: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

๖

Product Data Sheet LTST-C150GKT
Spec No.: DS-22-98-0004
Effective Date: 02/16/2005
Revision: A

LITE-ON DCC

RELEASE

BNS-OD-FC001/A4

Property of Lite-On Only

Features

* Meet ROHS, Green Product.
* Package In 8mm Tape On 7" Diameter Reels.
* Compatible With Automatic Placement Equipment.
* Compatible With Infrared And Vapor Phase Reflow Solder Process.
* EIA STD package.
* I.C. compatible.

Package Dimensions

Part No.	Lens	Source Color
LTST-C150GKT	Water Clear	GaP on GaP Green

Notes:

1. All dimensions are in millimeters (inches).
2. Tolerance is $\pm 0.10 \mathrm{~mm}(.004$ ") unless otherwise noted.

Property of Lite-On Only

Absolute Maximum Ratings At $\mathbf{T a}=25^{\circ} \mathrm{C}$

Parameter	LTST-C150GKT	Unit
Power Dissipation	100	mW
Peak Forward Current $(1 / 10$ Duty Cycle, 0.1 ms Pulse Width $)$	120	mA
DC Forward Current	30	mA
Derating Linear From $50^{\circ} \mathrm{C}$	0.6	$\mathrm{~mA} /{ }^{\circ} \mathrm{C}$
Reverse Voltage	5	V
Operating Temperature Range	$-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	
Storage Temperature Range	$-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	
Wave Soldering Condition	$260^{\circ} \mathrm{C}$ For 5 Seconds	
Infrared Soldering Condition	$260^{\circ} \mathrm{C}$ For 5 Seconds	
Vapor Phase Soldering Condition	$215^{\circ} \mathrm{C}$ For 3 Minutes	

LITEON

Property of Lite-On Only

Suggestion Profile:

(1) Suggestion IR Reflow Profile For Normal Process

(2) Suggestion IR Reflow Profile For Pb Free Process

LITEON

Property of Lite-On Only
Electrical Optical Characteristics At $\mathbf{T a}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Part No. LTST-	Min.	Typ.	Max.	Unit	Test Condition
Luminous Intensity	IV	C150GKT	1.8	6.0		mcd	$\begin{gathered} \mathrm{IF}=10 \mathrm{~mA} \\ \text { Note } 1 \end{gathered}$
Viewing Angle	$2 \theta 1 / 2$	C150GKT		130		deg	Note 2 (Fig.6)
Peak Emission Wavelength	$\lambda \mathrm{P}$	C150GKT		565		nm	Measurement @Peak (Fig.1)
Dominant Wavelength	$\lambda \mathrm{d}$	C150GKT		569		nm	Note 3
Spectral Line Half-Width	$\Delta \lambda$	C150GKT		30		nm	
Forward Voltage	VF	C150GKT		2.1	2.6	V	$\mathrm{IF}=20 \mathrm{~mA}$
Reverse Current	IR	C150GKT			10	$\mu \mathrm{A}$	$\mathrm{VR}=5 \mathrm{~V}$
Capacitance	C	C150GKT		35		PF	$\begin{gathered} \mathrm{VF}=0 \\ \mathrm{f}=1 \mathrm{MHZ} \end{gathered}$

Notes: 1. Luminous intensity is measured with a light sensor and filter combination that approximates the CIE eye-response curve.
2. $\theta 1 / 2$ is the off-axis angle at which the luminous intensity is half the axial luminous intensity.
3. The dominant wavelength, $\lambda \mathrm{d}$ is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.

Property of Lite-On Only

Bin Code List

Luminous Intensity		Unit : mcd @ 10mA
Bin Code	Min.	Max.
G	1.80	2.80
H	2.80	4.50
J	4.50	7.10
K	7.10	11.2
L	11.2	18.0

Tolerance on each Intensity bin is +/-15\%

Property of Lite-On Only

Typical Electrical / Optical Characteristics Curves

$\left(25^{\circ} \mathrm{C}\right.$ Ambient Temperature Unless Otherwise Noted)

Fig. 1 RELATIVE INTENSITY VS. WAVELENGTH

Fig. 2 FORWARD CURRENT VS. FORWARD VOLTAGE

Fig. 3 FORWARD CURRENT DERATING CURVE

Fig. 4 RELATIVE LUMINOUS INTENSITY VS. FORWARD CURRENT

Fig. 5 LUMINOUS INTENSITY VS. AMBIENT TEMPERATURE

Fig. 6 SPATIAL DISTRIBUTION

Property of Lite-On Only

Cleaning

Do not use unspecified chemical liquid to clean LED they could harm the package.
If clean is necessary, immerse the LED in ethyl alcohol or in isopropyl alcohol at normal temperature for less one minute.

Suggest Soldering Pad Dimensions

Package Dimensions Of Tape And Reel

Notes:

1. All dimensions are in millimeters (inches).

Notes:

1. Empty component pockets sealed with top cover tape.
2.7 inch reel- 3000 pieces per reel.
2. Minimum packing quantity is 500 pcs for remainders.
3. The maximum number of consecutive missing lamps is two.
4. In accordance with ANSI/EIA 481-1-A-1994 specifications.

LITEON

Property of Lite-On Only

CAUTIONS

1. Application

The LEDs described here are intended to be used for ordinary electronic equipment (such as office equipment, communication equipment and household applications).Consult Liteon's Sales in advance for information on applications in which exceptional reliability is required, particularly when the failure or malfunction of the LEDs may directly jeopardize life or health (such as in aviation, transportation, traffic control equipment, medical and life support systems and safety devices).

2. Storage

The storage ambient for the LEDs should not exceed $30^{\circ} \mathrm{C}$ temperature or 70% relative humidity. It is recommended that LEDs out of their original packaging are IR-reflowed within one week. For extended storage out of their original packaging, it is recommended that the LEDs be stored in a sealed container with appropriate desiccant, or in a desiccators with nitrogen ambient.
LEDs stored out of their original packaging for more than a week should be baked at about 60 deg C for at least 24 hours before solder assembly.

3. Cleaning

Use alcohol-based cleaning solvents such as isopropyl alcohol to clean the LED if necessary.

4. Soldering

Recommended soldering conditions:

Reflow soldering		Wave Soldering		Soldering iron	
Pre-heat	$120 \sim 150^{\circ} \mathrm{C}$	Pre-heat	$100^{\circ} \mathrm{C}$ Max.	Temperature	$300^{\circ} \mathrm{C}$ Max.
Pre-heat time	120 sec. Max.	Pre-heat time	60 sec. Max.	Soldering time	3 sec. Max.
Peak temperature	$240^{\circ} \mathrm{C}$ Max.	Solder wave	$260^{\circ} \mathrm{C}$ Max.		
Soldering time	10 sec. Max.	Soldering time	10 sec. Max.		

5. Drive Method

An LED is a current-operated device. In order to ensure intensity uniformity on multiple LEDs connected in parallel in an application, it is recommended that a current limiting resistor be incorporated in the drive circuit, in series with each LED as shown in Circuit A below.

(A) Recommended circuit.
(B) The brightness of each LED might appear different due to the differences in the I-V characteristics of those LEDs.
6. ESD (Electrostatic Discharge)

Static Electricity or power surge will damage the LED.
Suggestions to prevent ESD damage:

- Use of a conductive wrist band or anti-electrostatic glove when handling these LEDs.
- All devices, equipment, and machinery must be properly grounded.
- Work tables, storage racks, etc. should be properly grounded.

■ Use ion blower to neutralize the static charge which might have built up on surface of the LED's plastic lens as a result of friction between LEDs during storage and handling.

Property of Lite-On Only

ESD-damaged LEDs will exhibit abnormal characteristics such as high reverse leakage current, low forward voltage, or " no lightup " at low currents.
To verify for ESD damage, check for " lightup" and Vf of the suspect LEDs at low currents.
The Vf of " good " LEDs should be $>2.0 \mathrm{~V} @ 0.1 \mathrm{~mA}$ for InGaN product and $>1.4 \mathrm{~V} @ 0.1 \mathrm{~mA}$ for AlInGaP product.

7. Reliability Test

Classification	Test Item	Test Condition	Reference Standard
Endurance Test	Operation Life	Ta= Under Room Temperature As Per Data Sheet Maximum Rating *Test Time $=1000$ HRS $(-24 \mathrm{HRS},+72 \mathrm{HRS}) * @ 20 \mathrm{~mA}$.	MIL-STD-750D:1026 MIL-STD-883D:1005 JIS C 7021:B-1
	High Temperature High Humidity Storage	IR-Reflow In-Board, 2 Times $\mathrm{Ta}=65 \pm 5^{\circ} \mathrm{C}, \mathrm{RH}=90 \sim 95 \%$ *Test Time $=240 \mathrm{HRS} \pm 2 \mathrm{HRS}$	MIL-STD-202F:103B JIS C 7021:B-11
	High Temperature Storage	$\begin{aligned} & \mathrm{Ta}=105 \pm 5^{\circ} \mathrm{C} \\ & * \text { Test Time }=1000 \mathrm{HRS}(-24 \mathrm{HRS},+72 \mathrm{HRS}) \end{aligned}$	MIL-STD-883D:1008 JIS C 7021:B-10
	Low Temperature Storage	$\begin{aligned} & \mathrm{Ta}=-55 \pm 5^{\circ} \mathrm{C} \\ & * \text { Test Time }=1000 \mathrm{HRS}(-24 \mathrm{HRS},+72 \mathrm{H} \text { RS }) \end{aligned}$	JIS C 7021:B-12
Environmental Test	Temperature Cycling	$\begin{aligned} & 105^{\circ} \mathrm{C} \sim 25^{\circ} \mathrm{C} \sim-55^{\circ} \mathrm{C} \sim 25^{\circ} \mathrm{C} \\ & 30 \mathrm{mins} 5 \mathrm{mins} \quad 30 \mathrm{mins} \quad 5 \mathrm{mins} \\ & 10 \mathrm{Cycles} \end{aligned}$	MIL-STD-202F:107D MIL-STD-750D:1051 MIL-STD-883D:1010 JIS C 7021:A-4
	Thermal Shock	IR-Reflow In-Board, 2 Times $\begin{array}{lrl}85 \pm 5^{\circ} \mathrm{C} & \sim-40^{\circ} \mathrm{C} \quad \pm 5^{\circ} \mathrm{C} \\ 10 \mathrm{mins} & 10 \mathrm{mins} \quad 10 \mathrm{Cycles}\end{array}$	MIL-STD-202F:107D MIL-STD-750D:1051 MIL-STD-883D:1011
	Solder Resistance	$\begin{aligned} & \text { T.sol }=260 \pm 5^{\circ} \mathrm{C} \\ & \text { Dwell Time }=10 \pm 1 \text { secs } \end{aligned}$	MIL-STD-202F:210A MIL-STD-750D:2031 JIS C 7021:A-1
	IR-Reflow Normal Process	Ramp-up rate $\left(183^{\circ} \mathrm{C}\right.$ to Peak) $+3^{\circ} \mathrm{C} /$ second max Temp. maintain at $125(\pm 25)^{\circ} \mathrm{C} \quad 120$ seconds max Temp. maintain above $183^{\circ} \mathrm{C} \quad 60-150$ seconds Peak temperature range $235^{\circ} \mathrm{C}+5 /-0^{\circ} \mathrm{C}$ Time within $5^{\circ} \mathrm{C}$ of actual Peak Temperature (tp) 10-30 seconds Ramp-down rate $+6^{\circ} \mathrm{C} /$ second max	$\begin{aligned} & \text { MIL-STD-750D:2031.2 } \\ & \text { J-STD-020 } \end{aligned}$
	IR-Reflow Pb Free Process	Ramp-up rate $\left(217^{\circ} \mathrm{C}\right.$ to Peak) $+3^{\circ} \mathrm{C} /$ second max Temp. maintain at $175(\pm 25)^{\circ} \mathrm{C} 180$ seconds max Temp. maintain above $217^{\circ} \mathrm{C} 60-150$ seconds Peak temperature range $260^{\circ} \mathrm{C}+0 /-5^{\circ} \mathrm{C}$ Time within $5^{\circ} \mathrm{C}$ of actual Peak Temperature (tp) 20-40 seconds Ramp-down rate $+6^{\circ} \mathrm{C} /$ second max	$\begin{aligned} & \text { MIL-STD-750D:2031.2 } \\ & \text { J-STD-020 } \end{aligned}$
	Solderability	T. sol $=235 \pm 5^{\circ} \mathrm{C}$ Immersion time $2 \pm 0.5 \mathrm{sec}$ Immersion rate $25 \pm 2.5 \mathrm{~mm} / \mathrm{sec}$ Coverage $\geqq 95 \%$ of the dipped surface	MIL-STD-202F:208D MIL-STD-750D:2026 MIL-STD-883D:2003 IEC 68 Part 2-20 JIS C 7021:A-2

8. Others

The appearance and specifications of the product may be modified for improvement without prior notice.

