This supply should be kept free of noise and ripple. The use of a low impedance power plane is recommended. All V_{IN}^+ pins must be connected to the same supply voltage as the V_{OUTx}^+ , V_A^+ and V_D^+ pins. Each pin must be separately bypassed directly to GND with a 0.1µF ceramic capacitor as close to the pin as possible. Refer to the Applications Information section for more details on supply connections and bypassing.

IN⁺, IN⁻ (Pins 27, 28): The Signal Input Pins. The input signal can be either differential or single ended. It can be a sine wave, LVPECL logic, LVDS logic or CMOS logic. Refer to the Operation and Applications Information sections for more details on the correct use of the inputs.

TEMP (Pin 31): Temperature Monitoring Diode. This pin is connected to the anode of a diode that may be used to measure the die temperature, by forcing a current and measuring the voltage. Refer to the Applications Information section for more details on monitoring the die temperature.

GND (Exposed Pad Pin 37): Ground Connection. The package exposed pad must be soldered directly to the PCB land. The PCB land pattern should have multiple thermal vias to the ground plane for both low ground inductance and low thermal resistance. Refer to the Applications Information section for more details on grounding for signal integrity and thermal considerations.

PIN FUNCTIONS

LTC6954-1 OUTPUTS AND MODE SELECT

OUTOSEL (Pin 13): OUTO Mode Select. Connecting this pin to the V_A^+ supply enables the internal, active biasing of the OUTO output emitter followers. Connecting this pin to GND disables this internal bias circuit. Refer to the Operation and Applications Information sections for more details on the LVPECL internal bias.

OUTO⁻, OUTO⁺ (**Pins 10, 11**): LVPECL Output Pins. Differential logic outputs typically terminated by 50Ω connected to a supply 2V below the V_{OUTO}⁺ supply. Refer to the Operation and Applications Information sections for more details.

OUT1SEL (Pin 33): OUT1 Mode Select. Connecting this pin to the V_A^+ supply enables the internal, active biasing of the OUT1 output emitter followers. Connecting this pin to GND disables this internal bias circuit. Refer to the Operation and Applications Information sections for more details on the LVPECL internal bias.

OUT1⁻, OUT1⁺ (Pins 6, 7): LVPECL Output Pins. Differential logic outputs typically terminated by 50Ω connected to a supply 2V below the V_{OUT1}⁺ supply. Refer to the Operation and Applications Information sections for more details.

OUT2SEL (Pin 36): OUT2 Mode Select. Connecting this pin to the V_A^+ supply enables the internal, active biasing of the OUT2 output emitter followers. Connecting this pin to GND disables this internal bias circuit. Refer to the Operation and Applications Information sections for more details on the LVPECL internal bias.

OUT2⁻, OUT2⁺ (**Pins 2, 3**): LVPECL Output Pins. Differential logic outputs typically terminated by 50Ω connected to a supply 2V below the V_{OUT2}⁺ supply. Refer to the Operation and Applications Information sections for more details.

LTC6954-2 OUTPUTS AND MODE SELECT

OUTOSEL (Pin 13): OUTO Mode Select. Connecting this pin to the V_A^+ supply enables the internal, active biasing of the OUTO output emitter followers. Connecting this pin to GND disables this internal bias circuit. Refer to the Operation and Applications Information sections for more details on the LVPECL internal bias.

OUTO⁻, **OUTO⁺** (**Pins 10, 11**): LVPECL Output Pins. Differential logic outputs typically terminated by 50Ω connected to a supply 2V below the V_{OUTO}⁺ supply. Refer to the Operation and Applications Information sections for more details.

OUT1SEL (Pin 33): OUT1 Mode Select. Connecting this pin to the V_A^+ supply enables the internal, active biasing of the OUT1 output emitter followers. Connecting this pin to GND disables this internal bias circuit. Refer to the Operation and Applications Information sections for more details on the LVPECL internal bias.

OUT1⁻, **OUT1⁺** (**Pins 6**, **7**): LVPECL Output Pins. Differential logic outputs typically terminated by 50Ω connected to a supply 2V below the V_{OUT1}⁺ supply. Refer to the Operation and Applications Information sections for more details.

OUT2SEL (Pin 36): OUT2 Mode Select. Connecting this pin to ground configures OUT2 as a CMOS logic type output. Connecting this pin to the V_A^+ supply configures OUT2 as an LVDS logic type output.

OUT2⁻, OUT2⁺ (Pins 2, 3): LVDS/CMOS Output Pins. These outputs may be programmed as LVDS or CMOS outputs using the OUT2SEL pin. Refer to the Operation and the Applications Information sections for more details.

PIN FUNCTIONS

LTC6954-3 OUTPUTS AND MODE SELECT

OUTOSEL (Pin 13): OUTO Mode Select. Connecting this pin to the V_A^+ supply enables the internal, active biasing of the OUTO output emitter followers. Connecting this pin to GND disables this internal bias circuit. Refer to the Operation and Applications Information sections for more details on the LVPECL internal bias.

OUTO⁻, **OUTO⁺** (**Pins 10, 11**): LVPECL Output Pins. Differential logic outputs typically terminated by 50Ω connected to a supply 2V below the V_{OUTO}⁺ supply. Refer to the Operation and Applications Information sections for more details.

OUT1SEL (Pin 33): OUT1 Mode Select. Connecting this pin to GND configures OUT1 as a CMOS logic type output. Connecting this pin to the V_A^+ supply configures OUT1 as an LVDS logic type output.

OUT1⁻, **OUT1⁺** (**Pins 6**, **7**): LVDS/CMOS Output Pins. These outputs may be programmed as LVDS or CMOS outputs using the OUT1SEL pin. Refer to the Operation and the Applications Information sections for more details.

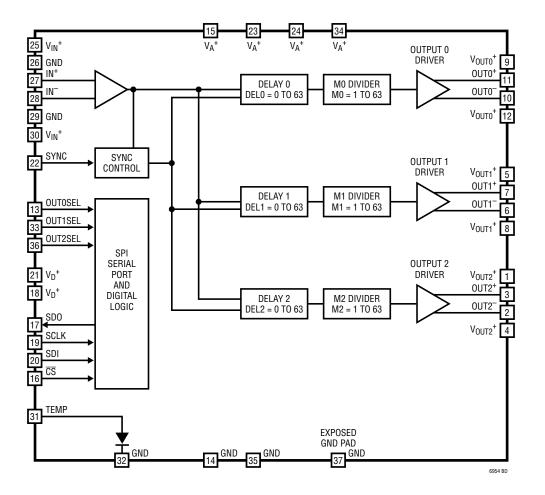
OUT2SEL (Pin 36): OUT2 Mode Select. Connecting this pin to GND configures OUT2 as a CMOS logic type output. Connecting this pin to the V_A^+ supply configures OUT2 as an LVDS logic type output.

OUT2⁻, **OUT2⁺** (**Pins 2, 3**): LVDS/CMOS Output Pins. These outputs may be programmed as LVDS or CMOS outputs using the OUT2SEL pin. Refer to the Operation and the Applications Information sections for more details.

LTC6954-4 OUTPUTS AND MODE SELECT

OUTOSEL (Pin 13): OUTO Mode Select. Connecting this pin to GND configures OUTO as a CMOS logic type output. Connecting this pin to the V_A^+ supply configures OUTO as an LVDS logic type output.

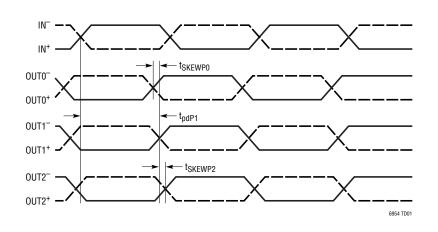
OUTO⁻, OUTO⁺ (Pins 10, 11): LVDS/CMOS Output Pins. These outputs may be programmed as LVDS or CMOS outputs using the OUTOSEL pin. Refer to the Operation and the Applications Information sections for more details.

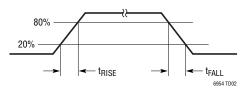

OUT1SEL (Pin 33): OUT1 Mode Select. Connecting this pin to GND configures OUT1 as a CMOS logic type output. Connecting this pin to the V_A^+ supply configures OUT1 as an LVDS logic type output.

OUT1⁻, OUT1⁺ (Pins 6, 7): LVDS/CMOS Output Pins. These outputs may be programmed as LVDS or CMOS outputs using the OUT1SEL pin. Refer to the Operation and the Applications Information sections for more details.

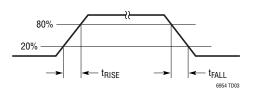
OUT2SEL (Pin 36): OUT2 Mode Select. Connecting this pin to GND configures OUT2 as a CMOS logic type output. Connecting this pin to the V_A^+ supply configures OUT2 as an LVDS logic type output.

OUT2⁻, **OUT2⁺** (**Pins 2, 3**): LVDS/CMOS Output Pins. These outputs may be programmed as LVDS or CMOS outputs using the OUT2SEL pin. Refer to the Operation and the Applications Information sections for more details.

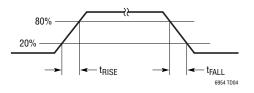

BLOCK DIAGRAM


^{6954f}

TIMING DIAGRAMS



Output Propagation Delays and Skews, Mx[5:0] = 1


Differential LVPECL Rise/Fall Times

Single-Ended CMOS Rise/Fall Times

6954f

OPERATION

LTC6954 INTRODUCTION

The LTC6954 is a family of low phase noise clock distribution parts. Each part provides three outputs, each with programmable frequency divider and delay blocks. There are four members of the family differing in their output logic signal type:

LTC6954-1: Three LVPECL outputs

LTC6954-2: Two LVPECL and one LVDS/CMOS outputs

LTC6954-3: One LVPECL and two LVDS/CMOS outputs

LTC6954-4: Three LVDS/CMOS outputs

As shown in Figure 1, the LTC6954 consists of two distinct circuit sections: multioutput clock distribution and digital control.

The clock distribution section of the LTC6954 receives an input signal up to 1.4GHz (1.8GHz for the LTC6954-1 when DELx = 0) and delivers three output signals based on the input. The output signal logic type depends on the LTC6954 part version and the connection of the OUTxSEL output mode selection pins. Table 1 shows all four part versions, each version's available output types and the effect of OUTxSEL pin connection on the output.

The LVPECL logic outputs are capable of operation up to 1.4GHz (1.8GHz for the LTC6954-1 when DELx = 0). Connecting the OUTxSEL pin to the V_A^+ supply enables the internal, active biasing of the output emitter followers. Connecting this pin to GND disables this internal bias circuit.

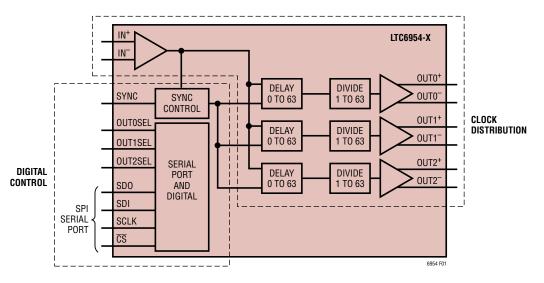


Figure 1.The LTC6954 Highlighting the Circuit Blocks

LTC6954 VERSION	OUTPUT 0		OUTPUT 1		OUTPUT 2	
	OUTOSEL = GND	$OUTOSEL = V_A^+$	OUT1SEL = GND	$OUT1SEL = V_A^+$	OUT2SEL = GND	$OUT2SEL = V_A^+$
LTC6954-1	LVPECL (IBIAS is Off)	LVPECL (IBIAS is On)	LVPECL (IBIAS is Off)	LVPECL (IBIAS is On)	LVPECL (IBIAS is Off)	LVPECL (IBIAS is On)
LTC6954-2	LVPECL (IBIAS is Off)	LVPECL (IBIAS is On)	LVPECL (IBIAS is Off)	LVPECL (IBIAS is On)	CMOS	LVDS
LTC6954-3	LVPECL (IBIAS is Off)	LVPECL (IBIAS is On)	CMOS	LVDS	CMOS	LVDS
LTC6954-4	CMOS	LVDS	CMOS	LVDS	CMOS	LVDS

OPERATION

The LVDS/CMOS output can be either a CMOS logic type or an LVDS logic type as configured by the OUTxSEL pin connection. Connecting the OUTxSEL pin to ground configures the output as a CMOS logic output capable of operation up to 250MHz. Connecting the OUTxSEL pin to the V_A^+ supply configures the output as an LVDS logic output capable of operation up to 800MHz for LVCSx set to 0 (far end line termination only), and up to 1400MHz for LVCSx set to 1 (doubly terminated). Refer to the Operation and Applications Information sections for more details.

Regardless of the LTC6954 part version and the output logic configuration, all three outputs are individually programmable to divide the input frequency by any integer from 1 to 63 and to delay any output by 0 to 63 input clock cycles. For an input signal with a 50% duty cycle, the output duty cycle will always be 50% regardless of the divide number.

The digital control section contains a full SPI-compatible serial control bus, the three output mode selection

pins (OUTOSEL, OUT1SEL and OUT2SEL) and the EZSync clock synchronization (SYNC) function. Most device settings and operating modes are controlled through the SPI bus.

To minimize power consumption, many sections of the LTC6954 can be powered down when not in use. As shown in Figure 2, the LTC6954 can be used as an independent clock distribution part. Any unused outputs from the clock distribution section may be powered down.

Figure 3 highlights an LTC6950 driving the LTC6954. This example shows a single LTC6954 device, but each output from the LTC6950 can drive a separate LTC6954 device for support of up to five LTC6954 devices. The effortless-to-use EZSync multipart synchronization feature assures consistent edge alignment of all outputs from all devices. See the EZSync Clock Output Synchronization section for more details on EZSync operation.

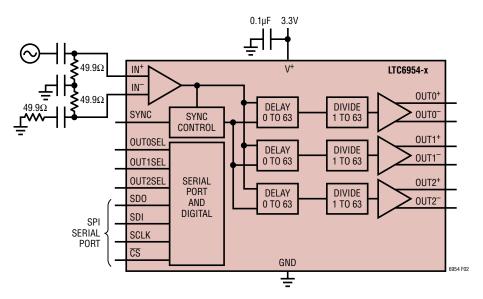
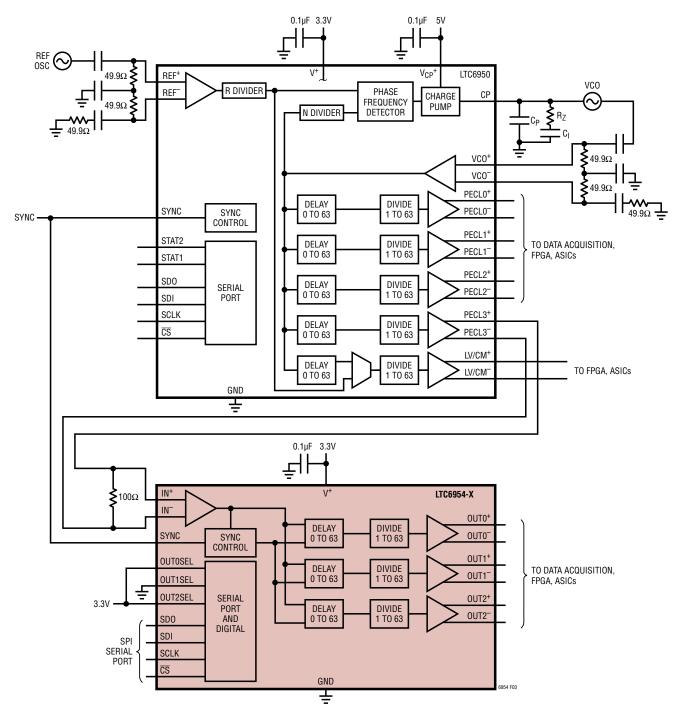



Figure 2. The LTC6954 Connected as an Independent Clock Distribution Part

OPERATION

Figure 3. The LTC6950 in Controller Mode Clocking an LTC6954.

For Best Performance Use One of the LVPECL Outputs From the LTC6950 (with the IBIAS Enabled) to Clock the LTC6954. All Outputs From Both Devices Are Easily Synchronized by Applying a 1ms (Min) Wide Pulse on the SYNC Pins.

