

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

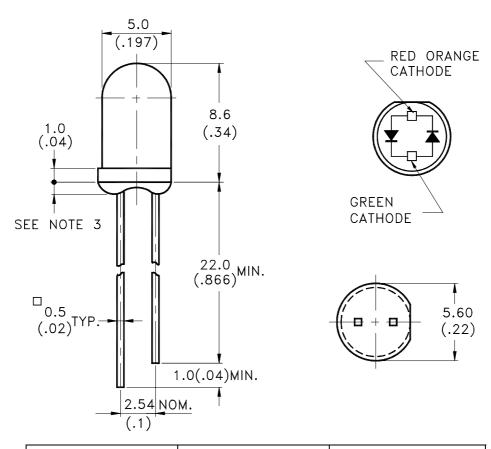
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China


LITEON LITE-ON ELECTRONICS, INC.

Property of Lite-On Only

Features

- * Green and Red Orange chips are matched for uniform. light output.
- * T-13/4 type package.
- * Long life solid state reliability.
- * Low power consumption.
- * I.C compatible.

Package Dimensions

Part No.	Lens	Source Color		
LTL-298WJ	White Diffused	Green / Red Orange		

NOTES:

- 1. All dimensions are in millimeters (inches).
- 2. Tolerance is ± 0.25 mm(.010") unless otherwise noted.
- 3. Protruded resin under flange is 1.0mm (.04") max.
- 4. Lead spacing is measured where the leads emerge from the package.
- 5. Specifications are subject to change without notice.

Part No.: LTL-298WJ Page: of 4

LITEON ELECTRONICS, INC.

Property of Lite-On Only

Absolute Maximum Ratings at TA=25℃

Parameter	Green	Red Orange	Unit		
Power Dissipation	100	100	mW		
Peak Forward Current (1/10 Duty Cycle, 0.1ms Pulse Width)	120	120	mA		
Continuous Forward Current	30	30	mA		
Derating Linear From 50°C	0.4	0.4	mA/°C		
Operating Temperature Range	-55°C to + 100°C				
Storage Temperature Range	-55°C to + 100°C				
Lead Soldering Temperature [1.6mm(.063") From Body]	260°C for 5 Seconds				

Part No.: LTL-298WJ Page: 2 of

LITEON LITE-ON ELECTRONICS, INC.

Property of Lite-On Only

Electrical Optical Characteristics at TA=25°C

Parameter	Symbol	Color	Min.	Тур.	Max.	Unit	Test Condition
Luminous Intensity	Iv	Green Red Orange	5.6 5.6	19 19		mcd	$I_F = 20 \text{mA}$ $I_F = 20 \text{mA}$
		Red Orange	3.0	19		ilica	Note 1,4
Viewing Angle	2 θ 1/2	Green		50		deg	Note 2 (Fig.6)
		Red Orange		50			Note 2 (Fig.0)
Peak Emission Wavelength	λp	Green		565		nm	Measurement
		Red Orange		630			@Peak (Fig.1)
Dominant Wavelength	λd	Green		569		nm	Note 3
		Red Orange		621			
Spectral Line Half-Width	Δλ	Green		30		nm	
		Red Orange		40			
Forward Voltage	VF	Green		2.1	2.6	V	$I_F = 20 \text{mA}$
		Red Orange		2.0	2.6		$I_F = 20 \text{mA}$
Reverse Current	IR	Green			100	μ A	** 5**
		Red Orange			100		$V_R = 5V$
Capacitance	С	Green		35		рF	
Capacitanec	C	Red Orange		20		þr.	$V_F = 0$, $f = 1MHz$

Note: 1. Luminous intensity is measured with a light sensor and filter combination that approximates the CIE (Commission International De L'Eclairage) eye-response curve.

- 2. $\theta_{1/2}$ is the off-axis angle at which the luminous intensity is half the axial luminous intensity.
- 3. The dominant wavelength, λ d is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.
- 4. The Iv guarantee should be added $\pm 15\%$.
- 5. Reverse current is controlled by dice source.

Part No.: LTL-298WJ of Page: 3 4 Property of Lite-On Only

Typical Electrical / Optical Characteristics Curves

(25°C Ambient Temperature Unless Otherwise Noted)

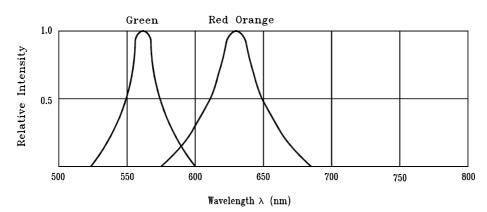
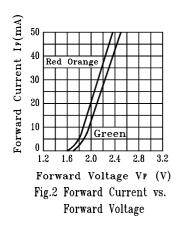
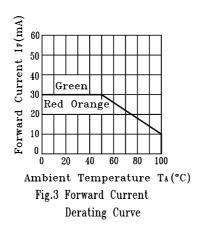
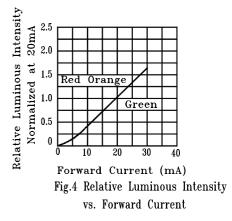
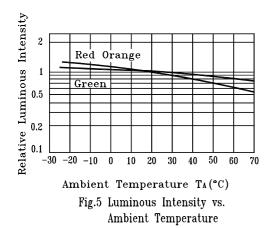






Fig.1 Relative Intensity vs. Wavelength

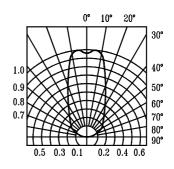


Fig.6 Spatial Distribution

Part No.: LTL-298WJ Page: 4 of 4