

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

T-1 (3mm) Bi-Polar Indicator LED Lamp

LTL-10CEJ Dual High Efficiency Red

LTL-10CGJ Dual Green LTL-10CYJ Dual Yellow

LTL-10CDJ Yellow and Green

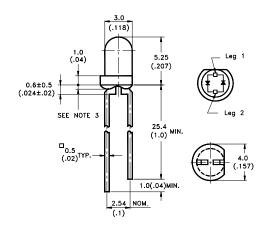
LTL-10CHJ Red Orange and Green

Features

- · T-1 type package.
- · Long life solid state reliability.
- · Low power consumption.
- · I.C. compatible.

Description

The LTL-10CXJ bipolar indicator lamp is a white diffused, with dual chips .


The viewing angle is wide.

The dual chips are operating Dependently of each other. The Green LED is utilizing GaP on GaP.

The Hi-Efficiency Red LED is utilizing GaAsP on GaP.

The Yellow LED is utilizing GaAsP on GaP. The Red Orange LED is utilizing GaAsP on GaP.

Package Dimensions

Part No. LTL-	Leg1	Leg2			
10CEJ	N/A	N/A			
10CGJ	N/A	N/A			
10CYJ	N/A	N/A			
10CDJ	Yellow Cathode	Green Cathode			
10CHJ	Red Orange Cathode	Green Cathode			

Devices

Part No. LTL-	Lens	Source Color		
10CEJ	White Diffused	Hi. Eff. Red		
10CGJ	White Diffused	Green		
10CYJ	White Diffused	Yellow		
10CDJ	N. 1. 5.00	Green		
	White Diffused	Yellow		
10CHJ	White Diffused	Green		
	White Diffused	Red Orange		

Notes:

- 1. All dimensions are in millimeters (inches).
- 2. Tolerance is \pm 0.25mm (.010")unless otherwise noted.
- 3. Protruded resin under flange is 1.0mm (.04") max.
- 4. Lead spacing is measured where the leads emerge from the package.
- 5. Specifications are subject to change without notice.

THROUGH HOLE LAMPS

7-95

Absolute Maximum Ratings at Ta=25℃

Parameter	Hi. Eff. Red	Green	Yellow	Red Orange	Unit
Power Dissipation	100	100	60	100	mW
Peak Forward Current (1/10 Duty Cycle, 0.1ms Pulse Width)	120	120	80	120	mA
Continuous Forward Current	30	30	20	30	mA
Derating Linear From 50℃	0.4	0.4	0.25	0.4	mA/℃
Operating Temperature Range	-55°C to +100°C				
Storage Temperature Range	-55°C to +100°C				
Lead Soldering Temperature [1.6mm (.063 in.) from body]	260℃ for 5 Seconds				

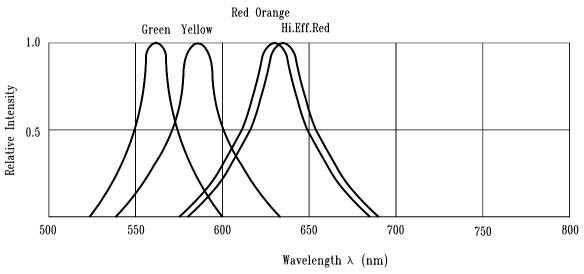


Fig.1 Relative Intensity vs. Wavelength

Electrical / Optical Characteristics and Curves at Ta=25℃

Parameter	Symbol	Part No. LTL-	Color	Min.	Тур.	Max.	Unit.	Test Condition.
Luminous Intensity		10CEJ	Hi.Eff.Red	3.7	12.6			
		10CGJ	Green	3.7	12.6			
		10CYJ	Yellow	2.5	8.7			IF=20 mA
	Iv	10001	Green	3.7	12.6		mcd	Note 1,4
		10CDJ	Yellow	2.5	8.7		Note 1,4	
		10CHJ	Red Orange	2.5	8.7			
			Green	3.7	12.6			
Viewing Angle	2 ⊕ ½	10CXJ			72		deg	Note 2 (Fig.7)
		10CEJ	Hi.Eff.Red		635			
		10CGJ	Green		565			
Peak Emission		10CYJ	Yellow		585			
Wavelength	λР	10CDJ	Green		565		nm	Measurement @Peak (Fig.1)
wavelength		10003	Yellow		585			
		10CHJ	Red Orange		630			
			Green		565			
		10CEJ	Hi.Eff.Red		623			
		10CGJ	Green		569	-		Note 3
Dominant		10CYJ	Yellow		588	-		
Wavelength	λd	10CDJ	Green		569		nm	
Ü			Yellow		588			
		10CHJ	Red Orange		621			
			Green		569			
		10CEJ	Hi.Eff.Red		40			
		10CGJ	Green		30			
Spectral Line	A.)	10CYJ	Yellow		35			
Half Width	Δλ	10CDJ	Green		30		nm	
			Yellow		35			
		10CHJ	Red Orange		40			
			Green		30			
		10CEJ	Hi.Eff.Red		2.0	2.6		
		10CGJ	Green		2.1	2.6		
	.,	10CYJ	Yellow		2.1	2.6	V	I==20mA
Forward Voltage	VF	10CDJ	Green		2.1	2.6		
		10000	Yellow		2.1	2.6		
		10CHJ	Red Orange		2.0	2.6		
			Green		2.1	2.6		
Reverse Current	IR	10CXJ			_	100	μΑ	VR=5V,Note 5
Capacitance		10CEJ	Hi.Eff.Red		20			
		10CGJ	Green		35	1		
		10CYJ	Yellow		15	_	pF V _F =0 , f=	\/0 5 41417
	С	10CDJ	Green		35			V _F =0 , f=1MHz
		10000	Yellow		15	1		
		10CHJ	Red Orange		20	1		
			Green		35			

Notes:1.Luminous intensity is measured with a light sensor and filter combination that approximates the CIE eyeresponse curve.

- 2. $\theta^{1/2}$ is the off-axis angle at which the luminous intensity is half the axial luminous intensity.
- 3. The dominant wavelength, λ d is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.
- 4.1v needs \pm 15% additionary for guaranteed limits.
- 5. Reverse current is controlled by dice source.

Typical Electrical/Optical Characteristic Curves (25°C Ambient Temperature Unless Otherwise Noted)

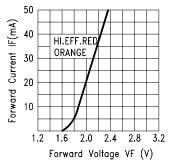


Fig.2 FORWARD CURRENT VS. FORWARD VOLTAGE

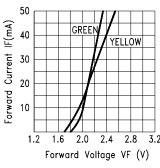


Fig.3 FORWARD CURRENT VS. FORWARD VOLTAGE

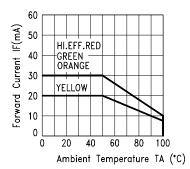


Fig.4 FORWARD CURRENT DERATING CURVE

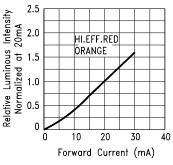


Fig.5 RELATIVE LUMINOUS INTENSITY VS. FORWARD CURRENT

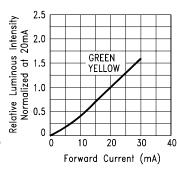


Fig.6 RELATIVE LUMINOUS INTENSITY VS. FORWARD CURRENT

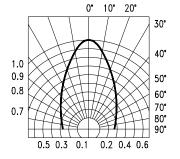


Fig. 7 SPATIAL DISTRIBUTION

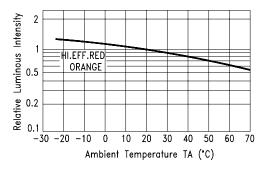


Fig.8 LUMINOUS INTENSITY VS. AMBIENT TEMPERATURE

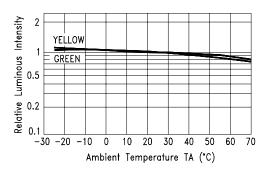


Fig.9 LUMINOUS INTENSITY VS. AMBIENT TEMPERATURE