: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

〕

Product Data Sheet
LTV-3150 series
Spec No.: DS70-2012-0059
Effective Date: 04/23/2014
Revision: A

LITE-ON DCC

RELEASE

BNS-OD-FC001/A4

Photocouplers

LTV-3150 series

1. DESCRIPTION

The LTV-3150 optocoupler is ideally suited for driving power IGBTs and MOSFETs used in motor control inverter applications and inverters in power supply system. It contains an AIGaAs LED optically coupled to an integrated circuit with a power output stage. The 1.0A peak output current is capable of directly driving most IGBTs with ratings up to $1200 \mathrm{~V} / 50 \mathrm{~A}$. For IGBTs with higher ratings, the LTV-3150 series can be used to drive a discrete power stage which drives the IGBT gate.

The Optocoupler operational parameters are guaranteed over the temperature range from $-40^{\circ} \mathrm{C} \sim+105^{\circ} \mathrm{C}$.

1.1 Features

- 1.0 A maximum peak output current
- 0.8 A minimum peak output current
- Rail-to-rail output voltage
- 400 ns maximum propagation delay
- 150 ns maximum propagation delay difference
- Under Voltage Lock-Out protection (UVLO) with hysteresis
- $15 \mathrm{kV} / \mathrm{us}$ minimum Common Mode Rejection (CMR) at $\mathrm{V}_{\mathrm{CM}}=1500 \mathrm{~V}$
- $\mathrm{I}_{\mathrm{Cc}}=3.0 \mathrm{~mA}$ maximum supply current
- Wide operating range: 15 to 30 Volts (V_{CC})
- Guaranteed performance over temperature $-40^{\circ} \mathrm{C} \sim+105^{\circ} \mathrm{C}$.
- Offer low power dissipation with $\mathrm{R}_{\mathrm{ON}} \leq 1 \Omega$
- MSL Level 1
- Safety approval:
- UL/ cUL Recognized 5000 V $_{\text {RMS }} / 1 \mathrm{~min}$
- IEC/EN/DIN EN 60747-5-5 V ${ }^{\text {IORM }}=630$ Vpeak

1.2 Applications

- IGBT/MOSFET gate drive

■ Uninterruptible power supply (UPS)

- Industrial Inverter

Functional Diagram

A $0.1 \mu \mathrm{~F}$ bypass Capacitor must be connected between Pin 5 and 8 . See note 11.

Truth Table

LED	$V_{\text {cc-GND }}$ (Turn-ON, +ve going)	$V_{\text {cc-GND }}$ (Turn-OFF, -ve going)	V_{0}
OFF	$0-30 \mathrm{~V}$	$0-30 \mathrm{~V}$	Low
ON	$0-11 \mathrm{~V}$	$0-9 \mathrm{~V}$	Low
ON	$11-13.5 \mathrm{~V}$	$9-12 \mathrm{~V}$	Transition
ON	$13.5-30 \mathrm{~V}$	$12-30 \mathrm{~V}$	High

- AC/Brushless DC motor drives

Part No. : LTV-3150 series

LITEONI ${ }^{\circ}$
OPTOELECTRONICS

Data Sheet

\square

2. PACKAGE DIMENSIONS

2.1 LTV-3150

Notes:

*1. Year date code.
*2. 2-digit work week.
*3. Factory identification mark
(Y : Thailand).
Dimensions are in Millimeters and (Inches).

Notes

*1. Year date code.
*2. 2-digit work week.
*3. Factory identification mark
(Y : Thailand).
Dimensions are in Millimeters and (Inches).

LITEON ${ }^{\circ}$

\square OPTOELECTRONICS

Data Sheet

Photocouplers

LTV-3150 series

2.3 LTV-3150S

Notes:

*1. Year date code.
*2. 2-digit work week.
*3. Factory identification mark
(Y : Thailand).
Dimensions are in Millimeters and (Inches).

OPTOELECTRONICS

Data Sheet

Photocouplers

LTV-3150 series

3. TAPING DIMENSIONS

3.1 LTV-3150S-TA

3.2 LTV-3150S-TA1

Description	Symbol	Dimension in mm (inch)
Tape wide	W	$16 \pm 0.3(0.63)$
Pitch of sprocket holes	P_{0}	$4 \pm 0.1(0.15)$
Distance of compartment	F	$7.5 \pm 0.1(0.295)$
	P_{2}	$2 \pm 0.1(0.079)$
Distance of compartment to compartment	P_{1}	$12 \pm 0.1(0.47)$

Quantities Per Reel

Package Type	LTV-3150
Quantities (pcs)	1000

4. RATING AND CHARACTERISTICS

4.1 Absolute Maximum Ratings

Parameter	Symbol	Min	Max	Unit	Note
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-55	+125	${ }^{\circ} \mathrm{C}$	
Operating Temperature	$\mathrm{T}_{\text {opr }}$	-40	+105	${ }^{\circ} \mathrm{C}$	
Output IC Junction Temperature	TJ		125	${ }^{\circ} \mathrm{C}$	
Isolation Voltage	$\mathrm{V}_{\text {iso }}$	5000		$\mathrm{V}_{\text {RMS }}$	
Total Output Supply Voltage	$\left(\mathrm{V}_{\text {CC }}-\mathrm{V}_{\mathrm{EE}}\right)$	0	35	V	
Average Forward Input Current	$\mathrm{I}_{\text {F }}$		25	mA	
Reverse Input Voltage	$V_{\text {R }}$		5	V	
Peak Transient Input Current (<1 $\mu \mathrm{s}$ pulse width, 300 pps)	$\mathrm{I}_{\text {(tPAN })}$		1	A	
"High" Peak Output Current	ІОН(PEAK)		1.0	A	1
"Low" Peak Output Current	lol(PEAK)		1.0	A	1
Input Current (Rise/Fall Time)	$\mathrm{t}_{\text {(IN }} / \mathrm{t}_{\mathrm{t}(\mathbb{N})}$		500	ns	
Output Voltage	$\mathrm{V}_{\text {O(PEAK) }}$	-0.5	V_{Cc}	V	
Power Dissipation	P_{1}		40	mW	
Output Power Dissipation	Po		250	mW	
Total Power Dissipation	P_{T}		295	mW	
Lead Solder Temperature	$\mathrm{T}_{\text {sol }}$		260	${ }^{\circ} \mathrm{C}$	

Ambient temperature $=25^{\circ} \mathrm{C}$, unless otherwise specified. Stresses exceeding the absolute maximum ratings can cause permanent damage to the device. Exposure to absolute maximum ratings for long periods of time can adversely affect reliability.

4.2 Recommended Operating Conditions

Parameter	Symbol	Min	Max	Unit
Operating Temperature	T_{A}	-40	105	${ }^{\circ} \mathrm{C}$
Supply Voltage	V_{CC}	15	30	V
Input Current (ON)	$\mathrm{I}_{\mathrm{FL}(\mathrm{ON})}$	7	16	mA
Input Voltage (OFF)	$\mathrm{V}_{\mathrm{F}(\mathrm{OFF})}$	-3.0	0.8	V

Part No. : LTV-3150 series BNC-OD-FC002/A4

LTV-3150 series

4.3 ELECTRICAL OPTICAL CHARACTERISTICS

	Parameter	Symbol	Min.	Typ.	Max.	Unit	Test Condition	Figure	Note
Input	Input Forward Voltage	V_{F}	1.2	1.37	1.8	V	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	13	
	Input Forward Voltage Temperature Coefficient	$\Delta \mathrm{V}_{\mathrm{F}} / \Delta \mathrm{T}$		-1.237		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$		
	Input Reverse Voltage	$B V_{\text {R }}$	5			V	$\mathrm{I}_{\mathrm{R}}=10 \mu \mathrm{~A}$		
	Input Threshold Current (Low to High)	$I_{\text {FLH }}$		1.4	5	mA	$\mathrm{R}_{\mathrm{g}}=10 \Omega$	$\begin{gathered} 6, \\ 7,18 \end{gathered}$	
	Input Threshold Voltage (High to Low)	$\mathrm{V}_{\text {FHL }}$	0.8			V	$\mathrm{C}_{\mathrm{g}}=25 \mathrm{nF}, \mathrm{V}_{\mathrm{O}}>5 \mathrm{~V}$		
	Input Capacitance	$\mathrm{CIN}_{\text {IN }}$		33		pF	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{F}}=0 \mathrm{~V}$		
Output	High Level Supply Current	ICCH		1.9	3.0	mA	$\begin{aligned} & \mathrm{R}_{\mathrm{g}}=10 \Omega, \\ & \mathrm{C}_{\mathrm{g}}=25 \mathrm{nF}, \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA} \end{aligned}$	4, 5	
	Low Level Supply Current	$\mathrm{I}_{\mathrm{CLL}}$		2.1	3.0	mA	$\begin{aligned} & \mathrm{R}_{\mathrm{g}}=10 \Omega, \\ & \mathrm{C}_{\mathrm{g}}=25 \mathrm{nF}, \mathrm{~V}_{\mathrm{F}}=0 \mathrm{~V} \end{aligned}$		
	High level output current	Іон			-0.3	A	$\mathrm{V}_{\mathrm{O}}=\left(\mathrm{V}_{\mathrm{CC}}-2.5 \mathrm{~V}\right)$	16	1
				-	-0.8		$\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{O}} \leq 15 \mathrm{~V}$		2
	Low level output current	lot	0.3			A	$\mathrm{V}_{\mathrm{O}}=\left(\mathrm{V}_{\mathrm{cc}}+2.0 \mathrm{~V}\right)$	17	1
			0.8				$\mathrm{V}_{\text {CC }}-\mathrm{V}_{\text {EE }} \leq 15 \mathrm{~V}$		3
	High level output voltage	$\mathrm{V}_{\text {OH }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \\ & 0.25 \end{aligned}$	$\begin{gathered} \mathrm{V}_{\mathrm{CC}} \\ 0.1 \end{gathered}$		V	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \\ & \mathrm{I}_{\mathrm{O}}=-100 \mathrm{~mA} \end{aligned}$	$\begin{gathered} 1,2, \\ 14 \end{gathered}$	4
	Low level output voltage	VoL		$\begin{gathered} \mathrm{V}_{\mathrm{EE}+} \\ 0.1 \end{gathered}$	$\begin{aligned} & \mathrm{V}_{\mathrm{EE}+} \\ & 0.25 \end{aligned}$	V	$\mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{l}_{\mathrm{o}}=100 \mathrm{~mA}$	3, 15	
	UVLO Threshold	Vuvlo+	11.0	12.7	13.5	V	$\mathrm{V}_{\mathrm{O}}>5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	19	
		Vuvlo.	9.0	11.2	12	V	$\mathrm{V}_{\mathrm{O}}<5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$		
	UVLO Hysteresis	UVLOhrs		1.5		V			

All Typical values at $T_{A}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=30 \mathrm{~V}$, unless otherwise specified; all minimum and maximum specifications are at recommended operating condition. (As page 6)

5. SWITCHING SPECIFICATION

Parameter	Symbol	Min.	Typ.	Max.	Unit	Test Condition	Figure	Note	
Propagation Delay Time to High Output Level	$\mathrm{t}_{\text {PHL }}$	100	242	400	ns	$\begin{aligned} & \mathrm{R}_{\mathrm{g}}=10 \Omega, \\ & \mathrm{C}_{\mathrm{g}}=25 \mathrm{nF}, \\ & \mathrm{f}=20 \mathrm{kHz}, \\ & \text { Duty Cycle }=50 \% \\ & \mathrm{I}_{\mathrm{F}}=7 \text { to } 16 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{CC}}=15 \text { to } 30 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{EE}}=\text { ground } \end{aligned}$	$\begin{gathered} 8,9,10 \\ 11,12 \\ 20 \end{gathered}$		
Propagation Delay Time to Low Output Level	$t_{\text {ple }}$	100	183	400					
Pulse Width Distortion	PWD		-60	-120				10	
Propagation delay difference between any two parts or channels	PDD	-150		150				7	
Output Rise Time (20 to 80\%)	Tr		42						
Output Fall Time (80 to 20\%)	Tf		50						
Common mode transient immunity at high level output	\|CMH		15			KV/ $\mu \mathrm{s}$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ & \mathrm{I}_{\mathrm{F}}=10 \text { to } 16 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{CM}}=1500 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CC}}=30 \mathrm{~V} \end{aligned}$		8
Common mode transient immunity at low level output	\|CML		15			KV/ $\mu \mathrm{s}$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ & \mathrm{~V}_{\mathrm{F}}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CM}}=1500 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CC}}=30 \mathrm{~V} \end{aligned}$		9

All Typical values at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=30 \mathrm{~V}$, unless otherwise specified; all minimum and maximum specifications are at recommended operating condition. (As page 6)

6. ISOLATION CHARACTERISTIC

Parameter	Symbol	Min.	Typ.	Max.	Unit	Test Condition	Note
Withstand Insulation Test Voltage	$\mathrm{V}_{\text {ISO }}$	5000	-	-	V	$\mathrm{RH} \leq 50 \%, \mathrm{t}=1 \mathrm{~min}$, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	5,6
Input-Output Resistance	$\mathrm{R}_{\vdash-\mathrm{O}}$	-	6.5×10^{11}	-	Ω	$\mathrm{V}_{1-\mathrm{O}}=500 \mathrm{~V} \mathrm{DC}$	5
Input-Output Capacitance	$\mathrm{C}_{-\mathrm{O}}$	-	1.0	-	pF	$\mathrm{f}=1 \mathrm{MHz}$	

All Typical values at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified. All minimum and maximum specifications are at recommended operating condition. (As page 6)

Notes:

1) Maximum pulse width $=10 \mu \mathrm{~s}$, maximum duty cycle $=0.2 \%$.
2) Output is sourced at -0.8 A with a maximum pulse width $=10 \mu \mathrm{~s}$. $\mathrm{V}_{\mathrm{cc}}-\mathrm{V}_{\mathrm{O}}$ is measured to ensure 15 V or below.
3) Output is sourced at 0.8 A with a maximum pulse width $=10 \mu \mathrm{~s} . \mathrm{V}_{\mathrm{O}}-\mathrm{V}_{\text {EE }}$ is measured to ensure 15 V or below.
4) In this test V_{OH} is measured with a DC load current. When driving capacitive loads, V_{OH} will approach V_{CC} as I_{OH} approaches zero amps.
5) Device is considered a two terminal device: pins 1, 2, 3 and 4 are shorted together and pins 5, 6, 7 and 8 are shorted together.
6) According to UL1577, each photocoupler is tested by applying an insulation test voltage $5250 \mathrm{~V}_{\text {RMs }}$ for one second (leakage current less than $10 \mu \mathrm{~A}$). This test is performed before the 100% production test for partial discharge
7) The difference between $T_{\text {PHL }}$ and $T_{\text {PLL }}$ between any two LTV-3150 parts under same test conditions.
8) Common mode transient immunity in high stage is the maximum tolerable negative $\mathrm{dV}_{\mathrm{C}_{\mathrm{C}}} / \mathrm{dt}$ on the trailing edge of the common mode impulse signal, $\mathrm{V}_{С \mathrm{CM}}$, to assure that the output will remain high.
9) Common mode transient immunity in low stage is the maximum tolerable positive $\mathrm{dV}_{\mathrm{CN} / \mathrm{dt}}$ on the leading edge of the common mode impulse signal, V_{CM}, to assure that the output will remain low.
10) Pulse Width Distortion is defined as $T_{\text {PHL }}-T_{\text {PLH }}$ for any given device.
11) At least a $0.1 \mu \mathrm{~F}$ or bigger bypass capacitor must be connected/closed across pin 8 and pin 5 . Failure to provide the bypass may impair the switching property. Normally, it is recommended to place a $1 \mu \mathrm{~F}$ multi-layer ceramic capacitor. To parallel one larger capacitor $(>1 \mu \mathrm{~F})$ to optimize performance is better.

Part No. : LTV-3150 series
BNC-OD-FC002/A4

OPTOELECTRONICS

Data Sheet

Photocouplers
 LTV-3150 series

7. TYPICAL PERFORMANCE CURVES \& TEST CIRCUITS

Figure 1: High output rail voltage vs. Temperature

Figure 3: $\quad \mathrm{V}_{\mathrm{OL}}$ vs. High Current

Figure 5: $\quad I_{c c}$ vs. $V_{C C}$

Figure 2: $\mathrm{V}_{\text {Он }}$ vs. Temperature

Figure 4: I_{CC} vs. Temperature

Figure 6: IFLH Hysteresis

Figure 7: $I_{\text {FLH }}$ vs. Temperature

Figure 9: Propagation Delays vs. I_{F}

Figure 11: Propagation Delays vs. R_{g}

Data Sheet

Photocouplers
LTV-3150 series

Figure 8: Propagation Delays vs. V_{CC}

Figure 10: Propagation Delays vs. Temperature

Figure 12: Propagation Delays vs. C_{g}

Photocouplers

LTV-3150 series

Figure 13: Input Current vs. Forward Voltage

Figure 14 : Voh Test Circuit

Figure 16 : Іон Test Circuit

Figure 15 : Vol Test Circuit

Figure 17 : Iol Test Circuit

Figure 18 : Iflh Test Circuit

Data Sheet

Photocouplers LTV-3150 series

Figure 19 : UVLO Test Circuit

Figure 20 : tr, tf, tplh and tphl Test Circuit and Waveforms

Figure 21 : CMR Test Circuit and Waveforms

8. TEMPERATURE PROFILE OF SOLDERING

8.1 IR Reflow soldering (JEDEC-STD-020C compliant)

One time soldering reflow is recommended within the condition of temperature and time profile shown below. Do not solder more than three times.

Profile item	Conditions
Preheat - Temperature Min ($\mathrm{T}_{\mathrm{Smin}}$) - Temperature Max ($\mathrm{T}_{\mathrm{Smax}}$) - Time (min to max) (ts)	$\begin{gathered} 150^{\circ} \mathrm{C} \\ 200^{\circ} \mathrm{C} \\ 90 \pm 30 \mathrm{sec} \end{gathered}$
Soldering zone - Temperature (T_{L}) - Time (t_{L})	$\begin{gathered} 217^{\circ} \mathrm{C} \\ 60 \sim 100 \mathrm{sec} \end{gathered}$
Peak Temperature (T_{P})	$260^{\circ} \mathrm{C}$
Ramp-up rate	$3^{\circ} \mathrm{C} / \mathrm{sec}$ max.
Ramp-down rate	$3 \sim 6^{\circ} \mathrm{C} / \mathrm{sec}$

OPTOELECTRONICS

Data Sheet

Photocouplers

LTV-3150 series
8.2 Wave soldering (JEDEC22A111 compliant)

One time soldering is recommended within the condition of temperature.
Temperature: $260+0 /-5^{\circ} \mathrm{C}$
Time: 10 sec .
Preheat temperature: 25 to $140^{\circ} \mathrm{C}$
Preheat time: 30 to 80 sec .

8.3 Hand soldering by soldering iron

Allow single lead soldering in every single process. One time soldering is recommended.
Temperature: $380+0 /-5^{\circ} \mathrm{C}$
Time: 3 sec max.

Data Sheet

Photocouplers

LTV-3150 series

9. ORDERING INFORMATION

Parameter	Option	Minimum CMR		Input-On Current (mA)	Remark
		dV/dt (V/ $/$ s)	$\mathrm{V}_{\mathrm{cm}}(\mathrm{V})$		
LTV-3150		15,000	1500	10	Single Channel, DIP-8
	M				Single Channel, Wide Lead Spacing
	S				Single Channel, SMD-8

