imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

LV0221CS

Front Monitor OE-IC for Optical Pickups

Overview

The LV0221CS is a front monitor optoelectronic IC for optical pickups that has a built-in photo diode compatible with three waveforms. LV0221CS is small size and type CSP packages.

Functions

- PIN photodiode compatible with three wavelengths incorporated.
- Gain adjustment (-6dB to +6dB in 256 steps) through serial communication.
- Amplifier to amplify differential output.

Specifications

Maximum Ratings at $Ta = 25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	V _{CC}		6	V
Allowable power dissipation	Pd1	Glass epoxy one-side substrate $55mm \times 45mm \times 0.8mm$ Copper foil area (about 80%), Ta=75°C	136	mW
	Pd2	Glass epoxy one-side substrate $55mm \times 45mm \times 0.8mm$ Copper foil area (head: about 85% Tail: about 90%), Ta= $75^{\circ}C$	100	mW
Operating temperature	Topr		-20 to +85	°C
Storage temperature	Tstg		-40 to +100	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Recommended Operating Conditions at $Ta = 25^{\circ}C$

Devenueter	Querra ha a l	A maked		Ratings			
Parameter	Symbol Conditions		min	typ	max	Unit	
Operating supply voltage	V _{CC}		4.5	5	5.5	V	
Output load capacitance	CO		12	20	33	pF	
Output load resistance	ZO		3			kΩ	

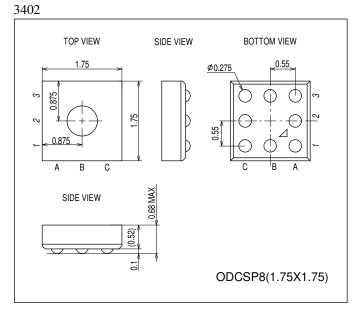
LV0221CS

Electrical Characteristics at Ta = 25°C, V_{CC} = 5V, RL=6k Ω , CL=20pF

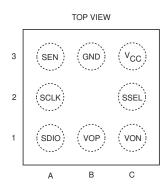
Parameter	Symbol	Conditions		Ratings	1	Unit
i didificici	Symbol Conditions		min	typ	max	Unit
Current dissipation	ICC			18	23.4	mA
Sleep current	Islp				1	mA
Output voltage when shielded	V _C	At shielding	1.8	2.0	2.2	V
Output offset voltage	Vofs	At shielding, voltage between VOP-VON	-30	0	30	mV
Temperature dependence of offset voltage *1	Vofs	Ta=-10 to +85°C	-60	0	60	μV/°C
Optical output voltage *1	VLC	Low Gain, λ =780nm, G=0dB	0.21	0.262	0.31	mV/μW
Voltage between VOP-VON	VLD	Low Gain, λ =650nm, G=0dB	0.22	0.275	0.33	mV/μV
	VLB	Low Gain, λ =405nm, G=0dB	0.14	0.172	0.21	mV/μW
	VMC	Middle Gain, λ =780nm, G=0dB	0.66	0.83	0.99	mV/μW
	VMD	Middle Gain, λ =650nm, G=0dB	0.70	0.87	1.05	mV/μW
	VMB	Middle Gain, λ=405nm, G=0dB	0.43	0.54	0.65	mV/μW
	VHC	High Gain, λ =780nm, G=0dB	1.97	2.46	2.95	mV/μW
	VHD	High Gain, λ =650nm, G=0dB	2.07	2.58	3.10	mV/μV
	VHB	High Gain, λ=405nm, G=0dB	1.29	1.62	1.94	mV/μV
Light output voltage adjustment range *1	G	G=0dB reference, absolute value of adjustment width	5.5	6.0	6.5	dB
D range *1	VoD	Voltage between VOP-VON	1700	2200		mV
Frequency characteristics *1, *2	FcC	-3dB(1MHz reference), λ=780nm	50	75		MHz
		Light input = $40\mu W(DC) + 20\mu W(AC)$				
	FcD	-3dB(1MHz reference), λ =650nm	60	85		MHz
	5-D	Light input = $40\mu W(DC) + 20\mu W(AC)$	<u> </u>	05		N41.1-
	FcB	-3dB(1MHz reference), λ =405nm Light input = 40 μ W(DC) + 20 μ W(AC)	60	85		MHz
Settling time *1	Tset	$= - \frac{1}{2} \frac{1}{1} $		15		ns
Response time *1	Tr, Tf	Vo=0.9Vp-p, output level 10 to 90%			10	ns
	,	fc=10MHz, duty=50%			-	_
Overshoot *1	Ovst	Vo=0.9Vp-p			15	%
Undershoot *1	Unst	Vo=0.9Vp-p			15	%
Linearity *1	Lin	At output voltage 0.5V and 1.0V (Between VOP-VON)	-1	0	1	%
Light-output voltage temperature dependence	TC	λ=780nm, 25°C reference	10	13	16	%
Voltage between VOP-VON *1, *3	TD	λ=650nm, 25°C reference	0	3	6	%
	ТВ	λ=405nm, 25°C reference	0	3	6	%
Light-output voltage spectral sensitivity	Vf	λ=785nm ±10nm	-0.8		0.1	%/nm
Voltage between VOP-VON *1		λ=660nm ±10nm	-0.4		0.4	%/nm
		λ=405nm ±10nm	0		1.2	%/nm
Step-step voltage ratio *1	DG	(Vn-Vn-1) / Vn *100 *4 Deviation from the ideal curve of above equation	-3	0	3	%

Item with *1 mark indicate the design reference value.

Item with *2 mark indicate the frequency characteristics when VOP and VON are applied individually.

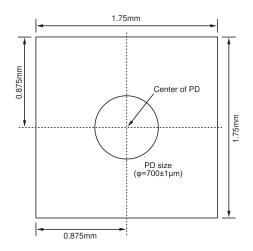

The frequency characteristics are for the case of High / Middle / Low gain and for the case when the output voltage adjustment range is -6 to +6dB Item with *3 mark indicates the temperature dependence for the case of High / Middle / Low gain and for the case when the temperature is 25 to 85°C for the output voltage adjustment range of -6 to +6dB

Vn in Item with *4 mark is Vn = (sensitivity / 2) \times 5400 / (5400-16 \times GCAstep) \times light intensity (µW)

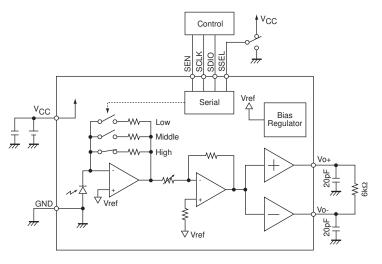

GCA = Gain Control Amplifier

Package Dimensions

unit : mm (typ)



Pin Assignment


Pin No.	Pin name	Function
1A	SDIO	Serial communication Data pin
1B	VOP	Positive side output pin
1C	VON	Negative side output pin
2A	SCLK	Serial communication Clock pin
2C	SSEL	Register selection pin
		SSEL = Low, Open : Address 00 to 0Fh used
		SSEL = High : Address 10 to 1Fh used
ЗA	SEN	Serial communication Enable pin
3B	GND	GND pin
3C	V _{CC}	Power supply voltage pin

PD assignment

*PD size for reference to be used for design

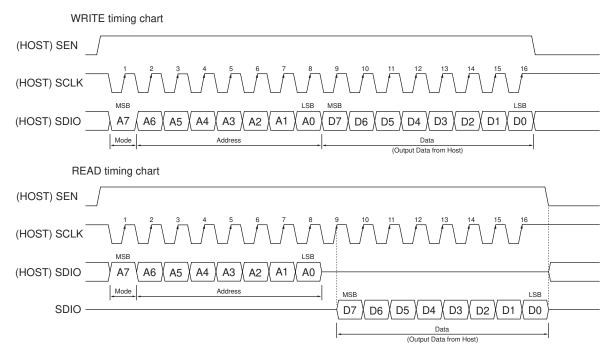
Block diagram and Test circuit diagram

Resister table

Enable selection of the register group from the SSEL pin.

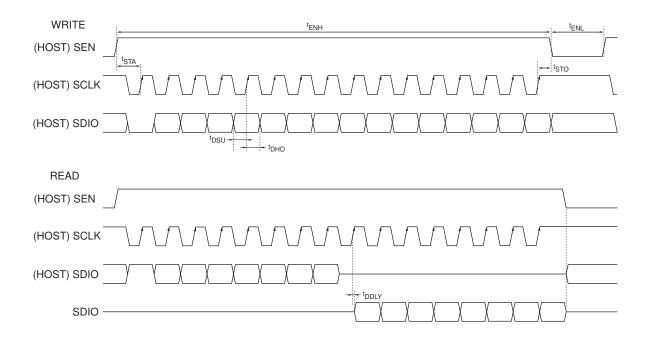
SSEL = Low, Open

	Address	7	6	5	4	3	2	1	0
Name		PO	WER	IV GA	IN SEL	GAIN	I SEL		
Default		(00	C	0	C	00	x	х
Value	00h	11: Po	ower on	00 01	: High	00 0	1: BD		
		00 01 1	0: Sleep		liddle	10:	DVD		
				11:	Low	11:	CD		
Name					BD	GAIN			
Default	01h	1	1	1	1	1	1	1	1
Value			00000000 to 1111111						
Name					DVD	GAIN			
Default	02h	1	1	1	1	1	1	1	1
Value			00000000 to 1111111						
Name					CD	GAIN			
Default	03h	1	1	1	1	1	1	1	1
Value] [00000000 t	o 11111111			
Name	0Eh				TEST	[1 (*1)			
Name	0Fh	TEST2 (*1)							


SSEL = High

	Address	7	6	5	4	3	2	1	0
Name		PO	WER	IV GA	IN SEL	GAIN	I SEL		
Default]	0	00	0	0	0	0	x	х
Value	10h	11: Po	wer on	00 01	: High	00 0	1: BD		
		00 01 1	0: Sleep	10: N	liddle	10:	DVD		
				11:	Low	11:	CD		
Name					BD (GAIN			
Default	11h	1	1	1	1	1	1	1	1
Value			00000000 to 1111111						
Name			DVD GAIN						
Default	12h	1	1	1	1	1	1	1	1
Value			00000000 to 1111111						
Name			CD GAIN						
Default	13h	1	1	1	1	1	1	1	1
Value		00000000 to 1111111							
Name	1Eh	TEST1 (*1)							
Name	1Fh	TEST2 (*1)							

*1 TEST1 and TEST2 are either the time when power is applied or "00000000" is set. Do not attempt to change "00000000" during operation. "000000000" is returned when reading is made.


*2 No problem in terms of operation occurs even when writing is made to the address 04h to 0Dh and 14h to 1Dh. "00000000" is returned when this address is read.

Serial protocol

SDIO pin load / CL=20pF (The table below shows the design reference value.)

Parameter	Symbol	Min.	Тур.	Max.	Unit
SCL clock frequency Write	^f SCL	0		10	MHz
SCL clock frequency Read	^f SCL	0		4	MHz
SDIO data setup time	^t DSU	50			ns
SDIO data hold time	^t DHO	50			ns
SDIO output delay	^t DDLY		10	80	ns
SEN "H" period	^t ENH	1.6			μs
SEN "L" period	^t ENL	200			ns
SCL rise time after SEN rise	^t STA	60			ns
SEN fall time after final SCL rise	^t STO	100			ns
Serial input "H" voltage	V _I H	2.4			V
Serial input "L" voltage	V _I L			0.6	V
SDIO output "H" voltage	V _О Н	2.5	2.9	3.3	V
SDIO output "L" voltage	V _O L	0	0.3	0.8	V

Pin	Туре	Equivalent circuit diagram
SDIO	Input Output	3V 3V
VOP VON	Output	
SCLK SSEL SEN	Input	20kΩ

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized usplication, Buyer shall indeminify and hold SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright aws and is not for resale in any manner.