imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

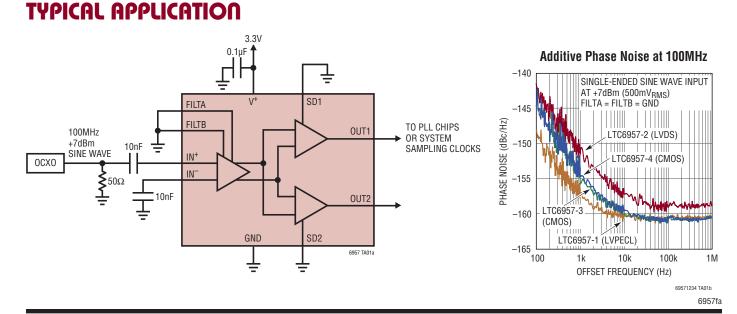
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Low Phase Noise, Dual Output Buffer/Driver/ Logic Converter

DESCRIPTION

The LTC[®]6957-1/LTC6957-2/LTC6957-3/LTC6957-4 is a family of very low phase noise, dual output AC signal buffer/driver/logic level translators. The input signal can be a sine wave or any logic level ($\leq 2V_{P-P}$). There are four members of the family that differ in their output logic signal type as follows:

LTC6957-1: LVPECL Logic Outputs


LTC6957-2: LVDS Logic Outputs

LTC6957-3: CMOS Logic, In-Phase Outputs

LTC6957-4: CMOS Logic, Complementary Outputs

The LTC6957 will buffer and distribute any logic signal with minimal additive noise, however, the part really excels at translating sine wave signals to logic levels. The early amplifier stages have selectable lowpass filtering to minimize the noise while still amplifying the signal to increase its slew rate. This input stage filtering/noise limiting is especially helpful in delivering the lowest possible phase noise signal with slow slewing input signals such as a typical 10MHz sine wave system reference.

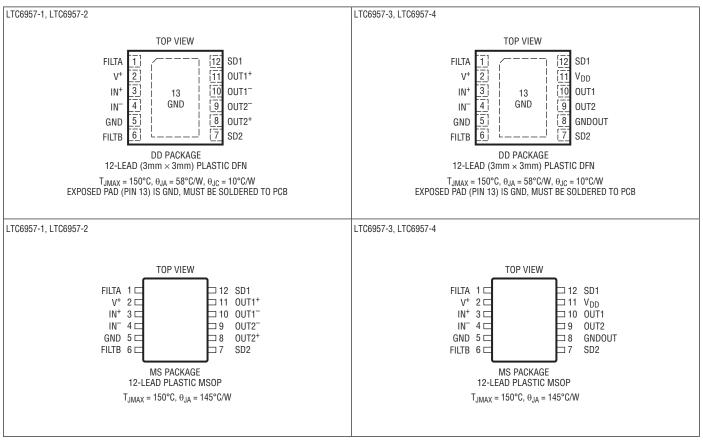
Δ7, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners. Protected by U.S. Patents 7969189 and 8319551.

FEATURES

- Low Phase Noise Buffer/Driver
- Optimized Conversion of Sine Wave Signals to Logic Levels
- Three Logic Output Types Available
 - LVPECL
 - LVDS
 - CMOS
- Additive Jitter 45fs_{RMS} (LTC6957-1)
- Frequency Range Up to 300MHz
- 3.15V to 3.45V Supply Operation
- Low Skew 3ps Typical
- Fully Specified from –40°C to 125°C
- 12-Lead MSOP and 3mm × 3mm DFN Packages

APPLICATIONS

- System Reference Frequency Distribution
- High Speed ADC, DAC, DDS Clock Driver
- Military and Secure Radio
- Low Noise Timing Trigger
- Broadband Wireless Transceiver
- High Speed Data Acquisition
- Medical Imaging
- Test and Measurement


ABSOLUTE MAXIMUM RATINGS (Note 1)

Supply Voltage (V ⁺ or V _{DD}) to GND	3.6V
Input Current (IN ⁺ , IN ⁻ , FILTA, FILTB, SD1, SD2)	
(Note 2)	±10mA
LTC6957-1 Output Current 1mA, -	-30mA
LTC6957-2 Output Current	±10mA
LTC6957-3, LTC6957-4 Output Current (Note 3) =	±30mA

Specified Temperature Range

LTC6957I	40°C to 85°C
LTC6957H	40°C to 125°C
Junction Temperature	150°C
Storage Temperature Range	65°C to 150°C
Lead Temperature (for MSOP So	oldering, 10sec) 300°C

PIN CONFIGURATION

ORDER INFORMATION

LEAD FREE FINISH	TAPE AND REEL	PART MARKING*	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE
LTC6957IDD-1#PBF	LTC6957IDD-1#TRPBF	LFQJ	12-Lead (3mm × 3mm) Plastic DFN	–40°C to 85°C
LTC6957IDD-2#PBF	LTC6957IDD-2#TRPBF	LFQK	12-Lead (3mm × 3mm) Plastic DFN	–40°C to 85°C
LTC6957IDD-3#PBF	LTC6957IDD-3#TRPBF	LFQM	12-Lead (3mm × 3mm) Plastic DFN	–40°C to 85°C
LTC6957IDD-4#PBF	LTC6957IDD-4#TRPBF	LFQN	12-Lead (3mm × 3mm) Plastic DFN	–40°C to 85°C
LTC6957IMS-1#PBF	LTC6957IMS-1#TRPBF	69571	12-Lead Plastic MSOP	-40°C to 85°C
LTC6957HMS-1#PBF	LTC6957HMS-1#TRPBF	69571	12-Lead Plastic MSOP	-40°C to 125°C
LTC6957IMS-2#PBF	LTC6957IMS-2#TRPBF	69572	12-Lead Plastic MSOP	–40°C to 85°C
LTC6957HMS-2#PBF	LTC6957HMS-2#TRPBF	69572	12-Lead Plastic MSOP	-40°C to 125°C
LTC6957IMS-3#PBF	LTC6957IMS-3#TRPBF	69573	12-Lead Plastic MSOP	–40°C to 85°C
LTC6957HMS-3#PBF	LTC6957HMS-3#TRPBF	69573	12-Lead Plastic MSOP	-40°C to 125°C
LTC6957IMS-4#PBF	LTC6957IMS-4#TRPBF	69574	12-Lead Plastic MSOP	-40°C to 85°C
LTC6957HMS-4#PBF	LTC6957HMS-4#TRPBF	69574	12-Lead Plastic MSOP	-40°C to 125°C

Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.

For more information on lead free part marking, go to: http://www.linear.com/leadfree/

For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/

ELECTRICAL CHARACTERISTICS LTC6957-1

The \bullet denotes the specifications which apply over the full operating temperature range, otherwise specifications are at T_A = 25°C. V⁺ = 3.3V, SD1 = SD2 = 0.4V, FILTA = FILTB = 0.4V, R_{LOAD} = 50 Ω connected to 1.3V, unless otherwise specified. All voltages are with respect to ground.

SYMBOL	PARAMETER	CONDITIONS		MIN	ТҮР	MAX	UNITS
Inputs (IN	, IN+)						
f _{IN}	Input Frequency Range		٠			300	MHz
V _{INSE}	Input Signal Level Range, Single-Ended		٠	0.2	0.8	2	V _{P-P}
VINDIFF	Input Signal Level Range, Differential		٠	0.2	0.8	2	V _{P-P}
t _{MIN}	Minimum Input Pulse Width	High or Low			0.5		ns
VINCM	Self-Bias Voltage, IN⁺, IN⁻		٠	1.8	2.06	2.3	V
R _{IN}	Input Resistance, Differential		٠	1.5	2	2.5	kΩ
CIN	Input Capacitance, Differential				0.5		pF
BW _{IN}	Input Section Small Signal Bandwidth (–3dB)	$ \begin{array}{l} {\sf FILTB} = {\sf L}, {\sf FILTA} = {\sf L} \\ {\sf FILTB} = {\sf L}, {\sf FILTA} = {\sf H} \\ {\sf FILTB} = {\sf H}, {\sf FILTA} = {\sf L} \\ {\sf FILTB} = {\sf H}, {\sf FILTA} = {\sf H} \end{array} $			1200 500 160 50		MHz MHz MHz MHz
Outputs (LVPECL)						
V _{OH}	Output High Voltage	LTC69571 LTC6957H	•		V ⁺ - 0.98 V ⁺ - 0.98		V V
V _{OL}	Output Low Voltage	LTC6957I LTC6957H	•	V ⁺ – 2.1 V ⁺ – 2.1		V ⁺ – 1.67 V ⁺ – 1.62	V V
V _{OD}	Output Differential Voltage		٠	±660	±810	±965	mV
t _r	Output Rise Time				180		ps
t _f	Output Fall Time				160		ps
t _{PD}	Propagation Delay	FILTB = L, FILTA = L FILTB = L, FILTA = H FILTB = H, FILTA = L FILTB = H, FILTA = H	• • •	0.35	0.5 0.6 1.1 3.2	0.7 0.8 1.3 4	ns ns ns ns
$\Delta t_{PD}/\Delta T$	Propagation Delay Variation Over Temperature	$ \begin{array}{l} FILTB = L, FILTA = L \\ FILTB = L, FILTA = H \\ FILTB = H, FILTA = L \\ FILTB = H, FILTA = H \end{array} $	• • •		0.1 0.1 0.11 0.15		ps/°C ps/°C ps/°C ps/°C
$\Delta t_{\text{PD}} / \Delta V$	Propagation Delay Variation vs Supply Voltage	FILTB = L, FILTA = L	٠		4	50	ps/V
t _{SKEW}	Output Skew, Differential, CH1 to CH2		٠		3	30	ps
t _{MATCH}	Output Matching (OUTx ⁺ to OUTx ⁻)	See Timing Diagram	٠		2.5	30	ps
Power							
V+	V ⁺ Operating Supply Voltage Range	$R_{LOAD} = 50\Omega$ to (V ⁺ – 2V)	٠	3.15	3.3	3.45	V
I _S	Supply Current Both Outputs Enabled (SD1 = SD2 = L) One Output Enabled (SD1 = L, SD2 = H or SD1 = H, SD2 = L) Both Outputs Disabled (SD1 = SD2 = H) Including Output Loads	No Output Loads No Output Loads No Output Loads $R_{LOAD} = 50\Omega$ to (V ⁺ - 2V), ×4	•		18 15 0.7 58	22 19 1.2 72	mA mA mA mA
t _{ENABLE}	Output Enable Time, Other SDx = L				40		μs
t _{WAKEUP}	Output Enable Time, Other SDx = H				120		μs
t _{DISABLE}	Output Disable Time, Other SDx = L				20		μs
t _{SLEEP}	Output Disable Time, Other SDx = H				20		μs

ELECTRICAL CHARACTERISTICS LTC6957-1 The \bullet denotes the specifications which apply over the full operating temperature range, otherwise specifications are at T_A = 25°C. V⁺ = 3.3V, SD1 = SD2 = 0.4V, FILTA = FILTB = 0.4V, R_{LOAD} = 50 Ω connected to 1.3V, unless otherwise specified. All voltages are with respect to ground.

SYMBOL	PARAMETER	CONDITIONS		MIN	ТҮР	MAX	UNITS
Digital L	ogic Inputs	I					
V _{IH}	High Level SD or FILT Input Voltage		•	V ⁺ - 0.4			V
V _{IL}	Low Level SD or FILT Input Voltage		•			0.4	V
I _{IN_DIG}	Input Current SD or FILT Pins		•		0.1	±10	μA
Additive	Phase Noise and Jitter	I					
	f _{IN} = 300MHz Sine Wave, 7dBm (FILTA = L, FILTB = L) at 10Hz Offset at 10Hz Offset at 1kHz Offset at 10kHz Offset at 100kHz Offset >1MHz Offset Jitter (10Hz to 150MHz) Jitter (12kHz to 20MHz)				-130 -140 -150 -157 -157.5 -157.5 123 45		dBc/Hz dBc/Hz dBc/Hz dBc/Hz dBc/Hz dBc/Hz fs _{RMS} fs _{RMS}
	f _{IN} = 122.88MHz Sine Wave, 0dBm (FILTA = H, FILTB = L) at 10Hz Offset at 10Hz Offset at 10Hz Offset at 10Hz Offset at 10KHz Offset >1MHz Offset Jitter (10Hz to 61.44MHz) Jitter (12kHz to 20MHz)				-137 -146 -154.6 -157 -157.2 -157.2 200 114		dBc/Hz dBc/Hz dBc/Hz dBc/Hz dBc/Hz fs _{RMS} fs _{RMS}
	f _{IN} = 100MHz Sine Wave, 10dBm (FILTA = L, FILTB = L) at 10Hz Offset at 10Hz Offset at 1kHz Offset at 10kHz Offset at 10kHz Offset >1MHz Offset Jitter (10Hz to 50MHz) Jitter (12kHz to 20MHz)				-138 -148.1 -156.8 -160.6 -161 -161 142 90		dBc/Hz dBc/Hz dBc/Hz dBc/Hz dBc/Hz fs _{RMS} fs _{RMS}

ELECTRICAL CHARACTERISTICS LTC6957-2

The \bullet denotes the specifications which apply over the full operating temperature range, otherwise specifications are at T_A = 25°C. V⁺ = 3.3V, SD1 = SD2 = 0.4V, FILTA = FILTB = 0.4V, R_{LOAD} = 110 Ω differential, unless otherwise specified. All voltages are with respect to ground.

SYMBOL	PARAMETER	CONDITIONS		MIN	ТҮР	MAX	UNITS
Inputs (IN	, IN+)						
f _{IN}	Input Frequency Range					300	MHz
V _{INSE}	Input Signal Level Range, Single-Ended			0.2	0.8	2	V _{P-P}
VINDIFF	Input Signal Level Range, Differential			0.2	0.8	2	V _{P-P}
t _{MIN}	Minimum Input Pulse Width	High or Low			0.5		ns
VINCM	Self-Bias Voltage, IN ⁺ , IN ⁻			1.8	2	2.3	V
R _{IN}	Input Resistance, Differential			1.5	2	2.5	kΩ
CIN	Input Capacitance, Differential				0.5		pF
BW _{IN}	Input Section Small Signal Bandwidth	FILTB = L, FILTA = L FILTB = L, FILTA = H FILTB = H, FILTA = L FILTB = H, FILTA = H			1200 500 160 50		MHz MHz MHz MHz
Outputs (LVDS)	•					
V _{OD}	Output Differential Voltage			250	360	450	mV
ΔV_{OD}	Delta V _{OD}				0.2	50	mV
V _{OS}	Output Offset Voltage			1.125	1.25	1.375	V
ΔV_{OS}	Delta V _{OS}				1.5	50	mV
I _{SC}	Short-Circuit Current				3.9	6	mA
t _r	Output Rise Time				170		ps
t _f	Output Fall Time				170		ps
t _{PD}	Propagation Delay	$ FILTB = L, FILTA = L \\ FILTB = L, FILTA = H \\ FILTB = H, FILTA = L \\ FILTB = H, FILTA = H $	• • •	0.65	0.84 0.9 1.35 3.5	1.15 1.3 1.8 4.4	ns ns ns ns
$\Delta t_{PD}/\Delta T$	Propagation Delay Variation Over Temperature	$ FILTB = L, FILTA = L \\ FILTB = L, FILTA = H \\ FILTB = H, FILTA = L \\ FILTB = H, FILTA = H $	• • •		0.5 0.6 0.7 1.8		ps/°C ps/°C ps/°C ps/°C
$\Delta t_{\text{PD}}/\Delta V$	Propagation Delay Variation vs Supply Voltage	FILTB = L, FILTA = L			5	60	ps/V
t _{SKEW}	Output Skew, Differential, CH1 to CH2				3	50	ps
Power	·	·					
V ⁺	V ⁺ Operating Supply Voltage Range			3.15	3.3	3.45	V
I _S	Supply Current Both Outputs Enabled (SD1 = SD2 = L) One Output Enabled (SD1 = L, SD2 = H or SD1 = H, SD2 = L) Both Outputs Disabled (SD1 = SD2 = H)		•		38 26 0.7	45 30 1.2	mA mA mA
t _{ENABLE}	Output Enable Time, Other SDx = L				300		ns
t _{WAKEUP}	Output Enable Time, Other SDx = H				400		ns
t _{disable}	Output Disable Time, Other SDx = L				40		ns
t _{SLEEP}	Output Disable Time, Other SDx = H				50		ns

ELECTRICAL CHARACTERISTICS LTC6957-2 The \bullet denotes the specifications which apply over the full operating temperature range, otherwise specifications are at T_A = 25°C. V⁺ = 3.3V, SD1 = SD2 = 0.4V, FILTA = FILTB = 0.4V, R_{LOAD} = 110 Ω differential, unless otherwise specified. All voltages are with respect to ground.

SYMBOL	PARAMETER	CONDITIONS		MIN	ТҮР	MAX	UNITS
Digital L	ogic Inputs						
V _{IH}	High Level SD or FILT Input Voltage		•	V ⁺ - 0.4			V
V _{IL}	Low Level SD or FILT Input Voltage		•			0.4	V
I _{IN_DIG}	Input Current SD or FILT Pins		•		0.1	±10	μA
Additive	Phase Noise and Jitter		I				
	f _{IN} = 300MHz Sine Wave, 7dBm (FILTA = L, FILTB = L) 10Hz Offset 10Hz Offset 10Hz Offset 10kHz Offset 100kHz Offset >1MHz Offset Jitter (10Hz to 150MHz) Jitter (12kHz to 20MHz)				-124 -134 -143.5 -151.3 -154 -154 183 67		dBc/Hz dBc/Hz dBc/Hz dBc/Hz dBc/Hz dBc/Hz fs _{RMS} fs _{RMS}
	f _{IN} = 122.88MHz Sine Wave, 0dBm (FILTA = H, FILTB = L) 10Hz Offset 10Hz Offset 1kHz Offset 10kHz Offset 100kHz Offset >1MHz Offset Jitter (10Hz to 61.44MHz) Jitter (12kHz to 20MHz)				-132.5 -142.5 -150.7 -156 -157 -157 203 116		dBc/Hz dBc/Hz dBc/Hz dBc/Hz dBc/Hz dBc/Hz fs _{RMS} fs _{RMS}
	f _{IN} = 100MHz Sine Wave, 10dBm (FILTA = L, FILTB = L) 10Hz Offset 10Hz Offset 1kHz Offset 10kHz Offset 100kHz Offset >1MHz Offset Jitter (10Hz to 50MHz) Jitter (12kHz to 20MHz)				-132 -142 -151 -157.5 -159.5 -159.5 169 107		dBc/Hz dBc/Hz dBc/Hz dBc/Hz dBc/Hz fs _{RMS} fs _{RMS}

ELECTRICAL CHARACTERISTICS LTC6957-3/LTC6957-4

The \bullet denotes the specifications which apply over the full operating temperature range, otherwise specifications are at T_A = 25°C. V⁺ = V_{DD} = 3.3V, SD1 = SD2 = 0.4V, FILTA = FILTB = 0.4V, R_{LOAD} = 480 Ω to V_{DD}/2, unless otherwise specified. All voltages are with respect to ground.

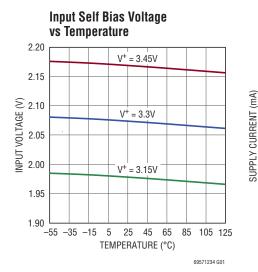
SYMBOL	PARAMETER	CONDITIONS		MIN	ТҮР	MAX	UNITS
Inputs (II	, IN+)						
f _{IN}	Input Frequency Range		٠			300	MHz
V _{INSE}	Input Signal Level Range, Single-Ended		٠	0.2	0.8	2	V _{P-P}
VINDIFF	Input Signal Level Range, Differential		٠	0.2	0.8	2	V _{P-P}
t _{MIN}	Minimum Input Pulse Width	High or Low			0.6		ns
VINCM	Self-Bias Voltage, IN ⁺ , IN ⁻		٠	1.8	2	2.3	V
R _{IN}	Input Resistance, Differential		٠	1.5	2	2.5	kΩ
CIN	Input Capacitance, Differential				0.5		pF
BWIN	Input Section Small Signal Bandwidth	FILTB = L, FILTA = L FILTB = L, FILTA = H FILTB = H, FILTA = L FILTB = H, FILTA = H			1200 500 160 50		MHz MHz MHz MHz
Outputs (CMOS)						<u>.</u>
V _{OH}	Output High Voltage	No Load –3mA Load	•	V _{DD} - 0.1 V _{DD} - 0.2			V V
V _{OL}	Output Low Voltage	No Load 3mA Load	•			0.1 0.2	V V
t _r	Output Rise Time				320		ps
t _f	Output Fall Time				300		ps
t _{PD}	Propagation Delay	FILTB = L, FILTA = L FILTB = L, FILTA = H FILTB = H, FILTA = L FILTB = H, FILTA = H	•	0.8	0.95 1 1.5 3.6	1.6 1.8 2.4 4.8	ns ns ns ns
$\Delta t_{PD}/\Delta T$	Propagation Delay Variation Over Temperature	FILTB = L, FILTA = L FILTB = L, FILTA = H FILTB = H, FILTA = L FILTB = H, FILTA = H	• • •		1.7 1.7 2 3		ps/°C ps/°C ps/°C ps/°C
$\Delta t_{PD}/\Delta V$	Propagation Delay Variation vs Supply Voltage	$FILTB = FILTA = L, V^+ = V_{DD}$	٠		100	200	ps/V
t _{SKEW}	Output Skew, CH1 to CH2 LTC6957-3 LTC6957-4		•		5 120	35 250	ps ps
Power							<u> </u>
V+	V ⁺ Operating Supply Voltage Range		٠	3.15	3.3	3.45	V
V _{DD}	V _{DD} Operating Supply Voltage Range	V_{DD} Must Be $\leq V^+$	٠	2.4	3.3	3.45	V
I _S	Supply Current, Pin 2 Both Outputs Enabled (SD1 = SD2 = L) One Output Enabled (SD1 = L, SD2 = H or SD1 = H, SD2 = L) Both Outputs Disabled (SD1 = SD2 = H)		•		24 24 0.7	27.5 27.5 1.2	mA mA mA
I _{DD}	Supply Current, Pin 11, No Load	Static Dynamic, per Output	•		0.001 0.056	0.01 0.07	mA mA/MHz
t _{enable}	Output Enable Time, Other SDx = L				200		ns
t _{WAKEUP}	Output Enable Time, Other SDx = H				300		ns
t _{DISABLE}	Output Disable Time, Other SDx = L				20		ns
t _{SLEEP}	Output Disable Time, Other SDx = H				20		ns

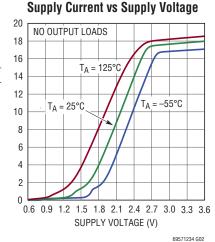
LINEAR

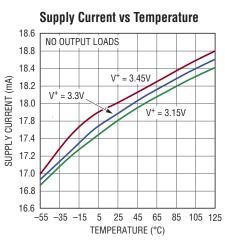
ELECTRICAL CHARACTERISTICS LTC6957-3/LTC6957-4

The \bullet denotes the specifications which apply over the full operating temperature range, otherwise specifications are at T_A = 25°C. V⁺ = V_{DD} = 3.3V, SD1 = SD2 = 0.4V, FILTA = FILTB = 0.4V, R_{LOAD} = 480 Ω to V_{DD}/2, unless otherwise specified. All voltages are with respect to ground.

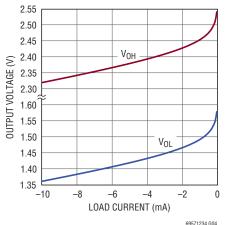
SYMBOL	PARAMETER	CONDITIONS	MIN	ТҮР	MAX	UNITS
Digital L	ogic Inputs					·
VIH	High Level SD or Filt Input Voltage		V ⁺ - 0.4			V
V _{IL}	Low Level SD or Filt Input Voltage				0.4	V
I _{IN_DIG}	Input Current SD or Filt Pins			0.1	±10	μA
Additive	Phase Noise and Jitter					
	f _{IN} = 300MHz Sine Wave, 7dBm (FILTA = L, FILTB = L) 10Hz Offset 100Hz Offset 1kHz Offset 10kHz Offset 100kHz Offset >1MHz Offset Jitter (10Hz to 150MHz) Jitter (12kHz to 20MHz)			-123 -133 -143 -152 -156 -156 146 53		dBc/Hz dBc/Hz dBc/Hz dBc/Hz dBc/Hz dBc/Hz fS _{RMS} fS _{RMS}
	$f_{\text{IN}} = 122.88\text{MHz Sine Wave, 0dBm (FILTA = H, FILTB = L)} \\ 10\text{Hz Offset} \\ 100\text{Hz Offset} \\ 1\text{kHz Offset} \\ 10\text{kHz Offset} \\ 100\text{kHz Offset} \\ > 1\text{MHz Offset} \\ \text{Jitter (10\text{Hz to 61.44\text{MHz})} \\ \text{Jitter (12\text{kHz to 20\text{MHz})}} \end{cases}$			-132 -142 -150.6 -156.5 -157.4 -157.4 192 109		dBc/Hz dBc/Hz dBc/Hz dBc/Hz dBc/Hz dBc/Hz fS _{RMS} fS _{RMS}
	f _{IN} = 100MHz Sine Wave, 10dBm (FILTA = L, FILTB = L) 10Hz Offset 100Hz Offset 1kHz Offset 10kHz Offset 100kHz Offset >1MHz Offset Jitter (10Hz to 50MHz) Jitter (12kHz to 20MHz)			-135 -145 -153 -159.8 -161 -161 142 90		dBc/Hz dBc/Hz dBc/Hz dBc/Hz dBc/Hz dBc/Hz fs _{RMS} fs _{RMS}

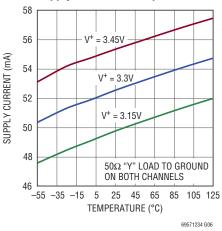

Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.


Note 2: Input pins IN⁺, IN⁻, FILTA, FILTB, SD1 and SD2 are protected by steering diodes to either supply. If the inputs go beyond either supply rail, the input current should be limited to less than 10mA. If pushing current into FILTB, the Pin 6 voltage must be limited to 4V. On the logic pins (FILTA, FILTB, SD1 and SD2) the Absolute Maximum input current applies

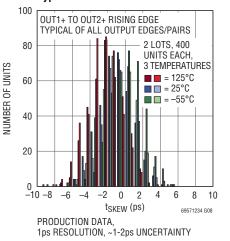

only at the maximum operating supply voltage of 3.45V; 10mA of input current with the absolute maximum supply voltage of 3.6V may create permanent damage from voltage stress.

Note 3: With 3.6V Absolute Maximum supply voltage, the LTC6957-3/ LTC6957-4 CMOS outputs can sink 30mA while low, and source 30mA while high without damage. However, if overdriven or subject to an inductive load kick outside the supply rails, 30mA can create damaging voltage stress and is not guaranteed unless V_{DD} is limited to 3.15V.

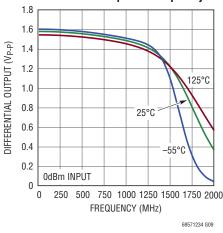




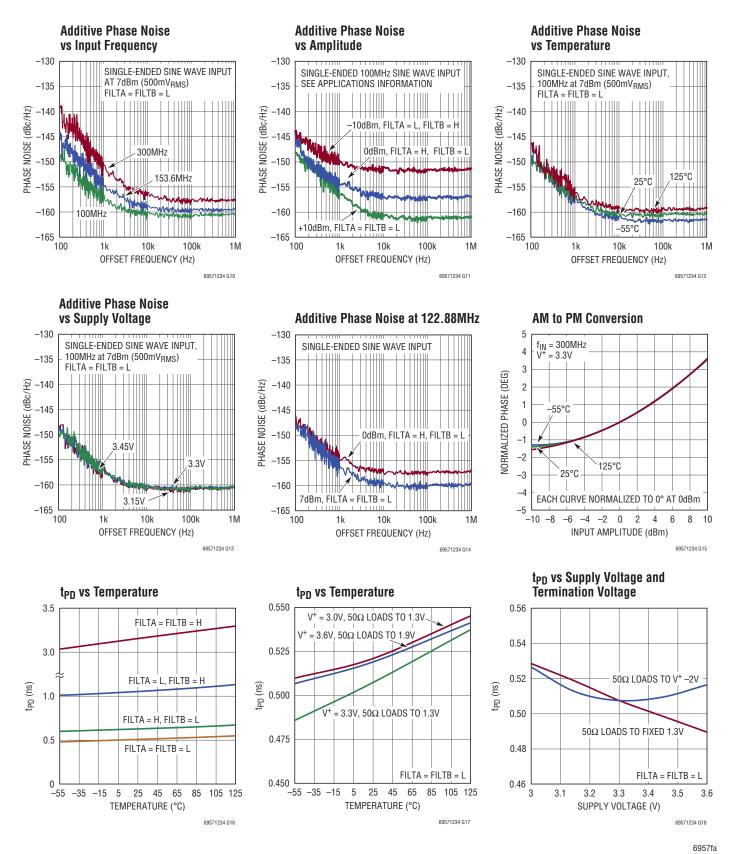
Output Voltage vs Load Current


Output Voltage vs Temperature 2.4 V⁺ = 3.3V 50Ω LOADS TO 1.3V V_{OH} (V) 2.2 1. 1. VOL 1.4 . --55 --35 --15 5 25 45 65 85 105 125 TEMPERATURE (°C) 69571234 G05

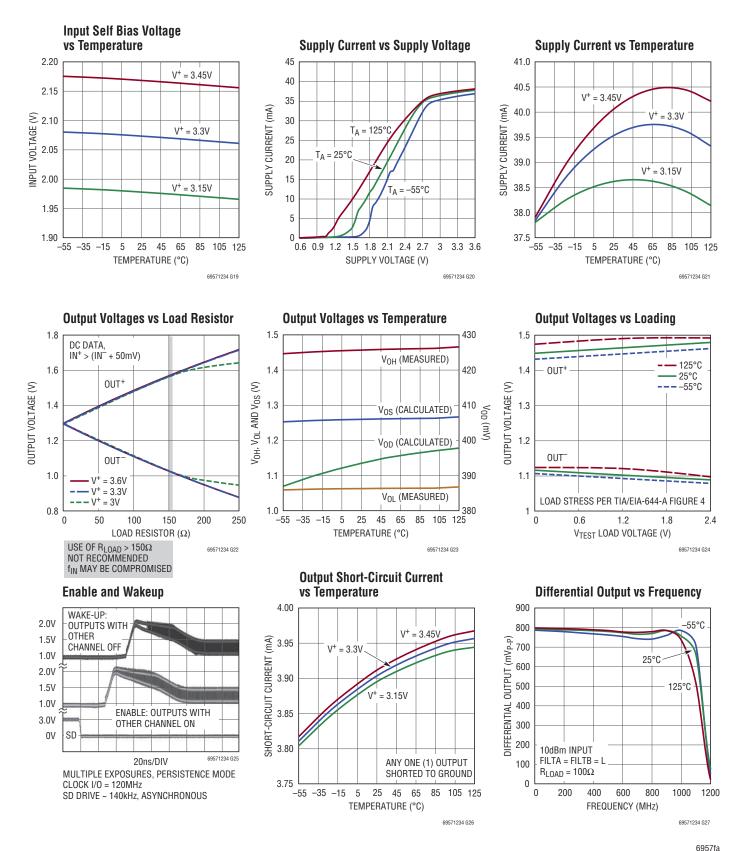
Supply Current vs Temperature



Enable and Wakeup 2.5V 2 0V WAKE-UP: 1.5V **OUTPUTS WITH** OTHER CHANNEL OFF 2 5V 2.0V 1.5V ENABLE: OUTPUTS WITH 3.0V OTHER CHANNEL ON 0V SD 69571234 GO 20ns/DIV MULTIPLE EXPOSURES, PERSISTENCE MODE CLOCK I/O = 120MHz SD DRIVE ~ 140kHz. ASYNCHRONOUS



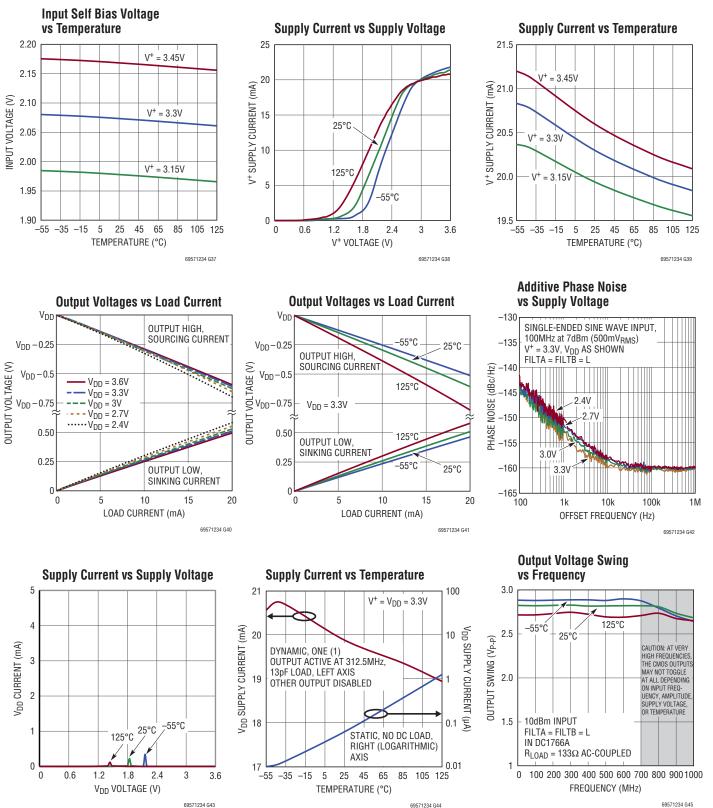
Differential Output vs Frequency



12

TEMPERATURE (°C)

69571234 G34


TEMPERATURE (°C)

69571234 G35

69571234 G36

SUPPLY VOLTAGE (V)

TYPICAL PERFORMANCE CHARACTERISTICS LTC6957-3/LTC6957-4

69571234 G45

Additive Phase Noise

SINGLE-ENDED SINE WAVE INPUT,

25°C

10k

OFFSET FREQUENCY (Hz)

125°C

-55°C

69571234 G48

1M

100k

100MHz AT 7dBm (500mV_{RMS})

vs Temperature

FILTA = FILTB = L

-130

-135

-140

-145

-150

-155

-160

-165

100

PHASE NOISE (dBc/Hz)

TYPICAL PERFORMANCE CHARACTERISTICS LTC6957-3/LTC6957-4

100

Additive Phase Noise

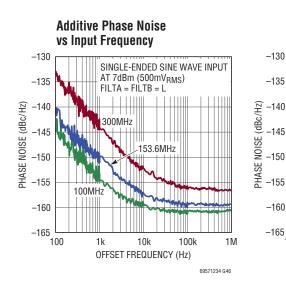
10dBm. FILTA = FILTB = L

1k

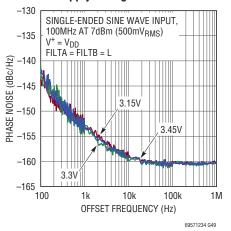
SINGLE-ENDED 100MHz SINE WAVE INPUT

–10dBm, FILTA = L, FILTB = H

100k

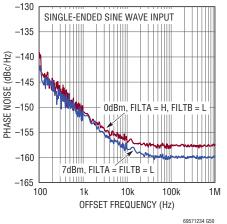

1M

69571234 G47


0dBm, FILTA = H, FILTB = L

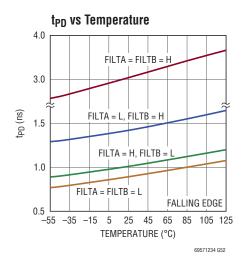
SEE APPLICATIONS INFORMATION

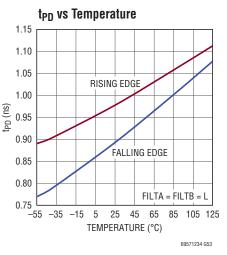
vs Amplitude


Additive Phase Noise vs Supply Voltage

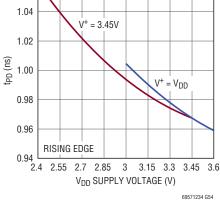
Additive Phase Noise at 122.88MHz

10k


OFFSET FREQUENCY (Hz)



AM to PM Conversion


1k

1.06 **Tep vs Supply Voltage**

PIN FUNCTIONS

FILTA, FILTB (Pin 1, Pin 6): Input Bandwidth Limiting Control. These CMOS logic inputs control the bandwidth of the early amplifier stages. For slow slewing signals substantially lower phase noise is achieved by using this feature. See the Applications Information section for more details.

V⁺ (**Pin 2**): Supply Voltage (3.15V to 3.45V). This supply must be kept free from noise and ripple. It should be bypassed directly to GND (Pin 5) with a 0.1μ F capacitor.

IN⁺, IN⁻ (Pin 3, Pin 4): Input Signal Pins. These inputs are differential, but can also interface with single-ended signals. The input can be a sine wave signal or a CML, LVPECL, TTL or CMOS logic signal. See the Applications Information section for more details.

GND (Pin 5): Ground. Connect to a low inductance ground plane for best performance. The connection to the bypass capacitor for V⁺ (Pin 2) should be through a direct, low inductance path.

SD1, SD2 (Pin 12, Pin 7): Output Enable Control. These CMOS logic inputs control the enabling and disabling of their respective OUT1 and OUT2 outputs. When both outputs are disabled, the LTC6957 is placed in a low power shutdown state.

LTC6957-1 Only

OUT1⁻, OUT1⁺ (Pin10, Pin11): LVPECL Outputs. Differential logic outputs typically terminated by 50Ω connected to a supply 2V below the V⁺ supply. Refer to the Applications Information section for more details.

OUT2⁻, OUT2⁺ (Pin 9, Pin 8): LVPECL Outputs. Differential logic outputs typically terminated by 50Ω connected to a supply 2V below the V⁺ supply. Refer to the Applications Information section for more details.

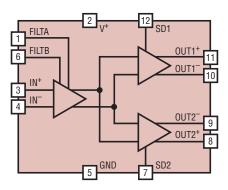
LTC6957-2 Only

OUT1⁻, OUT1⁺ (Pin 10, Pin 11): LVDS Outputs, Mostly TIA/EIA-644-A Compliant. Refer to the Applications Information section for more details.

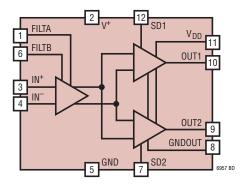
OUT2⁻, OUT2⁺ (Pin 9, Pin 8): LVDS Outputs, Mostly TIA/ EIA-644-A Compliant. Refer to the Applications Information section for more details.

LTC6957-3/LTC6957-4 Only

OUT1, OUT2 (Pin 10, Pin 9): CMOS Outputs. Refer to the Applications Information section for more details.

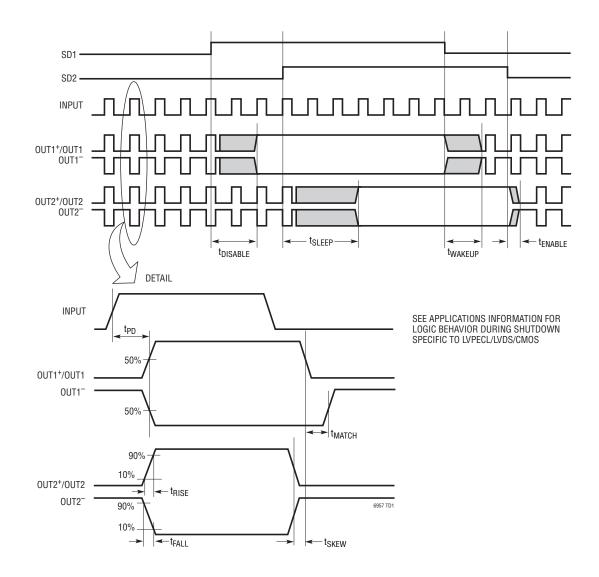

 V_{DD} (Pin 11): Output Supply Voltage (2.4V to 3.45V). For best performance connect this to the same supply as V⁺ (Pin 2). If the output needs to be a lower logic rail, this supply can be separately connected, but this voltage must be less than or equal to that on Pin 2 for proper operation. This supply must also be kept free from noise and ripple. It should be bypassed directly to the GNDOUT pin (Pin 8) with a 0.1µF capacitor.

GNDOUT (Pin 8): Output Logic Ground. Tie to a low inductance ground plane for best performance. The connection to the bypass capacitor for V_{DD} (Pin 11) should be through a direct, low inductance path.


LTC6957-xDD Only

Exposed Pad (Pin 13): Always tie the underlying DFN exposed pad to GND (Pin 5). To achieve the rated θ_{JA} of the DD package, there should be good thermal contact to the PCB.

BLOCK DIAGRAMS


LTC6957-1 and LTC6957-2

LTC6957-3 and LTC6957-4

TIMING DIAGRAM

General Considerations

The LTC6957-1/LTC6957-2/LTC6957-3/LTC6957-4 are low noise, dual output clock buffers that are designed for demanding, low phase noise applications. Properly applied, they can preserve phase noise performance in situations where alternative solutions would degrade the phase noise significantly. They are also useful as logic converters.

However, no buffer device is capable of removing or reducing phase noise present on an input signal. As with most low phase noise circuits, improper application of the LTC6957-1/LTC6957-2/LTC6957-3/LTC6957-4 can result in an increase in the phase noise through a variety of mechanisms. The information below will, hopefully, allow a designer to avoid such an outcome.

The LTC6957 is designed to be used with high performance clock signals destined for driving the encode inputs of ADCs or mixer inputs. Such clocks should not be treated as digital signals. The beauty of digital logic is that there is noise margin both in the voltage and the timing, before any deleterious effects are noticed. In contrast, high performance clock signals have no margin for error in the timing before the system performance is degraded. Users are encouraged to keep this distinction in mind while designing the entire clocking signal chain before, during, and after the LTC6957.

Input Interfacing

The input stage is the same for all versions of the LTC6957 and is designed for low noise and ease of interfacing to sine-wave and small amplitude signals. Other logic types can interface directly, or with little effort since they present a smaller challenge for noise preservation.

Figure 1 shows a simplified schematic of the LTC6957 input stage. The diodes are all for protection, both during ESD events and to protect the low noise NPN devices from being damaged by input overdrive.

The resistors are to bias the input stage at an optimal DC level, but they are too large to leave floating without increasing the noise. Therefore, for low noise use, always connect both inputs to a low AC impedance. A capacitor to ground/return is imperative on the unused input in single-ended applications.

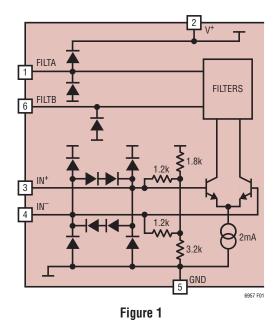


Figure 2a shows how to interface single-ended LVPECL logic to the LTC6957, while Figure 2b shows how to drive the LTC6957 with differential LVPECL signals. The capacitors shown are 10nF and can be inexpensive ceramics, preferably in small SMT cases. For use above 100MHz, lower value capacitors may be desired to avoid series resonance, which could increase the noise in Figure 2a even though the capacitor is just on the DC input. This comment applies to all capacitors hooked to the inputs throughout this data sheet.

In Figure 2a, the R_{TERM} implementation is up to the user and is to terminate the transmission line. If it is connected to a V_{TT} that is passively generated and heavily bypassed to ground, the 10nF to ground shown on the inverting LTC6957 input is the appropriate connection to use. However, if the termination goes to an actively generated V_{TT} voltage, lower noise may be achieved by connecting the capacitor on the inverting input to that V_{TT} rather than ground.

In Figure 2b, both inputs to the LTC6957 are driven, increasing the differential input signal size and minimizing noise from any common mode source such as V_{TT} , both of which improve the achievable phase noise.

A variety of termination techniques can be used, and as long as the two sides use the same termination, the configuration used won't matter much. In Figure 2b, the

 R_{TERM} s are shown in a "Y" configuration that creates a passive V_{TT} at the common point. Most 3.3V LVPECL devices have differential outputs and can be terminated with three 50 Ω resistors as shown.

Figure 3 shows a 50Ω RF signal source interface to the LTC6957. For a pure tone (sine wave) input, Figure 3 can handle up to 10dBm maximum. A broadband 50Ω match as shown should suffice for most applications, though for small amplitude input signals a narrow band reactive matching network may offer incremental improvements in performance.

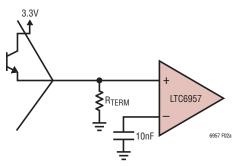


Figure 2a. Single-Ended LVPECL Input

Figure 4 shows the interface between current mode logic (CML) signals and the LTC6957 inputs. The specifics of terminating will be dependent on the particular CML driver used; Figure 4 shows terminations only at the load end of the line, but the same LTC6957 interface is appropriate for applications with the source end of the line also terminated. In Figure 4a, a differential signal interface to the LTC6957 is shown, which must be AC-coupled due to the DC input levels required at the LTC6957.

Figure 4b shows a single-ended CML signal driving the LTC6957. This is not commonly used because of noise and immunity weaknesses compared to the differential CML case. Because the signal is created by a current pulled through the termination resistor, the signal is inherently referenced to the supply voltage to which R_{TERM} is tied. For that reason, the other LTC6957 should be AC-referenced to that supply voltage as shown.

The polarity change shown here is for graphic clarity only, and can be reversed by swapping the LTC6957 input terminals.

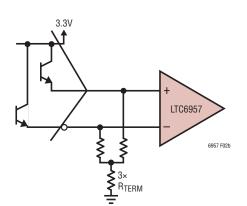
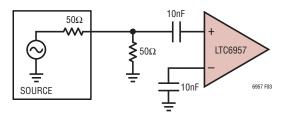



Figure 2b. Differential LVPECL Input

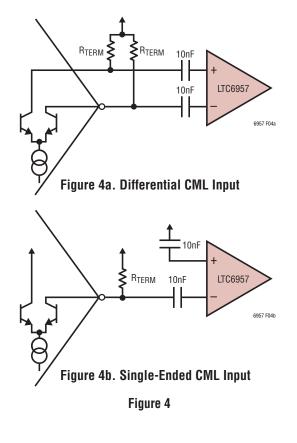


Figure 5 shows the LTC6957 being driven by an LVDS (EIA-644-A) signal pair. This is simply a matter of differentially terminating the pair and AC-coupling as shown into the LTC6957 whose DC common mode voltage is incompatible with the LVDS standard.

The choice of 110Ω versus 100Ω termination is arbitrary (the EIA-644-A standard allows 90Ω to 132Ω) and should be made to match the differential impedance of the trace pair. The termination and AC-coupling elements should be located as close as possible to the LTC6957.

If DC-coupling is desired, for example to control the LTC6957 output phasing during times the LVDS input clocks will be halted, a pair of 3k resistors can parallel the two capacitors in Figure 5. An EIA/TIA-644-A compliant driver can drive this load, which is less load stress than specification 4.1.1. The differential voltage into the LTC6957 when clocked (>100kHz) will be full LVDS levels. When the clocks stop, the DC differential voltage created by the resistors and the 1.2k internal resistors (Figure 1) will be 100mV, still sufficient to assure the desired LTC6957 output polarity. Choosing the smallest capacitors needed for phase noise performance will minimize the settling transients when the clocks restart.

Interfacing with CMOS Logic

The logic families discussed and illustrated to this point are generally a better choice for routing and distributing low phase-noise reference/clock signals than is CMOS logic. All of the logic types shown so far are well suited for use with low impedance terminations. Most of the time there is a differential signal when using LVPECL or CML, and LVDS always has a differential signal. Differential signals provide lots of margin for error when it comes to picking up noise and interference that can corrupt a reference clock.

CMOS on the other hand cannot drive 50Ω loads, is usually routed single-ended, and by its nature is coupled to the potentially noisy supply voltage half the time.

The LTC6957-3/LTC6957-4 provide CMOS outputs, so it may seem surprising to read herein that CMOS is a poor choice for low phase noise applications. However, these devices should prove useful for designers that recognize the challenges and limitations of using CMOS signals for low phase noise applications. See the CMOS Outputs of the LTC6957-3/LTC6957-4 section for further information.

The best method for driving the LTC6957 with CMOS signals would be to provide differential drive, but if that is not available, there are few ways to create a differential CMOS signal without running the risk of corrupting the skew or creating other problems. Therefore, single-ended CMOS signals are the norm and care must be taken when using this to drive the LTC6957.

The primary concern is that all routing should be terminated to minimize reflections. With CMOS logic there is usually plenty of signal (more than the LTC6957 can handle without attenuation) and the amplitude of the LTC6957 input signal will generally be of secondary importance compared to avoiding the deleterious effects of signal reflections. The primary concern about terminations is that the input waveform presented to the LTC6957 should have full speed slewing at the all important transitions. If a rising edge is slowed by the destructive addition of the ringing/settling of a prior edge reflection, or even the start of the current edge, the phase noise performance will suffer. This is true for all logic types, but is particularly problematic when using CMOS because of the fast slew rates and because it does not naturally lend itself to clean terminations.

Point-to-point routing is best, and care should be taken to avoid daisy-chain routing, because the terminated end may be the only point along the line that sees clean transitions. Earlier loads may even see a dwell in the transition region which will greatly degrade phase noise performance.

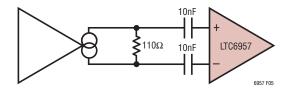


Figure 5. LVDS Input

Figure 6 shows a suggested CMOS to LTC6957 interface. The transmission line shown is the PCB trace and the component values are for a characteristic impedance of 50 Ω , though they could be scaled up or down for other values of Z0. The R1/R2 divider at the CMOS output cuts the Thevenin voltage in half when the Z_{OUT} of the driver is included. More importantly, it drives the transmission line with a Thevenin driving resistance of 50Ω , matching the Z0 of the line. On the other end of the line, a 50 Ω load is presented, minimizing reflections. This results in a second 2:1 attenuation in voltage, so the LTC6957 input will be approximately 800mV_{P-P} with 3 V CMOS; 1.25V_{P-P} with 5 Vand $600mV_{P-P}$ with 2.5V. All of these levels are less than the maximum input swing of 2V_{P-P} yet with clean edges and fast slew rates should be able to realize the full phase noise performance of the LTC6957.

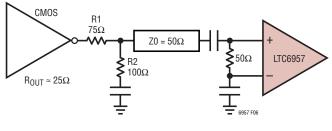


Figure 6. CMOS Input

The various capacitors are for AC-coupling and should have Z $<< 50\Omega$ at the operating frequency. The capacitors allow the LTC6957 to set its own DC input bias level, and reduce the DC current drain, which at 12.4mA (for the case of a driver powered from 3.3V) is significant. This current drain can be reduced (with some potential for a noise penalty) by increasing the attenuation at the R1/ R2 network, taking care to keep the Thevenin impedance equal to the ZO of the trace.

When using CMOS logic, it is important to consider how all of the output drivers, in the same IC, are being used. For best performance, the entire IC should be devoted to driving the LTC6957, or if other gates in the same package must be put to use, they should only carry the same timing signal (such as for fan-out) or be multiplexed in time so that only one timing signal is being processed at a time, such as for multiplexing selective shutdowns of different segments of a system. Otherwise performance is likely to suffer with spurs or other interference in the phase noise spectrum related to the other signals processed in the driver.

Input Resistors

The LTC6957 input resistors, seen in Figure 1, are present at all times, including during shutdown. Although they constitute a large portion of the shutdown current, this behavior prevents the shutdown and wake-up cvcling of the LTC6957 from "kicking back" into prior stages, which could create large transients that could take a while to settle. Particularly in the common case of AC-coupling where the coupling cap charge is preserved.

Input Filtering

The LTC6957 includes input filtering with three narrowband settings in addition to the full bandwidth limitation of the circuit design.

Та	b	le	1
IU	N	10	

FILTB	BANDWIDTH						
Low	1200MHz (Full Bandwidth)						
Low	500MHz (–3dB)						
High	160MHz (–3dB)						
High	50MHz (-3dB)						
	Low Low High						

For slow slewing signals (i.e., <100MHz sine wave signals) substantially lower phase noise can be achieved by using this feature. Bandwidth limiting is useful because it limits the impact of all of the spectral energy that will alias down to (on top of) the fundamental frequency.

The best filter setting to use for a given application will depend on the clock frequency, amplitude, and waveform shape, with the single biggest determinant being the slew rate at the input of the LTC6957. Any amplifier noise will add phase noise inversely proportional to its input slew rate, just from the dV/dt changing voltage noise to time base noise. But a fast slew rate may not be possible with other design constraints, such as the use of sine waves for EMI/RFI reasons, signal losses, etc. A limiting amplifier such as the LTC6957 should have enough bandwidth to preserve the slew rate of the input. But any additional bandwidth will provide no improvement in phase noise due to slew rate preservation, while incurring a phase noise penalty from noise aliasing.

Table 2 has the slew rate ranges most suitable for the four different filter settings.

FILTA FILTB		INPUT SLEW RATE (V/µs)	
Low	Low	>400	
High	Low	125 to 400	
Low	High	40 to 125	
High	High	<40	

Another way to look at this is to consider the case of sine waves, for which the frequency ranges will depend on input amplitudes, as illustrated in Table 3.

Table 3

FREQUENCY RANGE						
INPUT Amplitude (dBm)	FILTA = L, FILTB = L (MHz)	FILTA = H, FILTB = L (MHz)	FILTA = L, FILTB = H (MHz)	FILTA = H, FILTB = H (MHz)		
10	>63	20 to 63	6.3 to 20	<6.3		
5	>112	35 to 112	11 to 35	<11		
0	>200	63 to 200	20 to 63	<20		
-5		>112	35 to 112	<35		
-10		>200	63 to 200	<63		

Figure 7 has LTC6957-1 100MHz additive phase noise measurements that illustrate the trade-offs between filter

settings at various input slew rates. Each of the three charts has all four filter settings, and one input amplitude; Figure 7a has a +10 dBm input, Figure 7b has a 0dBm input, and Figure 7c has a -10 dBm input. The four filter settings are shown in the same colors throughout.

With +10dBm at 100MHz, the input slew rate is $628V/\mu s$ and Table 2 indicates the best filter setting to use is FILTA = FILTB = L, which is seen to be the case in Figure 7a.

The noise at the next filter setting is only slightly higher, but for the maximum filtering case there is a full 10dB of additional noise.

With OdBm at 100MHz, the input slew rate is $198V/\mu s$ and Table 2 indicates the best filter setting to use is FILTA = H, FILTB = L. Again this is seen to be the case in Figure 7b. As the input was decreased 10dB from Figure 7a to Figure 7b, the blue trace rose 5dB while the green trace only rose 3dB.

With -10dBm at 100MHz, the input slew rate is 63V/µs and Table 2 indicates the best filter setting to use is FILTA = L, FILTB = H. Again this is seen to be the case in Figure 7c. As the input was decreased 10dB from Figure 7a to Figure 7b, and again to Figure 7c, the red trace rose just 3dB then another 4dB, while the green and blue traces rose much faster.

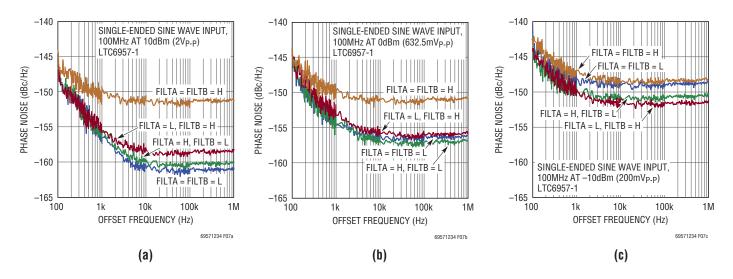


Figure 7. 100MHz Additive Phase Noise with Varying Input Amplitudes

6957f

One important observation to take away from Figures 7a to 7c is that while the worst filter settings for a given set of conditions should certainly be avoided, it doesn't matter nearly as much if the optimal or next to optimal filter setting is used, because they are always fairly comparable in terms of phase noise. So if a design will have an octave or two range of amplitudes or frequencies, it is sufficient to choose the filter setting whose range most closely matches the application's range when using Tables 2 or 3 and the noise penalty will not be severe anywhere in the range.

Evidently, the input filtering will not significantly help with large and fast slewing input signals to the LTC6957. As seen in Figure 1, the input has a differential pair before the filters, so the limiting will already have happened before the filter. Fortunately, with large input signals, performance is typically better than with smaller input signals because phase noise is a signal-to-noise phenomenon.

Input Drive and Output Skew

All versions of the LTC6957 have very good output skew; the specification limits consist almost entirely of test margins. Even laboratory verification of the skew between different outputs is a challenging exercise, given the need to measure within±1ps. With electromagnetic propagation velocity in FR-4 being well known as 6" per nanosecond, the skew of the LTC6957 will be impacted by PCB trace routing length differences of just 6mils.

The LTC6957 t_{PD} and t_{SKEW} are specified for a 100mV step with 50mV of overdrive. This is common for high speed comparators, though it may not reflect the typical application usage of parts such as the LTC6957. The propagation delay of the LTC6957 will increase with less overdrive and decrease with more overdrive, as would that of a high speed comparator. To a lesser extent, having the same overdrive but a larger signal (for instance a differential input step of -200mV to 50mV) will increase propagation delay, though this effect is smaller and can usually be ignored.

A consequence of this behavior may be a perceived mismatch between the propagation delay for rising versus falling edges when driven with an AC-coupled input whose duty cycle is not exactly 50%. The LTC6957 inputs are internally DC-coupled, and as shown in Figure 1, biasing is provided at ~64% of the supply voltage. AC-coupled input signals with a duty cycle of exactly 50% will see symmetric levels of overdrive for the two signal directions. If, for example, the input signal is a $100mV_{P-P}$ square wave with a duty-cycle of 48%, meaning it is high 48% of the time and low 52% of the time, the DC average will be 48mV above the low voltage level. This means the rising edge has 52mV of overdrive, and the falling edge has 48mV of overdrive.

As a result of this, the rising edge t_{PD} will be faster than the falling edge t_{PD} . Fortunately, this will make the output duty cycle closer to 50% than the input duty cycle. Figure 8 is from measurements on the LTC6957-2, with a 2V to 2.1V square wave on IN⁻, and with IN⁺ set to various DC voltages between those two levels. The X-axis is the overdrive level for the t_{PD} + data, and is 100mV minus the overdrive level for the t_{PD} - data, to illustrate the level of t_{PD} changes that can unexpectedly occur with ACcoupling. The lines are dashed where the measurement uncertainty becomes large, when single digit millivolts and picoseconds are being measured¹. As can be seen, the t_{PD} +/ t_{PD} - mismatch is very good at 50mV where the two overdrive levels are the same.

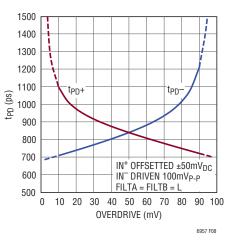


Figure 8. LTC6957-2 Propagation Delay vs Overdrive

¹ Below 2mV to 3mV, the input offset and the small input hysteresis play a role too. Fortunately, neither is large enough to be a concern in normal operation.

This data is shown for the LTC6957-2, but the effect is due to the input stage that is common to all versions, so any other version will have the same general behavior.

The LTC6957-3 and LTC6957-4 CMOS outputs may have additional t_{PD} + vs t_{PD} - discrepancies due to differences between the NMOS and PMOS output devices, particularly when driving heavy loads. These are independent of input overdrive, but can change with supply voltage and temperature, and can vary part to part. The complementary outputs of the LTC6957-4 will therefore be higher skew than the like edges of the LTC6957-3. Both the LTC6957-3 and LTC6957-4 will have large (120ps typ) t_{PD} + to t_{PD} - discrepancies compared to LVPECL or LVDS outputs.

LVPECL Outputs of the LTC6957-1

Figure 9 shows a simplified schematic of the LTC6957-1 LVPECL output stage. As with most ECL outputs, there are no internal pull-down devices so the user must provide both termination and biasing external to the device. Note

that only the current source is cut off during shutdown. The bases of the output NPNs are still tied to the pull-up resistors, so both outputs will be pulled high in shutdown, and it is the user's responsibility to disconnect the external loading if power reduction is to be realized.

The simplest way to terminate and bias the LTC6957-1 outputs is to route the differential output to the differential receiver and terminate the lines at that point with the three resistor network shown in Figure 9. The differential termination will be 100Ω , while the common mode termination will be 75Ω which could result in additional common mode susceptibility. A bypass capacitor on the midpoint of the Y can be used to improve this.

If the common mode termination impedance is not an issue, the three resistor Y configuration can be changed to a three resistor delta configuration, which is a simpler layout in most cases.

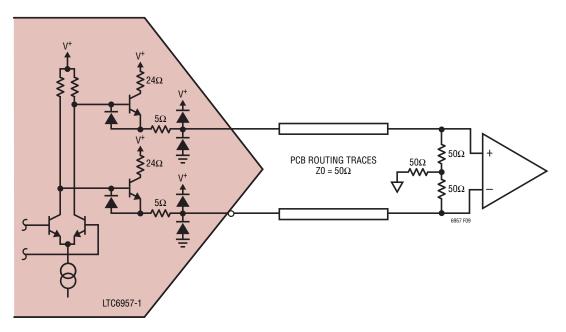


Figure 9. LTC6957-1 LVPECL Outputs

