

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Created Date: 03 / 08 / 2013
Revision: 1.4, 05 / 08 / 2013

Lite-on Technology Corp. www.liteon.com

Description

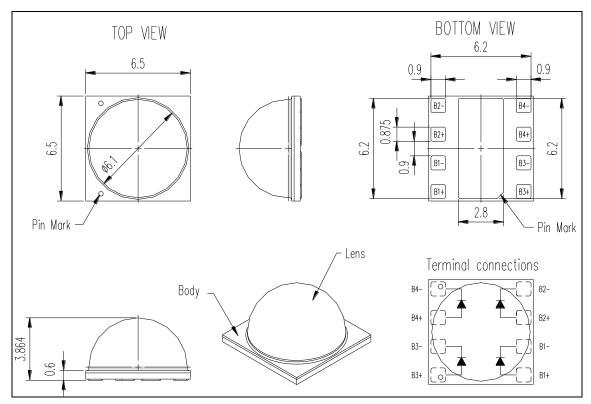
The LiteON C08 Product series is a revolutionary, energy efficient and ultra-compact new light source, combining the lifetime and reliability advantages of Light Emitting Diodes with the brightness of conventional lighting. It gives you total design freedom and unmatched brightness, creating a new opportunities for solid state lighting to displace conventional lighting technologies.

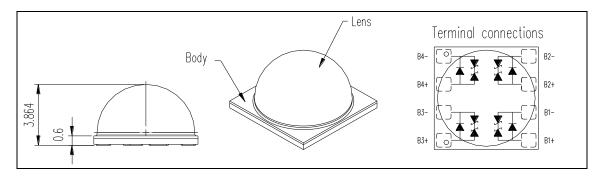
1.1 Features

- Compact high flux density light source
- Uniform high quality illumination
- Streamlined thermal path
- MacAdam compliant binning structure More energy efficient than incandescent, halogen and fluorescent lamps
- Instant light with unlimited dimming
- RoHS compliant and Pb free
- DC 12V/24V/48V, HV 100V/200V application

- Enhanced optical control
- Clean white light without pixilation
- Uniform consistent white light
- Significantly reduced thermal resistance and increased operating temperatures
- Lower operating costs
- Reduced maintenance costs
- ESD rating is 8KV in HBM

1.2 Available Part Numbers


Nominal CCT	Minimum CRI	Forward Voltage	Part Number
2700K	80	100V	LTPL-C08DZS27
3000K	80	100V	LTPL-C08DZS30
4000K	70	12V	LTPL-C08EXS40
2700K	80	12V	LTPL-C08EZS27
3000K	80	12V	LTPL-C08EZS30
4000K	80	12V	LTPL-C08EZS40
3000K	90	12V	LTPL-C08EQS30


2. Outline Dimensions

2.1 Form Factor of C08

■ LTPL-C08DXXXX

■ LTPL-C08EXXXX

- All dimensions are in millimeters and dimension tolerances are ± 0.2mm except lens height and ceramic length / width dimension tolerance are ± 0.1mm.
- 2. Thermal pad of the device is electrically neutral from the anode and cathode pads.

3. Rating and Characteristics

3.1 Absolute Maximum Ratings at Ta=25°C.

Parameter	Symbol	Rating	Unit
Power Dissipation (100V)	Po	6.5	W
Power Dissipation (12V)	Po	10	W
DC Forward Current (100V)	lF	60	mA
DC Forward Current (12V)	lF	720	mA
ESD Sensitivity	V_{B}	8	kV
Junction Temperature	Tj	125	°C
Thermal Resistance, Junction-Case(100V)	Rth, J-C	4.5	°C / W
Thermal Resistance, Junction-Case (12V)	Rth, J-C	3.3	°C / W
Operating Temperature Range	Topr	-40~+85	°C
Storage Temperature Range	T _{stg}	-55~+100	°C

- 1. The pulse mode condition is 1 KHz with 0.1msec pulse width..
- 2. Forbid to operating at reverse voltage condition
- 3. ESD spec is reference to AEC-Q101-001 HBM.
- 4. The unit of Rth is °C/W electrical.
- 5. Thermal resistance measurement tolerance is $\pm 10\%$

3.2 Electro-Optical Characteristics

■ LTPL-C08DXXXX

Nominal CCT	Minimum CRI	Current (mA)	Typ. VF (V) @25°C	Typ. Flux(lm) @25°C	Typ. VF (V) @85°C	Typ. Flux(lm) @85°C	Eff.(lm/W) @25°C	Eff.(lm/W) @85°C
2700K	80	40	100	360	94	324	90	86
3000K	80	40	100	378	94	340	95	90

■ LTPL-C08EXXXX

Nominal CCT	Minimum CRI	Current (mA)	Typ. VF (V) @25°C	Typ. Flux(lm) @25°C	Typ. VF (V) @85°C	Typ. Flux(lm) @85°C	Eff.(lm/W) @25°C	Eff.(lm/W) @85°C
4000K	70	350	12	567	11.6	510	135	125
2700K	80	350	12	460	11.6	414	110	102
3000K	80	350	12	483	11.6	435	115	107
4000K	80	350	12	506	11.6	455	120	112
3000K	90	350	12	386	11.6	348	92	85

- 1. All of the VF value are typical and the real bin range please refer page 10 "VF Binning Parameter".
- 2. All of the Flux value are typical and the real Bin range please refer page 11 "Flux Binning Parameter".
- 3. Tolerance of Flux is $\pm 7\%$, Tolerance of VF is $\pm 3\%$, tolerance of CCx/CCy is ± 0.01 , tolerance of CRI is ± 3 .
- 4. LEDs are lighted up and measured with externally parallel connecting leads of LED.
- 5. Typical viewing angle is 130deg.

4. Typical Electrical/Optical Characteristics Curve

- Efficiency Comparison Table (CRI 80 Series)
 - 4.1 Relative Flux vs. Current of LTPL-C08DXXXX at 25°C

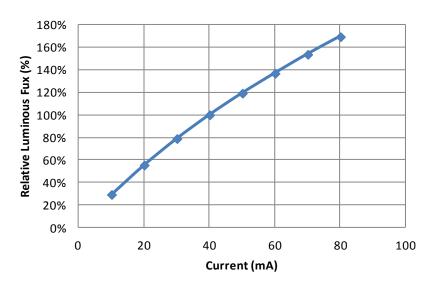


Fig 1. Typical relative luminous flux vs. forward current of LTPL-C08DXXXX

Current	VF	Current	VF	Current	VF	Lumen (Im)	
(mA)	(V)	(mA)	(V)	(mA)	(V)	2700K	3000K
5	192.6	10	96.3	20	48.1	105	111
10	202.4	20	101.2	40	50.6	199	209
15	209.4	30	104.7	60	52.3	284	298
20	214.8	40	107.4	80	53.7	360	378
25	219.8	50	109.9	100	55.0	429	451
30	224.0	60	112.0	120	56.0	493	517

- 1. Black current-voltage data is gotten by using external parallel connection of 4 strings; deep gray one is by 2 series 2 parallel connection; and gray one is by 4 series connection.
- 2. The drawing is based on the data of 2 series 2 parallel connection configuration.

4.2 Relative Flux vs. Current of LTPL-C08EXXXX at 25°C

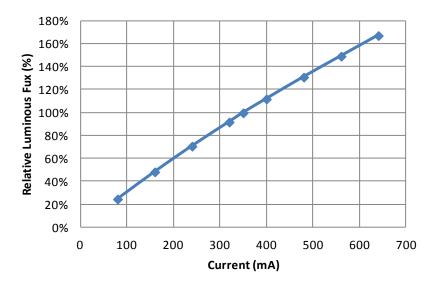


Fig 2. Typical relative luminous flux vs. forward current of LTPL-C08EXXXX

Current	VF	Current	VF	Current	VF	Lumen (Im)		
(mA)	(V)	(mA)	(V)	(mA)	(V)	2700K	3000K	4000K
20	43.0	40	21.5	80	10.7	114	120	126
40	44.3	80	22.2	160	11.1	223	234	248
60	45.5	120	22.7	240	11.4	326	342	362
80	46.4	160	23.2	320	11.6	423	444	470
87.5	46.8	175	23.4	350	11.7	460	483	506
100	47.4	200	23.7	400	11.8	516	541	572
120	48.3	240	24.1	480	12.1	603	634	670
140	49.2	280	24.6	561	12.3	687	722	763
160	50.0	320	25.0	641	12.5	770	809	855

- 1. Black current-voltage data is gotten by using external parallel connection of 4 strings; deep gray one is by 2 series 2 parallel connection; and gray one is by 4 series connection.
- 2. The drawing is based on the data of parallel connection configuration.

4.3 Relative Spectral Distribution vs. Wavelength Characteristics at 25°C & 85°C

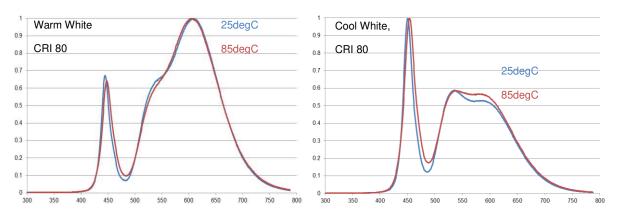


Fig 3. Relative Spectral Distribution at Tj = 25°C & 85°C

4.4 Typical Spatial Radiation Pattern

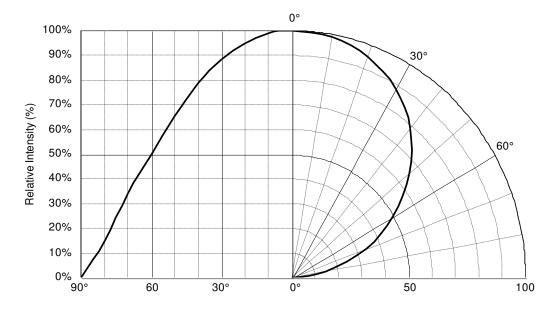


Fig 4. Radiation Characteristics

4.5 Forward Current vs. Forward Voltage at 25°C

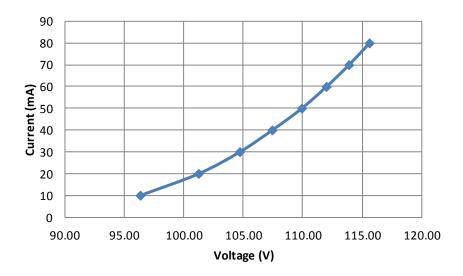


Fig 5. Forward Current vs. Forward Voltage of LTPL-C08DXXXX

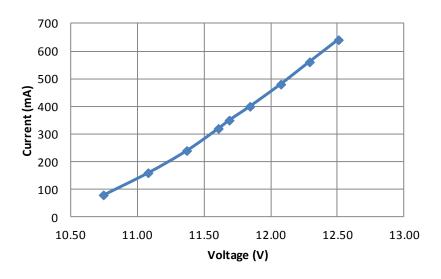


Fig 6. Forward Current vs. Forward Voltage of LTPL-C08EXXXX

4.6 Maximum Forward Current vs. Ambient Temperature

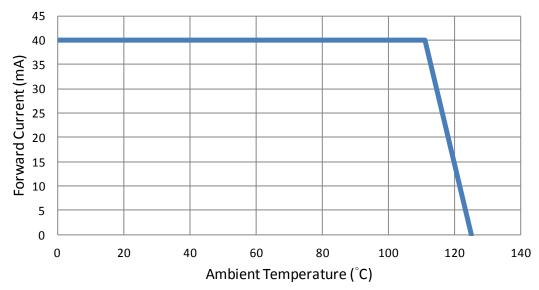


Fig 7. Forward Current Degrading Curve of LTPL-C08DXXXX

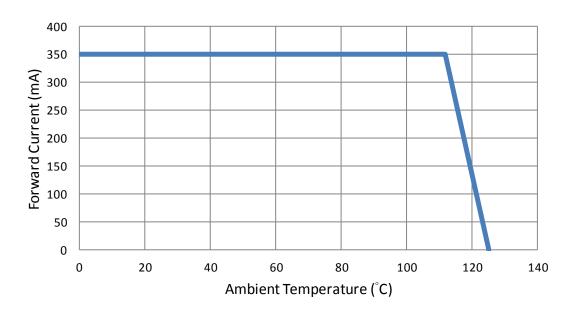


Fig 8. Forward Current Degrading Curve of LTPL-C08EXXXX

5. VF Bin Definition

5.1 Forward Voltage Binning Parameter at 25°C

■ LTPL-C08DXXXX

Parameter	Bin	Symbol	Min	Max	Unit	Condition
Forward Voltage	HV1	VF	97	101	V	IF = 40mA
Forward Voltage	HV2	VF	101	105	V	IF = 40mA
Forward Voltage	HV3	VF	105	109	V	IF = 40mA
Forward Voltage	HV4	VF	109	113	V	IF = 40mA

■ LTPL-C08EXXXX

Parameter	Bin	Symbol	Min	Max	Unit	Condition
Forward Voltage	DC1	VF	11	11.3	V	IF = 350mA
Forward Voltage	DC2	VF	11.3	11.7	V	IF = 350mA
Forward Voltage	DC3	VF	11.7	12.1	V	IF = 350mA
Forward Voltage	DC4	VF	12.1	12.6	V	IF = 350mA

6. Flux Bin Definition

6.1 Luminous Flux Binning Parameter at 25°C

■ LTPL-C08DXXXX

CRI 80 Series

2700K

Parameter	Bin	Symbol	Min	Max	Unit	condition
Luminous Flux	DF		315	345	- Im	If=40mA
	FH	ФV	345	375		
	HJ		375	405		
	JL		405	435		

3000K

Parameter	Bin	Symbol	Min	Max	Unit	condition
Luminous Flux	FH		345	375	- lm	If=40mA
	HJ	ФV	375	405		
	JL		405	435		
	LN		435	465		

■ LTPL-C08EXXXX

CRI 80 Series

2700K

Parameter	Bin	Symbol	Min	Max	Unit	condition
Luminous Flux	JL		405	435		lf=350mA
	LN	ФV	435	465	- lm	
	NP		465	495		
	PR		495	535		

3000K

Parameter	Bin	Symbol	Min	Max	Unit	condition
Luminous Flux	FH		435	465		lf=350mA
	HJ	ФV	465	495	- lm	
	JL		495	535		
	LN		535	575		

4000K

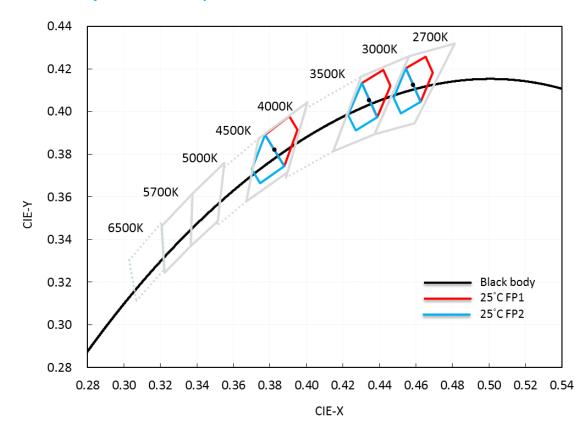
Parameter	Bin	Symbol	Min	Max	Unit	condition	
	MO		450	480			
Luminous Flux	OQ	ФV	480	515	lm	If=350mA	
Luminous Flux	QS		515	555	"""	II=330IIIA	
	SU	SU		555	600		

CRI 90 Series

3000K

Parameter	Bin	Symbol	Min	Max	Unit	condition
	GI		360	390		
Luminous Flux	IK	ФV	390	420	lm	lf=350mA
	KM		420	450		

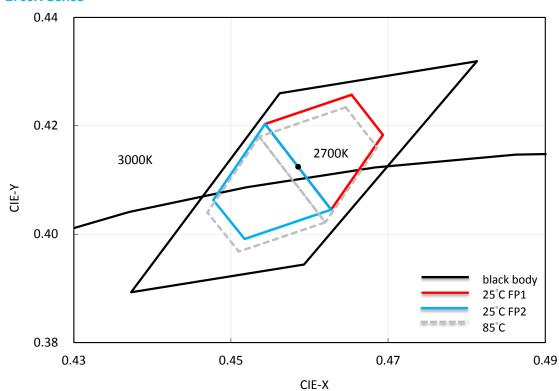
CRI 70 Series


4000K

Parameter	Bin	Symbol	Min	Max	Unit	condition
	QS		515	555		
Luminous Flux	SU	ФV	555	600	lm	lf=350mA
	UW		600	650		

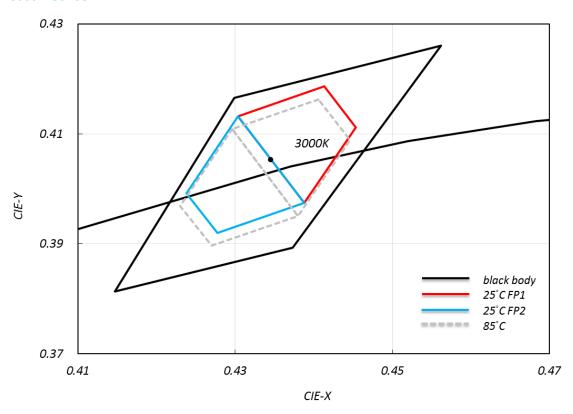
7. Color Bin Definition

7.1 Chromaticity Coordinate Groups at 25°C

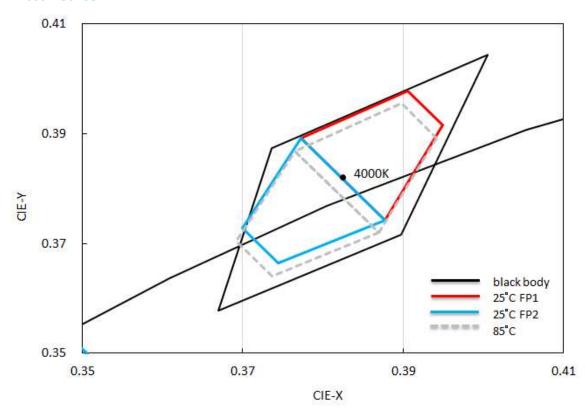


- 1. The Chromaticity Coordinate Groups follow ANSI 7-Step MacAdam Quadrangle
- 2. The (CIEx, CIEy) center follow ANSI Quadrangle

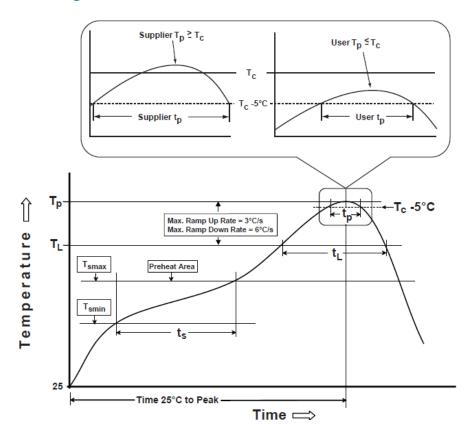
7.2 Chromaticity Coordinate Category Code Table at 25°C


■ 2700K Series

	X	Υ
Center point(25C)	0.4585	0.4124
ZCA	0.4653	0.4257
	0.4543	0.4203
	0.4627	0.4045
	0.4693	0.4183
	0.4653	0.4257
	0.4543	0.4203
	0.4477	0.4063
ZCB	0.4517	0.3991
	0.4627	0.4045
	0.4543	0.4203
Center point(85C)	0.4578	0.4101


■ 3000K Series

	X	Υ
Center point(25C)	0.4345	0.4053
ZDA/QDA	0.4413	0.4186
	0.4303	0.4132
	0.4387	0.3974
	0.4453	0.4112
	0.4413	0.4186
	0.4303	0.4132
	0.4237	0.3992
ZDB/QDB	0.4277	0.3920
	0.4387	0.3974
	0.4303	0.4132
Center point(85C)	0.4338	0.4030


■ 4000K Series

	Х	Υ
Center point(25C)	0.3825	0.3820
	0.3949	0.3915
	0.3905	0.3978
ZFA/XFA	0.3772	0.3891
	0.3877	0.3743
	0.3949	0.3915
	0.3877	0.3743
	0.3744	0.3664
ZFB/XFB	0.3699	0.3728
	0.3772	0.3891
	0.3877	0.3743
Center point(85C)	0.3818	0.3797

8. Reflow Soldering Characteristics

Profile Feature	Lead Free Assembly
Average Ramp-Up Rate (T _{Smax} to T _P)	3°C / second max
Preheat Temperature Min (T _{Smin})	150°C
Preheat Temperature Max (T _{Smax})	200°C
Preheat Time (t _{Smin} to t _{Smax})	60 – 180 seconds
Time Maintained Above Temperature (T _L)	217°C
Time Maintained Above Time (t _L)	60 – 150 seconds
Peak / Classification Temperature (T _P)	255°C
Time Within 5°C of Actual Peak Temperature (t _P)	5 seconds
Ramp – Down Rate	6°C / second max
Time 25°C to Peak Temperature	8 minutes max

- The LEDs can be soldered using the reflow soldering or hand soldering method. The recommended hand soldering
 condition is 350°C max. and 2secs max. for one time only, and the recommended reflow soldering condition is
 260°C max. and 5secs max. for three times max.
- 2. All temperatures refer to topside of the package, measured on the package body surface.
- 3. The soldering condition referring to J-STD-020B. The storage ambient for the LEDs should not exceed 30°C temperature or 70% relative humidity. It is recommended that LEDs out of their original packaging are soldered within one week. For extended storage out of their original packaging, it is recommended that the LEDs were stored in a sealed container with appropriate desiccant, or desiccators with nitrogen ambient. If the LEDs were unpacked more than 168hrs, baking the LEDs at 60℃ for 60 mins before soldering process.
- 4. The soldering profile could be further referred to different soldering grease material characteristic. The grease vendor will provide this information.
- 5. A rapid-rate process is not recommended for the LEDs cooling down from the peak temperature.
- Although the recommended reflow conditions are specified above, the reflow or hand soldering condition at the lowest possible temperature is desirable for the LEDs.
- LiteOn cannot make a guarantee on the LEDs which have been already assembled using the dip soldering method.

9. Reliability Test Plan

■ LTPL-C08DXXXX

No	Test item	Condition	Duration	Number of Failed
1	High Temperature Operating Life	Tc=105°C, IF=40mA DC	1K hrs	0/20
,	(HTOL)	(0, 250, 500, 750, 1000hrs)	11(1115	0/20
2	High Temperature Operating Life	Tc=85°C, IF=40mA DC	1K hrs	0/20
	(HTOL)	(0, 250, 500, 750, 1000hrs)	11(1113	0/20
3	Room Temperature Operating Life	Tc=55°C, IF=40mA DC	1K hrs	0/20
3	(RTOL)	(0, 250, 500, 750, 1000hrs)	11(1115	0/20
4	Wet High Temperature Operating	85°C/85%RH,	1K hrs	0/20
	(WHTOL)	IF=40mA DC 30 min ON/OFF	11(1113	0/20
		-40°C to 105°C		
5	Power Temperature Cycle (PTMCL)	15minutes dwell/15minutes transfer	1K cycles	0/20
		5 minutes ON/5 minutes OFF IF=40mA DC		
		-40°C to 125°C		
6	Non-Operating Thermal Shock (TMSK)	30minutes dwell, <10 seconds transfer	1K cycles	0/20
	Non-Operating Mermai Ghock (TWOK)	measure each 250 cycles (continues to fail, more	TIC Cycles	0/20
		than 1k cycles)		
		40000cycles, 2 mins On/Off, Room	40K	
7	Fast switch Cycling Test	temperature(25°C+/-5°C), measurement in every	cycles	0/20
		5000cycles	Cycles	

Notes:

- 1. Operating life test are mounted on thermal heat sink
- 2. Storage item are only component, not put on heat sink.

Criteria for Judging the Damage

ltom	Cumbal	Test Condition	Criteria for Judgment		
Item	Symbol Test Condition		Min.	Max.	
Forward Voltage	Vf	IF=Typical Current	-10%	+10%	
Luminous Flux	Lm	IF=Typical Current	-15%	+15%	

020

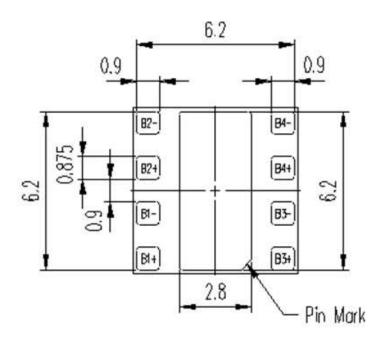
CCX&CCY	X,Y	IF=Typical Current	-0.007	+0.007	1
---------	-----	--------------------	--------	--------	---

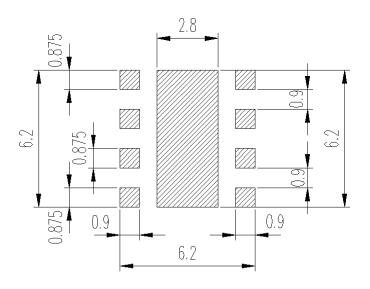
■ LTPL-C08EXXXX

No	Test item	Condition	Duration	Number of Failed
1	High Temperature Operating Life	Tc=105°C, IF=350mA DC	1K hrs	0/20
'	(HTOL)	(0, 250, 500, 750, 1000hrs)	IKIIIS	0/20
2	High Temperature Operating Life	Tc=85°C, IF=350mA DC	1K hrs	0/20
۷	(HTOL)	(0, 250, 500, 750, 1000hrs)	11(1115	0/20
3	Room Temperature Operating Life	Tc=55°C, IF=350mA DC	1K hrs	0/20
3	(RTOL)	(0, 250, 500, 750, 1000hrs)	INTIIS	0/20
4	Wet High Temperature Operating	85°C/85%RH,	1K hrs	0/20
4	(WHTOL)	IF=350mA DC 30 min ON/OFF	IKIIIS	0/20
		-40°C to 105°C		
5	Power Temperature Cycle (PTMCL)	15minutes dwell/15minutes transfer	1K cycles	0/20
		5 minutes ON/5 minutes OFF IF=350mA DC		
		-40°C to 125°C		
6	Non-Oneveting Theymal Charle (TMCI/)	30minutes dwell, <10 seconds transfer	11/ avalas	0/00
О	Non-Operating Thermal Shock (TMSK)	measure each 250 cycles (continues to fail, more	1K cycles	0/20
		than 1k cycles)		
		40000cycles, 2 mins On/Off, Room	40K	
7	Fast switch Cycling Test	temperature(25°C+/-5°C), measurement in every		0/20
		5000cycles	cycles	

Notes:

- 3. Operating life test are mounted on thermal heat sink
- 4. Storage item are only component, not put on heat sink.


Criteria for Judging the Damage

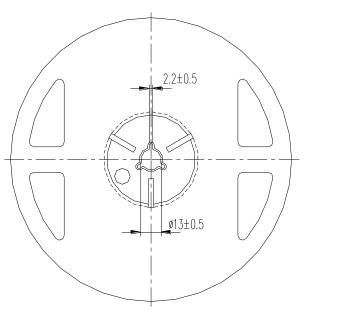

Item	Symbol	Test Condition	Criteria for Judgment		
	Symbol	Test Condition	Min.	Max.	
Forward Voltage	Vf	IF=Typical Current	-10%	+10%	
Luminous Flux	Lm	IF=Typical Current	-15%	+15%	

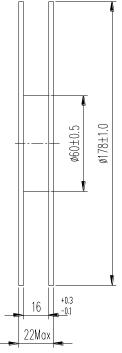
CCX&CCY X,Y IF=Typical Current -0.007 +0.007		CCX&CCY	X,Y	II – I VDICAI GUITEIL	-0.007	+0.007	
--	--	---------	-----	-----------------------	--------	--------	--

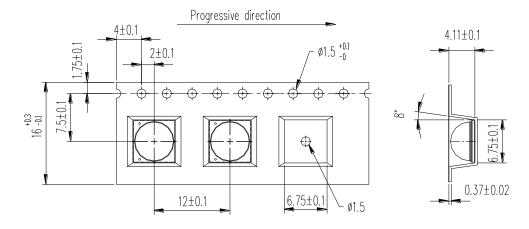
10. Recommend Soldering Pad Layout

Notes:

1. Suggest stencil thickness is maximum 0.10mm






11. Package Dimensions of Tape and Reel

Reel Packaging

Note:

- 1. All dimensions are in millimeters.
- 2. Empty component pockets sealed with top cover tape.

12. Cautions

12.1 An LED is a current-operated device. In order to ensure intensity uniformity on multiple LEDs connected in parallel in an application, it is recommended that a current limiting resistor be incorporated in the drive circuit, in series with each LED as shown in Circuit below.

Circuit model A

Circuit model B

- (A) Recommended circuit.
- (B) The brightness of each LED might appear different due to the differences in the I-V characteristics of those LEDs.
- **12.2** Do not put any pressure on the light emitting surface either by finger or any hand tool and do not stack the COB products. Stress or pressure may cause damage to the wires of the LED array.
- **12.3** This product is not designed for the use under any of the following conditions, please confirm the performance and reliability are well enough if you use it under any of the following conditions
- Do not use sulfur-containing materials in commercial products including the materials such as seals and adhesives that may contain sulfur.
- Do not put this product in a place with a lot of moisture (over 85% relative humidity), dew condensation, briny air, and corrosive gas (CI, H2S, NH3, SO2, NOX, etc.), exposure to a corrosive environment may affect silver plating.

ESD (Electrostatic Discharge)

Static Electricity or power surge will damage the LED. Suggestions to prevent ESD damage:

- Use of a conductive wrist band or anti-electrostatic glove when handling these LEDs.
- All devices, equipment, and machinery must be properly grounded.
- Work tables, storage racks, etc. should be properly grounded.
- Use ion blower to neutralize the static charge which might have built up on surface of the LED's plastic lens
 as a result of friction between LEDs during storage and handling.

ESD-damaged LEDs will exhibit abnormal characteristics such as high reverse leakage current, low forward voltage, or "no light up" at low currents.

To verify for ESD damage, check for "light up" and VF of the suspect LEDs at low currents.