imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

LTC8043

Serial 12-Bit Multiplying DAC in SO-8

FEATURES

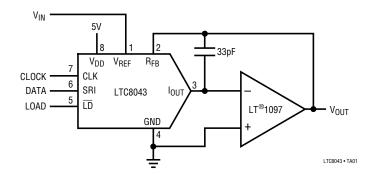
- Improved Direct Replacement for DAC-8043 and MAX543
- SO-8 Package
- DNL and INL Over Temperature: ±0.5LSB
- Easy, Fast and Flexible Serial Interface
- ±1LSB Maximum Gain Error
- 4-Quadrant Multiplication
- Low Power Consumption
- Low Cost

APPLICATIONS

- Process Control and Industrial Automation
- Remote Microprocessor-Controlled Systems
- Digitally Controlled Filters and Power Supplies
- Programmable Gain Amplifiers
- Automatic Test Equipment

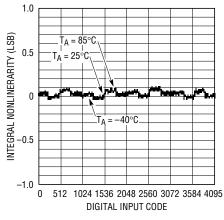
DESCRIPTION

The LTC[®]8043 is a serial-input 12-bit multiplying digitalto-analog converter (DAC). It is a superior pin compatible replacement for the DAC-8043. Improvements include better accuracy, better stability over temperature and supply variations, lower sensitivity to output amplifier offset, tighter timing specifications and lower output capacitance.


An easy-to-use 3-wire serial interface is well-suited to remote or isolated applications

The LTC8043 is extremely versatile. It can be used for 2-quadrant and 4-quadrant multiplying, programmable gain and single supply applications, such as noninverting voltage output mode.

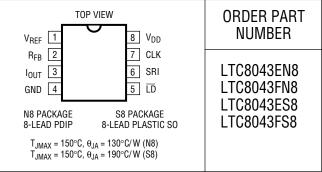
Parts are available in 8-pin SO and PDIP packages and are specified over the extended industrial temperature range, -40° C to 85° C.


C, LTC and LT are registered trademarks of Linear Technology Corporation.

TYPICAL APPLICATION

SO-8 Multiplying DAC Has Easy 3-Wire Serial Interface

Integral Nonlinearity Over Temperature


LTC8043 • TPC02

ABSOLUTE MAXIMUM RATINGS

V_{DD} to GND	7V
Digital Inputs to GND $-0.5V$ to (V _{DD} + 0.5	V)
V_{IOUT} to GND0.5V to $(V_{DD} + 0.5)$	V)
V _{REF} to GND ±28	5V
V _{RFB} to GND±28	5V
Maximum Junction Temperature 150	°C
Operating Temperature Range40°C to 85°	°C
Storage Temperature Range65°C to 150°	°C
Lead Temperature (Soldering, 10 sec) 300	°C

PACKAGE/ORDER INFORMATION

Consult factory for Military grade parts.

ACCURACY CHARACTERISTICS

 V_{DD} = 5V, V_{REF} = 10V, V_{IOUT} = GND = 0V, T_A = T_{MIN} to T_{MAX} , unless otherwise specified.

				LTC8043E			LTC8043F				
SYMBOL	PARAMETER	CONDITIONS			MIN	TYP	MAX	MIN	TYP	MAX	UNITS
	Resolution			•	12			12			Bits
INL	Integral Nonlinearity	(Note 1)		٠			±0.5			±1	LSB
DNL	Differential Nonlinearity	Guaranteed Monotonic	, T _{MIN} to T _{MAX}	•			±0.5			±1	LSB
GE	Gain Error	(Note 2)	T _A = 25°C T _{MIN} to T _{MAX}	•			±1 ±2			±2 ±2	LSB LSB
	Gain Temperature Coefficient (∆Gain/∆Temp)	(Note 3)		•		1	5		1	5	ppm/°C
I _{LKG}	Output Leakage Current	(Note 4)	T _A = 25°C T _{MIN} to T _{MAX}	•			±5 ±25			±5 ±25	nA nA
	Zero-Scale Error		T _A = 25°C T _{MIN} to T _{MAX}	•			±0.03 ±0.15			±0.03 ±0.15	LSB LSB
PSRR	Power Supply Rejection Ratio	V _{DD} = 5V ±5%		•		±0.0001	±0.002		±0.0001	±0.002	%/%

ELECTRICAL CHARACTERISTICS

 V_{DD} = 5V, V_{REF} = 10V, V_{IOUT} = GND = 0V, T_A = T_{MIN} to T_{MAX} , unless otherwise specified.

				AL	L GRAD	ES	
SYMBOL	PARAMETER	CONDITIONS		MIN	ТҮР	MAX	UNITS
Referenc	e Input						-
R _{REF}	V _{REF} Input Resistance	(Note 5)		7	11	15	kΩ
AC Perfo	rmance (Note 3)						
	Output Current Settling Time	(Notes 6, 7)			0.25	1	μs
	Multiplying Feedthrough Error	$V_{REF} = \pm 10V$, 10kHz Sinewave			0.7	1	mV _{P-P}
	Digital-to-Analog Glitch Energy	(Notes 6, 8)			2	20	nVSEC
THD	Total Harmonic Distortion	(Note 9)			-108	-92	dB
	Output Noise Voltage Density	(Note 10)				17	nV/√Hz
Analog O	utputs (Note 3)						
C _{OUT}	Output Capacitance	DAC Register Loaded to All 1s			60	90	pF
		DAC Register Loaded to All Os	•		30	60	pF

ELECTRICAL CHARACTERISTICS

 V_{DD} = 5V, V_{REF} = 10V, V_{IOUT} = GND = 0V, T_A = T_{MIN} to T_{MAX} , unless otherwise specified.

				AL	L GRAD	ES	
SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Digital In	puts						
V _{IH}	Digital Input High Voltage		•	2.4			V
V _{IL}	Digital Input Low Voltage		•			0.8	V
I _{IN}	Digital Input Current	V _{IN} = 0V to V _{DD}	•		0.001	±1	μA
C _{IN}	Digital Input Capacitance	V _{IN} = 0V,(Note 3)	•			8	pF
Timing C	haracteristics (Note 3)						
t _{DS}	Serial Input to Clock Setup Time		•	30	-5		ns
t _{DH}	Serial Input to Clock Hold Time		•	60	25		ns
t _{SRI}	Serial Input Data Pulse Width		•	80			ns
t _{CH}	Clock Pulse Width High		•	80			ns
t _{CL}	Clock Pulse Width Low		•	80			ns
t _{LD}	Load Pulse Width		•	140			ns
t _{ASB}	LSB Clocked into Input Register to Load DAC Register Time		•	0			ns

Power Supply

V _{DD}	Supply Voltage		•	4.75	5	5.25	V
I _{DD}	Supply Current	Digital Inputs = 0V or V _{DD} Digital Inputs = V _{IH} or V _{IN}	•			100 500	μΑ μΑ

The \bullet denotes specifications which apply over the full operating temperature range.

Note 1: ± 0.5 LSB = $\pm 0.012\%$ of full scale.

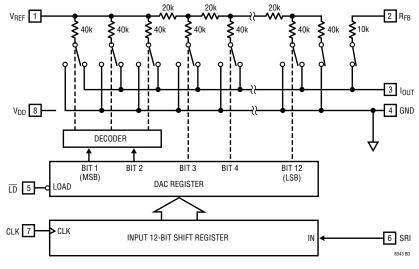
Note 2: Using internal feedback resistor.

Note 3: Guaranteed by design, not subject to test.

Note 4: I_{OUT} with DAC register loaded with all 0s.

Note 5: Typical temperature coefficient is 100ppm/°C.

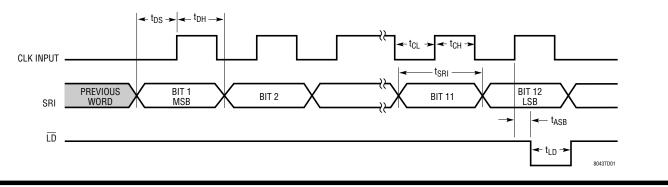
Note 6: I_{OUT} load = 100 Ω in parallel with 13pF.

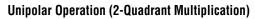

Note 7: To 0.01% for a full-scale change, measured from falling edge of $\overline{\text{LD}}$.

Note 8: V_{REF} = 0V. DAC register contents changed from all 0s to all 1s or from all 1s to all 0s.

Note 9: $V_{REF} = 6V_{RMS}$ at 1kHz. DAC register loaded with all 1s.

Note 10: 10Hz to 100kHz between R_{FB} and I_{OUT}. Calculation from $e_n = \sqrt{4KTRB}$ where: K = Boltzmann constant (J/K°); R = resistance (Ω); T = resistor temperature (°K); B = bandwidth (Hz).


BLOCK DIAGRAM



Information furnished by Linear Technology Corporation is believed to be accurate and reliable. However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of its circuits as described herein will not infringe on existing patent rights.

TIMING DIAGRAM

TYPICAL APPLICATIONS

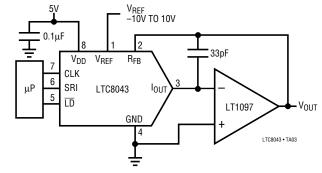
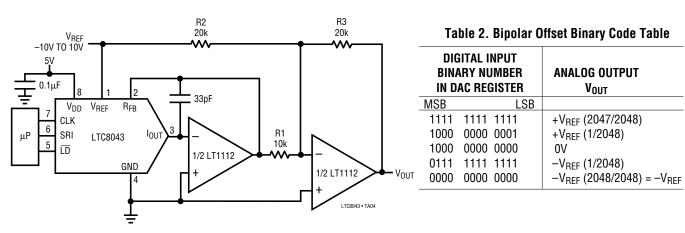



Table 1. Unipolar Binary Code Table

DIGITAL INPUT Binary Number In Dac Register		ANALOG OUTPUT V _{out}
MSB	LSB	
1111	1111 1111	-V _{REF} (4095/4096)
1000	0000 0000	$-V_{\text{REF}}$ (2048/4096) = $-V_{\text{REF}}/2$
0000	0000 0001	-V _{REF} (1/4096)
0000	0000 0000	0V V

Bipolar Operation (4-Quadrant Multiplication)

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LTC1257	Complete Serial I/O V _{OUT} 12-Bit DAC	5V to 15V Single Supply in 8-Pin SO and PDIP
LTC1451/LTC1452/LTC1453	Complete Serial I/O V _{OUT} 12-Bit DACs	3V/5V Single Supply in 8-Pin SO and PDIP
LTC7541A	Parallel I/O Multiplying 12-Bit DAC	12-Bit Wide Input
LTC7543/LTC8143	Serial I/O Mulitplying 12-Bit DACs	Clear Pin and Serial Data Output (LTC8143)

