

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

T-1(3mm) Solid State LED Lamps

LTL-4201/4202 Red

LTL-4211/4212 Bright Red

LTL-4221/4222 High Efficiency Red

LTL-4231/4232 Green

LTL-4251/4252 Yellow

LTL-4291/4292 Red Orange

Features

- · High intensity.
- · Popular T-1 Diameter package.
- · Selected minimum intensities.
- · Wide viewing angle.
- · General purpose leads.
- · Reliable and rugged.

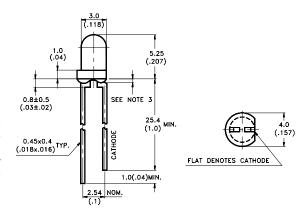
Description

The Red source color devices are made with Gallium Arsenide Phosphide Red Light Emitting Diode.

The Bright Red source color devices are made with Gallium Phosphide on Gallium Phosphide Red Light Emitting Diode.

The High Efficiency Red and Red Orange source color devices are made with Gallium Arsenide Phosphide on Gallium Phosphide Orange Light Emitting Diode. The Green source color devices are made with Gallium Phosphide on Gallium Phosphide Green Light Emitting Diode.

The Yellow source color devices are made with Gallium Arsenide Phosphide on Gallium Phosphide Yellow Light Emitting Diode.


Devices

Part No. LTL-	Lens	Source Color	
4201	Red Diffused	-	
4202	Red Transparent	Red	
4211	Red Diffused	D : 1 : D :	
4212	Red Transparent	Bright Red	
4221	Red Diffused	II: E# D-4	
4222	Red Transparent	Hi. Eff. Red	
4231	Green Diffused	0	
4232	Green Transparent	Green	
4251	Yellow Diffused	Yellow	
4252	Yellow Transparent		
4291	Orange Diffused	Red Orange	
4292	4292 Orange Transparent		

Page 28

Package Dimensions

LTL-42x1/42x2 Series

Notes:

- 1. All dimensions are in millimeters (inches).
- 2. Tolerance is \pm 0.25mm (.010") unless otherwise noted.
- 3. Protruded resin under flange is 1.5mm (.059") max.
- 4. Lead spacing is measured where the leads emerge from the package.
- 5. Specifications are subject to change without notice.

Absolute Maximum Ratings at Ta=25°C

Parameter	Red	Bright Red	Green	Yellow	Hi. Eff. Red Red Orange	Unit
Power Dissipation	80	40	100	60	100	mW
Peak Forward Current (1/10 Duty Cycle, 0.1ms Pulse Width)	200	60	120	80	120	mA
Continuous Forward Current	40	15	30	20	30	mA
Derating Linear From 50°C	0.5	0.2	0.4	0.25	0.4	mA/℃
Reverse Voltage	5	5	5	5	5	V
Operating Temperature Range			-55°	C to +100℃		
Storage Temperature Range	-55°C to +100°C					
Lead Soldering Temperature [1.6mm (.063 in.) from body]	260°C for 5 Seconds					

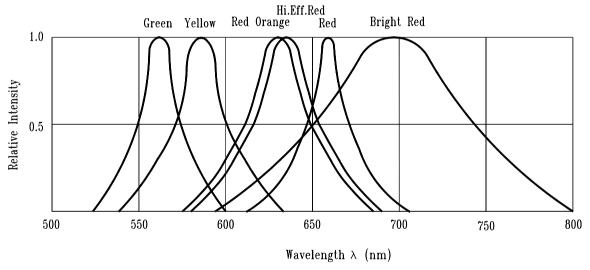


Fig.1 Relative Intensity vs. Wavelength

Electrical/Optical Characteristics at Ta=25°C

Parameter	Symbol	Part No. LTL-	Min.	Тур.	Max.	Unit.	Test Condition.
Luminous Intensity		4201	0.3	0.8			
		4211	0.7	2.5			
	lv	4221	2.5	8.7		mcd	IF=10 mA
	I IV	4231	3.7	12.6		mca	Note 1,4
		4251	2.5	8.7			
		4291	3.7	12.6			
Viewing Angle	2 θ ½	42x1		40		deg	Note 2 (Fig.7)
Peak Emission		4201 4211 4221		655 697 635			Measurement
Wavelength	λP	4231		565		nm	@Peak (Fig.1)
wavelength		4251		585			gr sam (r igr i)
		4291		630			
		4201		651			
		4211		657			
Dominant		4221		623			
Wavelength	λd	4231		569		nm	Note 3
Wavelength		4251		588			
		4291		621			
		4201		24			
		4211		90			
Spectral Line		4221		40			
Half Width	$\Delta \lambda$	4231		30		nm	
		4251		35			
		4291		40			
		4201		1.7	2.0		
		4211		2.1	2.6		
Forward Voltage		4221		2.0	2.6		IF=20mA
	VF	4231		2.1	2.6	V	IF-ZUITA
		4251		2.1	2.6		
		4291		2.0	2.6		
Reverse Current	lr	42x1			100	μΑ	V _R =5V
Capacitance	С	4201 4211 4221 4231 4251 4291		30 55 20 35 15 20		pF	Vr=0 , f=1MHz

Notes:1.Luminous intensity is measured with a light sensor and filter combination that approximates the CIE eyeresponse curve.

^{2.} $\theta^{1/2}$ is the off-axis angle at which the luminous intensity is half the axial luminous intensity.

^{3.} The dominant wavelength, λ d is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.

^{4.1} \vee needs \pm 15% additionary for guaranteed limits.

THROUGH HOL

Electrical/Optical Characteristics at Ta=25°C

Parameter	Symbol	Part No. LTL-	Min.	Тур.	Max.	Unit.	Test Condition.
Luminous Intensity	Iv	4202 4212 4222 4232 4252 4252 4292	1.7 2.5 8.7 12.6 5.6 8.7	5.6 8.7 29 40 19 29		mcd	IF=10 mA Note 1,4
Viewing Angle	2 H 1/2	42x2		20		deg	Note 2 (Fig.15)
Peak Emission Wavelength	λР	4202 4212 4222 4232 4252 4252 4292		655 697 635 565 585 630		nm	Measurement @Peak (Fig.1)
Dominant Wavelength	λd	4202 4212 4222 4232 4252 4252 4292		651 657 623 569 588 621		nm	Note 3
Spectral Line Half Width	Δλ	4202 4212 4222 4232 4252 4252 4292		24 90 40 30 35 40		nm	
Forward Voltage	VF	4202 4212 4222 4232 4252 4252 4292		1.7 2.1 2.0 2.1 2.1 2.0	2.0 2.6 2.6 2.6 2.6 2.6 2.6	V	IF=20mA
Reverse Current	IR	42x2			100	μΑ	V _R =5V
Capacitance	С	4202 4212 4222 4232 4252 4252 4292		30 55 20 35 15 20		pF	Vr=0 , f=1MHz

Notes:1.Luminous intensity is measured with a light sensor and filter combination that approximates the CIE eyeresponse curve.

- 2. $\theta^{1/2}$ is the off-axis angle at which the luminous intensity is half the axial luminous intensity.
- 3. The dominant wavelength, λ d is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.
- 4.1 $_{\text{V}}$ needs \pm 15% additionary for guaranteed limits.

Typical Electrical/Optical Characteristic Curves (25℃ Ambient Temperature Unless Otherwise Noted)

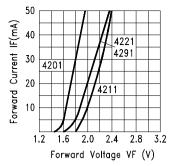


Fig.2 FORWARD CURRENT VS. FORWARD VOLTAGE

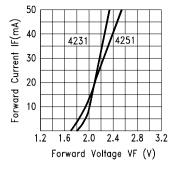


Fig.3 FORWARD CURRENT VS. FORWARD VOLTAGE

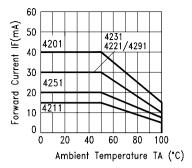


Fig.4 FORWARD CURRENT DERATING CURVE

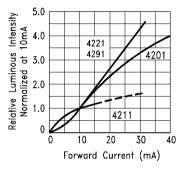


Fig.5 RELATIVE LUMINOUS INTENSITY VS. FORWARD CURRENT

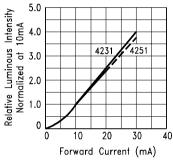


Fig.6 RELATIVE LUMINOUS INTENSITY VS. FORWARD CURRENT

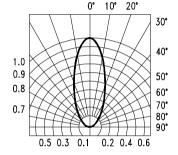


Fig.7 SPATIAL DISTRIBUTION

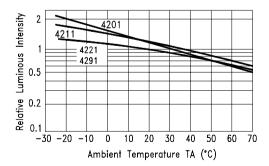


Fig.8 LUMINOUS INTENSITY VS. AMBIENT TEMPERATURE

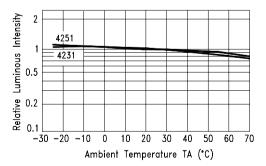


Fig.9 LUMINOUS INTENSITY VS.
AMBIENT TEMPERATURE

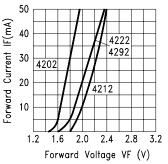


Fig.10 FORWARD CURRENT VS. FORWARD VOLTAGE

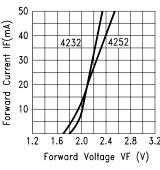


Fig.11 FORWARD CURRENT VS. FORWARD VOLTAGE

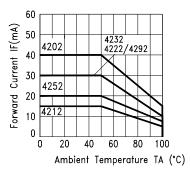


Fig.12 FORWARD CURRENT DERATING CURVE

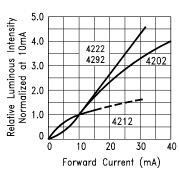


Fig.13 RELATIVE LUMINOUS INTENSITY VS. FORWARD CURRENT

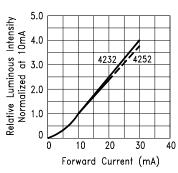


Fig.14 RELATIVE LUMINOUS INTENSITY VS. FORWARD CURRENT

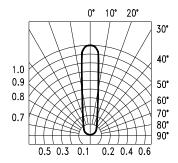


Fig.15 SPATIAL DISTRIBUTION

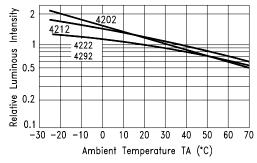


Fig.16 LUMINOUS INTENSITY VS.
AMBIENT TEMPERATURE

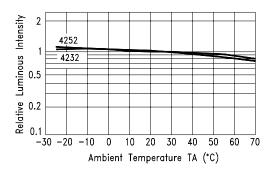


Fig.17 LUMINOUS INTENSITY VS. AMBIENT TEMPERATURE

HROUGH HOLE

7-33