

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

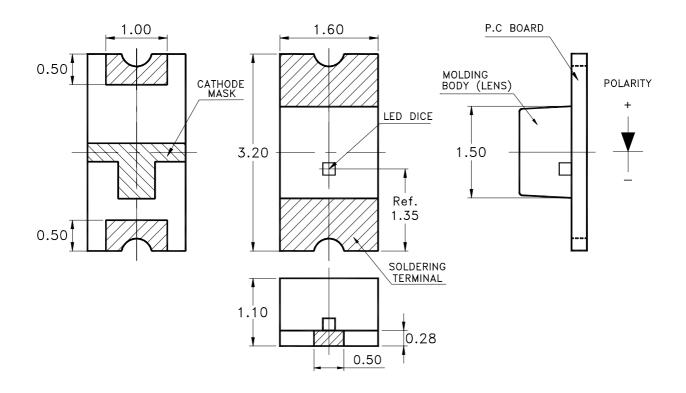
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



Property of Lite-On Only

Features

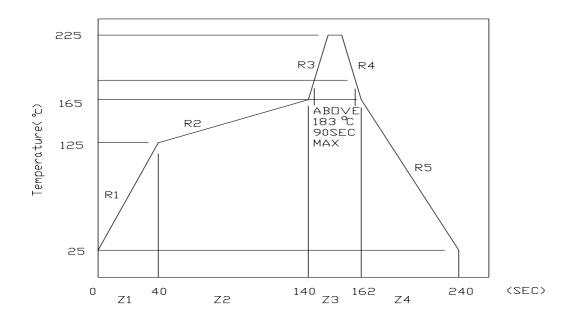
- * Reverse mount Chip LED.
- * Package in 8mm tape on 7" diameter reels.
- * Compatible with automatic placement equipment.
- * Compatible with infrared and vapor phase reflow solder process.
- * EIA STD package.
- * I.C. compatible.

Package Dimensions

Part no.	Lens	Source Color
LTST-C230TBKT	Water Clear	InGaN Blue

Notes:

- 1. All dimensions are in millimeters (inches).
- 2. Tolerance is ± 0.10 mm (.004") unless otherwise noted.


Property of Lite-On Only

Absolute Maximum Ratings At Ta=25℃

Parameter	LTST-C230TBKT	Unit	
Power Dissipation	120	mW	
Peak Forward Current (1/10 Duty Cycle, 0.1ms Pulse Width)	100	mA	
Continuous Forward Current	20	mA	
Derating Linear From 25°C	0.25	mA/°C	
Reverse Voltage	5	V	
Electrostatic Discharge Threshold(HBM) ^{Note A}	300	V	
Operating Temperature Range	-20°C to +80°C		
Storage Temperature Range	-30°C to + 100°C		
Wave Soldering Condition	260°C For 5 Seconds		
Infrared Soldering Condition	260°C For 5 Seconds		
Vapor Phase Soldering Condition	215°C For 3 Minutes		

Note A:

HBM: Human Body Model. Seller gives no other assurances regarding the ability of to withstand ESD. Suggest IR Reflow Condition:

Property of Lite-On Only

Electrical Optical Characteristics At Ta=25°C

Parameter	Symbol	Part No. LTST-	Min.	Тур.	Max.	Unit	Test Condition
Luminous Intensity	IV	С230ТВКТ	28.0	1	112.0	mcd	IF = 20mA Note 1
Viewing Angle	2 \theta 1/2	С230ТВКТ		130		deg	Note 2 (Fig.6)
Peak Emission Wavelength	λ Peak	С230ТВКТ		468		nm	Measurement @Peak (Fig.1)
Dominant Wavelength	λd	С230ТВКТ	465	-	475	nm	IF = 20mA Note 3
Spectral Line Half-Width	Δλ	С230ТВКТ		25		nm	
Forward Voltage	VF	С230ТВКТ	2.8	-	3.8	V	IF = 20mA
Reverse Current	IR	С230ТВКТ			100	μ A	VR = 5V

Notes: 1. Luminous intensity is measured with a light sensor and filter combination that approximates the CIE eye-response curve.

- 2. θ 1/2 is the off-axis angle at which the luminous intensity is half the axial luminous intensity.
- 3. The dominant wavelength, λ d is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.
- 4. Caution in ESD:

Static Electricity and surge damages the LED. It is recommend to use a wrist band or anti-electrostatic glove when handling the LED. All devices, equipment and machinery must be properly grounded.

Property of Lite-On Only

Bin Code List

Forward Vol	tage Uni	Unit: V @20mA	
Bin Code	Min.	Max.	
D7	2.80	3.00	
D8	3.00	3.20	
D9	3.20	3.40	
D10	3.40	3.60	
D11	3.60	3.80	

Tolerance on each Forward Voltage bin is +/-0.1 volt

Luminous Intensity Unit		: mcd @20mA	
Bin Code	Min.	Max.	
N	28.0	45.0	
P	45.0	71.0	
Q	71.0	112.0	

Tolerance on each Intensity bin is +/-15%

Dominant Wavelength		Unit: nm @20mA	
Bin Code	Min.	Max.	
AC	465.0	470.0	
AD	470.0	475.0	

Tolerance for each Dominate Wavelength bin is +/- 1nm

Property of Lite-On Only

(25°C Ambient Temperature Unless Otherwise Noted)

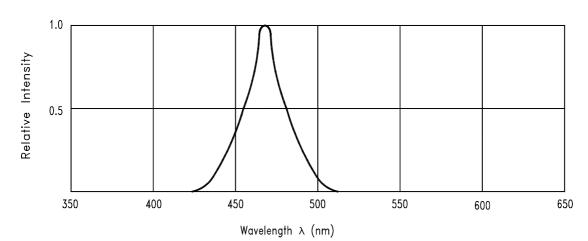
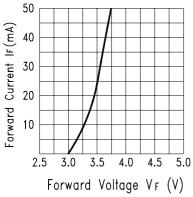



Fig.1 Relative Intensity vs. Wavelength

Forward Voltage V_F (V Fig.2 Forward Current vs. Forward Voltage

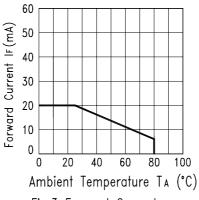


Fig.3 Forward Current
Derating Curve

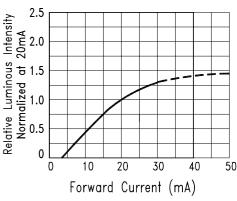


Fig.4 Relative Luminous Intensity vs. Forward Current

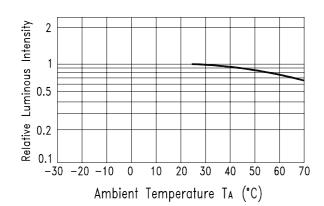


Fig.5 Luminous Intensity vs.

Ambient Temperature

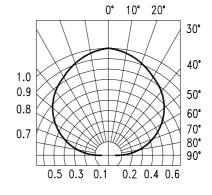


Fig.6 Spatial Distribution

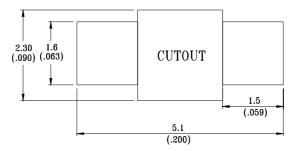
Part No.: LTST-C230TBKT

Page:

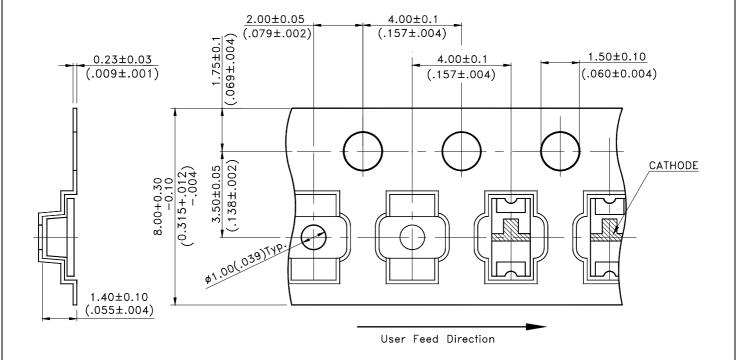
of

5

9


Property of Lite-On Only

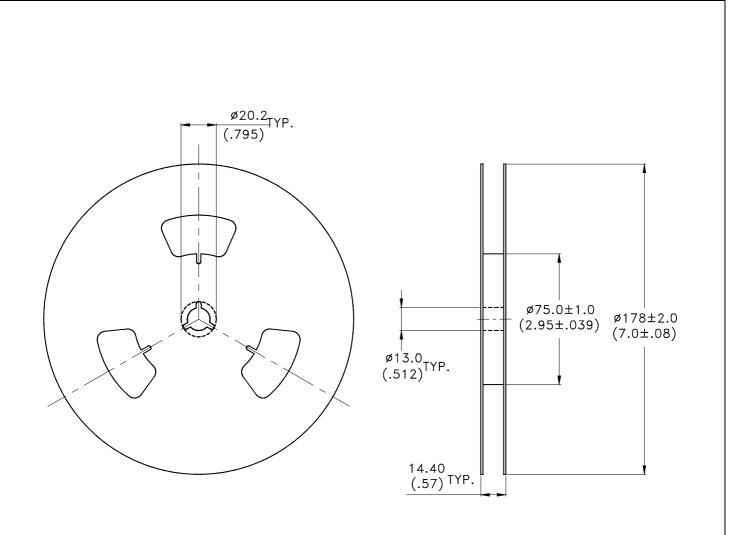
Cleaning


Do not use unspecified chemical liquid to clean LED they could harm the package.

If clean is necessary, immerse the LED in ethyl alcohol or in isopropyl alcohol at normal temperature for less one minute.

Suggest Soldering Pad Dimensions

Package Dimensions Of Tape And Reel



Notes:

1. All dimensions are in millimeters (inches).

Property of Lite-On Only

Notes:

- 1. Empty component pockets sealed with top cover tape.
- 2. 7 inch reel-3000 pieces per reel.
- 3. Minimum packing quantity is 500 pcs for remainders.
- 4. The maximum number of consecutive missing lamps is two.
- 5. In accordance with ANSI/EIA 481-1-A-1994 specifications.

Property of Lite-On Only

CAUTIONS

1. Application

The LEDs described here are intended to be used for ordinary electronic equipment (such as office equipment, communication equipment and household applications). Consult Liteon's Sales in advance for information on applications in which exceptional reliability is required, particularly when the failure or malfunction of the LEDs may directly jeopardize life or health (such as in aviation, transportation, traffic control equipment, medical and life support systems and safety devices).

2. Storage

The storage ambient for the LEDs should not exceed 30°C temperature or 70% relative humidity. It is recommended that LEDs out of their original packaging are IR-reflowed within one week. For extended storage out of their original packaging, it is recommended that the LEDs be stored in a sealed container with appropriate desiccant, or in a dessicator with nitrogen ambient.

LEDs stored out of their original packaging for more than a week should be baked at about 60 deg C for at least 24 hours before solder assembly.

3. Cleaning

Use alcohol-based cleaning solvents such as isopropyl alcohol to clean the LED if necessary.

4. Soldering

Recommended soldering conditions:

	<u> </u>				
Reflow soldering		Wave Soldering		Soldering iron	
Pre-heat	120~150°C	Pre-heat	100°C Max.	Temperature	300°C Max.
Pre-heat time	120 sec. Max.	Pre-heat time	60 sec. Max.	Soldering time	3 sec. Max.
Peak temperature	240°C Max.	Solder wave	260°C Max.		(one time only)
Soldering time	10 sec. Max.	Soldering time	10 sec. Max.		

5. Drive Method

An LED is a current-operated device. In order to ensure intensity uniformity on multiple LEDs connected in parallel in an application, it is recommended that a current limiting resistor be incorporated in the drive circuit, in series with each LED as shown in Circuit A below.

- (A) Recommended circuit.
- (B) The brightness of each LED might appear diffierent due to the differences in the I-V charateristics of those LEDs.

6. ESD (Electrostatic Discharge)

Static Electricity or power surge will damage the LED.

Suggestions to prevent ESD damage:

- Use of a conductive wrist band or anti-electrostatic glove when handling these LEDs.
- All devices, equipment, and machinery must be properly grounded.
- Work tables, storage racks, etc. should be properly grounded.
- Use ion blower to neutralize the static charge which might have built up on surface of the LED's plastic lens as a result of friction between LEDs during storage and handling.

Property of Lite-On Only

ESD-damaged LEDs will exhibit abnormal characteristics such as high reverse leakage current, low forward voltage, or "no lightup" at low currents.

To verify for ESD damage, check for "lightup" and Vf of the suspect LEDs at low currents.

The Vf of "good" LEDs should be >2.0V@0.1mA for InGaN product and >1.4V@0.1mA for AlInGaP product.

Chip ESD level	Machine Mode	Human Body Mode
InGaN / Sapphire	100 V	300 V
AlInGaP	200 V	500 V
InGaN / SiC	600 V	1000 V

7. Reliability Test

Classification	Test Item	Test Condition	Referance Standard
	Operation Life	Ta= Under Room Temperature As Per Data Sheet Maximum Rating *Test Time= 1000HRS (-24HRS,+72HRS)*@20mA.	MIL-STD-750D:1026 (1995) MIL-STD-883D:1005 (1991) JIS C 7021:B-1 (1982)
Endurance Test	High Temperature High Humidity Storage	IR-Reflow In-Board, 2 Times Ta= 65±5°C,RH= 90~95% *Test Time= 240HRS±2HRS	MIL-STD-202F:103B(1980) JIS C 7021:B-11(1982)
	High Temperature Storage	Ta= 105±5°C *Test Time= 1000HRS (-24HRS,+72HRS)	MIL-STD-883D:1008 (1991) JIS C 7021:B-10 (1982)
	Low Temperature Storage	Ta= -55±5°C *Test Time=1000HRS (-24HRS,+72H RS)	JIS C 7021:B-12 (1982)
	Temperature Cycling	$105^{\circ}\text{C} \sim 25^{\circ}\text{C} \sim -55^{\circ}\text{C} \sim 25^{\circ}\text{C}$ 30mins 5mins 30mins 5mins 10 Cycles	MIL-STD-202F:107D (1980) MIL-STD-750D:1051(1995) MIL-STD-883D:1010 (1991) JIS C 7021:A-4(1982)
	Thermal Shock	IR-Reflow In-Board, 2 Times $85 \pm 5^{\circ}\text{C} \sim -40^{\circ}\text{C} \pm 5^{\circ}\text{C}$ 10mins 10 Cycles	MIL-STD-202F:107D(1980) MIL-STD-750D:1051(1995) MIL-STD-883D:1011 (1991)
Environmental Test	Solder Resistance	T.sol= 260 ± 5 °C Dwell Time= 10 ± 1 secs	MIL-STD-202F:210A(1980) MIL-STD-750D:2031(1995) JIS C 7021:A-1(1982)
	IR-Reflow	Ramp-up rate(183°C to Peak) +3°C second max Temp. maintain at 125(±25)°C 120 seconds max Temp. maintain above 183°C 60-150 seconds Peak temperature range 235°C+5/-0°C Time within 5°C of actual Peak Temperature (tp) 10-30 seconds Ramp-down rate +6°C/second max	MIL-STD-750D:2031.2(1995) J-STD-020(1999)
	Solderability	T.sol= 235 ± 5 °C Immersion time 2 ± 0.5 sec Immersion rate 25 ± 2.5 mm/sec Immersion rate 25 ± 2.5 mm/sec Coverage ≥95% of the dipped surface	MIL-STD-202F:208D(1980) MIL-STD-750D:2026(1995) MIL-STD-883D:2003(1991) IEC 68 Part 2-20 JIS C 7021:A-2(1982)

8. Others

The appearance and specifications of the product may be modified for improvement without prior notice.