

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

SANYO Semiconductors **DATA SHEET**

Overview

The LV25700PM is a tuner IC for car radio, which incorporates an AM/FM Tuner, PLL, AM/FM Noise Canceller (NC), FM Stereo-decoder (MPX), Multipath-noise Rejection Circuit (MRC), and RDS Demodulator Logic-controller. The basic performance is based on the LV25210, and both adjustment-free operation and software control of the IF band variable filter are possible.

This IC enables easy configuration of a low-cost, high performance analog tuner for OEM.

Functions

• AM/FM + FE + PLL + IF + NC + MPX + MRC + RDS Demodulator + Logic-controller

Features

• World-wide compatible tuners

World-wide compatible tuners can be configured and supplied with a single tuner IC.

FM is compatible with U.S., European, Japanese and Weather bands, while AM is compatible with LW, MW and SW. High performance image cancel mixer incorporated in FM MIX.

PLL fast locking, RDS demodulator and AM/FM noise canceller incorporated

• Self-contained type IF band variable filter incorporated

Detects any neighboring interfering FM stations and the modulation index, and enables various bandwidth settings of the IF bandpass filter by using the software incorporated in the IC.

- CCB is a registered trademark of SANYO Electric Co., Ltd.
- CCB is SANYO Semiconductor's original bus format. All bus addresses are managed by SANYO Semiconductor for this format.
- Any and all SANYO Semiconductor Co.,Ltd. products described or contained herein are, with regard to "standard application", intended for the use as general electronics equipment (home appliances, AV equipment, communication device, office equipment, industrial equipment etc.). The products mentioned herein shall not be intended for use for any "special application" (medical equipment whose purpose is to sustain life, aerospace instrument, nuclear control device, burning appliances, transportation machine, traffic signal system, safety equipment etc.) that shall require extremely high level of reliability and can directly threaten human lives in case of failure or malfunction of the product or may cause harm to human bodies, nor shall they grant any guarantee thereof. If you should intend to use our products for applications outside the standard applications of our customer who is considering such use and/or outside the scope of our intended standard applications, please consult with us prior to the intended use. If there is no consultation or inquiry before the intended use, our customer shall be solely responsible for the use.
- Specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.

Continued from preceding page.

- Auto alignment EEPROM not necessary. It is incorporated inside the IC
 FM RF, VCO, Null-voltage, Mute-on, Mute-ATT, SNC, HCC, Separation, S-meter, AM/FM AGC sensitivity, AM/FM IF gain, SD sensitivity, I²C bus compatible
 - * This IC can be supplied in the adjusted state. Some adjustments are necessary depending on the specifications and external components.
- Other functions

Neighboring interference (Quality Out) RDS AF-search support

I²C communication bus

Specifications

Absolute Maximum Ratings at Ta = 25°C, GND = 0V

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	V _{CC} _H max		8.7	V
	V _{CC} _L max		5.7	V
	V _{DD} max		6.5	V
	V _{DDBUS} max		6.5	V
Maximum input current	V _{IN} max		6.5	V
Maximum output current	V _O max		6.5	V
Allowable power dissipation	Pd max	(Ta ≤ 85°C)	1040	mW
Operating temperature	Topr		-40 to +85	°C
Storage temperature	Tstg		-40 to +150	°C

Recommended Operating Conditions at Ta = 25°C, GND = 0V

Parameter	Symbol	Conditions	Ratings	Unit
Recommended supply voltage	V _{CC} _H	PIN 1, 2, 15, 68, 80	8.0	V
	V _{CC} _L	PIN 53, 74	5.0	V
	V_{DD}	PIN 35	5.0	V
	V _{DDBUS}	PIN 34	5.0	V

Recommended Operating Conditions at Ta = 25°C, GND = 0V

Devenueles	O. made al	Conditions		Ratings		11-44
Parameter	Symbol	Conditions	min	typ	max	Unit
Operating supply voltage range	V_{DD}	PIN 35	4.5	5.0	5.5	V
	V _{DDBUS}	PIN 34 (*1)	3.0	5.0	5.5	V
	V _{COP} _H	PIN 1, 2, 15, 68, 80	7.5	8.0	8.5	V
	V _{COP} _L	PIN 53, 74	4.5	5.0	5.5	V
Logic operation, memory hold voltage range	V _{DDLOGIC}	PIN 35	3.5		5.5	V
Internal supply	V _{REG}	PIN 36 V _{DDLOGIC} > 3.5V (*2)		3.0		V
Input High level voltage	VIH	PIN 31, 32, 33	0.8V _{DDBUS}		V _{DDBUS}	V
Input Low level voltage	V _{IL}	PIN 31, 32, 33	0		0.2V _{DDBUS}	V
Input amplitude voltage	V _{IN}	PIN 39	0.5		1.5	Vrms
Input frequencies	F _{IN}	PIN 39		20.5		MHz
Input High level current	I _{IH} (1)	PIN 39, V _I = V _{DD} = 5.0V	2.0	5.0	15.0	μΑ
	I _{IH} (2)	PIN 31, 32, 33 V _I = V _{DD} = V _{DDBUS} = 5.0V			3.0	μА
Input Low level voltage	I _{IL} (1)	PIN 39, V _I = V _{DD} = V _{SS}	2.0	5.0	15.0	μА
	I _{IL} (2)	V _I = V _{SS}			3.0	μΑ
Hysteresis width	VH	PIN 31, 32, 33	0.1V _{DDBUS}	0.2V _{DDBUS}		V
Output High level voltage	V _{OH} (1)	PIN 26, 27, 28, 29, 30 I _O = -1mA, V _{DD} = V _{DDBUS}	V _{DD} -1.0			V
	V _{OH} (2)	PIN 38 I _O = -200μA, V _{DD} = V _{DDBUS}	V _{REG} -1.0			V
	V _{OH} (3)	PIN 21, 22 I _O = -500μA, V _{DD} = V _{DDBUS}	V _{DD} -1.0			V

Continued from preceding page.

Darameter	Cymphol	Conditions		Ratings		Unit
Parameter	Symbol	Conditions	min	typ	max	Unit
Output Low level voltage	V _{OL} (1)	PIN 26, 27, 28, 29, 30 I _O = -1mA, V _{DD} = V _{DDBUS}			1.0	V
	V _{OL} (2)	PIN 38 I _O = -200μA, V _{DD} = V _{DDBUS}			1.0	٧
	V _{OL} (3)	PIN 21, 22 I _O = -500μA, V _{DD} = V _{DDBUS}			1.0	V
	V _{OL} (4)	PIN 31, 32 I _O = -5mA, V _{DD} = V _{DDBUS}			1.0	V
Output off leak current	loff(1)	PIN 26, 27, 28, 29, 30, 31, 32	-3		+3	μΑ
	loff(2)	PIN 21, 22	-100		+100	nA
RESET application time at power on.	tPOR	PIN 33	50			ms
RESET application time at instantaneous power failure.	tPDR	PIN 33	50			ms
Oscillation stabilization time after RESET input is completed	tCKR	PIN 36 (*2)	80			ms

^{(*1):} Use with $V_{\mbox{DD}}$ < $V_{\mbox{DDBUS}}$ is prohibited.

Package Dimensions

unit: mm (typ)

3174A

^{(*2):} External access to LV25700, other than RESET or power supply, that results in $V_{REG} = V_{DDLOGIC}$ during RESET application and until XIN oscillation stabilizes (tCKR), should wait until the tCKR time elapses after RESET is released.

Reset Timing at Power-ON

In case the RESET pin is left open, perform pull-down or other pin treatment.

Reset Timing at Instantaneous Power Failure

Reset Timing at Power-OFF

AC Characteristics

Operating Characteristics at Ta = 25°C, $V_{CC} = 8.0V$, $V_{DD} = 5.0V$, unless otherwise specified. Ratings for publications

* : These measurements are made using the Yamaichi Electronics IC51-0804-819-2 IC socket. An IHF bandpass filter is used as the audio filter.

[FM Characteristics] FM Front End Mixer Input

		1				
Parameter	Symbol	Conditions	min	typ	max	Unit
Current drain-8V	I _{CCO} F-8V	No input, FM mode I1+I2+I15+I68+I80	60	73	85	mA
Current drain-5V	I _{CCO} F-5V	No input, FM mode I35+I53+I74	37	45	52	mA
Demodulation output	V _O -FM_1	98.1MHz, 60dBμV, 1kHz, 100%mod, pin 49	400	550	700	mVrms
Detection output	V _O -FM_2	98.1MHz, 60dBμV, 1kHz, 100%mod, pin 60	280	380	480	mVrms
Channel balance	СВ	98.1MHz, 60dBμV, 1kHz, pins 49 and 50	-1	0	1	dB
Total harmonic distortion	THD-Fm mono (1)	98.1MHz, 60dBμV, 1kHz, 100%mod, pin 49		0.2	1	%
Total harmonic distortion	THD-Fm mono (2)	98.1MHz, 60dBμV, 1kHz, 150%mod, pin 49		0.3	2.5	%
Signal to noise ratio (MONO)	S/N-FM-MONO	98.1MHz, 60dBμV, 1kHz, 100%mod, pin 49	60	70		dB
Signal to noise ratio (ST)	S/N-FM-ST	98.1MHz, 60dBμV, 1kHz, 100%mod, pin 49, L+R = 90%, pilot = 10%	58	65		dB
AM suppression ratio	AMR	98.1MHz, 60dBμV, 1kHz, 100%mod, 30% in AM mode, fm = 400Hz, pin 49	58	67		dB
Muting attenuation (1)	Att-1	98.1MHz, 60dBμV, 1kHz, with V64 = 0→2V, pin 49 attenuation (Mute ATT SW = 0)	-30	-25	-20	dB
Muting attenuation (2)	Att-2	98.1MHz, 60dBµV, 1kHz, with V64 = 0→2V, pin 49 attenuation (Mute ATT SW = 2)	-23	-18	-13	dB
Muting attenuation (3)	Att-3	98.1MHz, 60dBµV, 1kHz, with V64 = 0→1V, pin 49 attenuation (Mute ATT SW = 2)	-11	-6	-1	dB
Separation	Separation	98.1MHz, 60dBµV, mod = 100%, pilot = 10%, pin 49 output ratio Separation control adj	27	43		dB
Stereo ON level	ST-ON	Pilot demodulation at which V27 < 0.5V is established	1.5	3.8	5.5	%
Stereo OFF level	ST-OFF	Pilot demodulation at which V27 < 3.0V is established	1.2	3.2		%
Main distortion factor	THD-Main L	98.1MHz, 60dBμV, L+R = 90%, pilot = 10%, pin 49		0.5	1.2	%
SNC output attenuation	AttSNC	98.1MHz, 40dBμV, L-R = 90%, pilot = 10%, pin 49 (L→R)	5	10	15	dB
HCC output attenuation	FM HCC	98.1MHz, 60dBμV, 10kHz, modulation = 30% reference, input level at which the output is down by -3dB	24	30	36	dBμV
Input limiting voltage	Vi-lim	98.1MHz, 60dBµV, 30%mod, MIX input at which the input reference output is down by -3dB, V42 = 0V, V29 = 0V, with MUTE = OFF	-6	-1	4	dBμV
Muting sensitivity	Vi-mute	MIX input level at V64 = 0.7V, non-mod	0.1	5	9.9	dBμV
SD sensitivity	SD-senFM	MIX input level at which SD pin is ON, shifteradj, non-mod	20	25	30	dBμV
IF count sensitivity	IF-count-sens. FM	IF count sensitivity at MIX input, non-mod			20	dBμV
		, , , , , , , , , , , , , , , , , , ,				

Continued from preceding page.

Parameter	Symbol	Conditions	min	typ	max	Unit
S-meter DC output	VSMFM-1	No input, pin 44 DC output non-mod			0.5	V
	VSMFM-2	10dBμV, pin 44 DC output non-mod		0.85		V
	VSMFM-3	30dBμV, pin 44 DC output non-mod, S-meter shift-adj	1.8	1.85	1.9	V
	VSMFM-4	50dBμV, pin 44 DC output non-mod		3.0		V
	VSMFM-5	80dBμV, pin 44 DC output non-mod			4.5	V
S-meter AC pin DC output	VSMFM-A1	No input, pin 57 DC output non-mod			0.45	V
	VSMFM-A2	10dBμV, pin 57 DC output non-mod		0.63		V
	VSMFM-A3	30dBμV, pin 57 DC output non-mod	1.15	1.45	1.75	V
	VSMFM-A4	50dBμV, pin 57 DC output non-mod		2.45		V
	VSMFM-A5	80dBμV, pin 57 DC output non-mod			4.5	V
S-meter inclination standard - 1	S-curve1	Which was obtained by deducting (VSMFM-2) from VSM (VSMFM-3)	0.85	1.0	1.4	V
S-meter inclination standard - 2	S-curve2	Which was obtained by deducting (VSMFM-3) from VSM (VSMFM-4)	0.8	1.15	1.5	V
Mute drive output	VMUTE-60	60dBμV, pin 64 output DC output non-mod		0.15	0.3	V
Noise convergence - 1	FM NOISE-20	60dBμV.98.1MHz, 30%mod, input reference, output level of the input -20dBμV, MUTE = OFF (42pin = GND)	-12	-7	-3	dB
N-AGC ON input	VNAGC	98.1MHz, non-mod, MIX input level at which pin 13 becomes 0.6V or more	64	69	74	dBμV
W-AGC ON input	VWAGC	98.1MHz, non-mod, pin 44 = 0V applied (Keyed on), MIX input level at which pin 13 becomes 0.6V or more	80	88	96	dΒμ
Image obstruction ratio	IRR	Removal amount of 108.1M +21.4MHz (when IRR-DAC is used)	40			dB
SD bandwidth	BW-mute	98.1MHz, non-mod, 60dBμV, Bandwidth at which SD pin is turned ON	70	100	130	kHz
Conversion gain (MIX+1 st IF AMP)	A.V.	98.1MHz, 60dBμV, non-mod, FECF output	93	97	101	dBμV

[FM IF Filter characteristics] FM IF input

Parameter	Symbol	Conditions	min	typ	max	Unit
IF variable filter gain	FIL-Gain	10.7MHz, non-mod, 70dBμV,		1.9		V
		pin 44-S-meter voltage				
		(FILTER TEST MODE). Narrow-Fix				
IF variable filter narrow-band	FIL-BW-N	10.7MHz±30kHz, non-mod, 70dBμ		0.3		V
characteristics		Pin 44 S-meter voltage				
		(Filter test mode).				
		Narrow-Fix mode.				
		Difference from Pin 44 voltage at 10.7 MHz				
IF variable filter wide-band	FIL-BW-W	10.7MHz±80kHz, non-mod, 70dBμ			0.5	V
characteristics		Pin 44 S-meter voltage				
		(Filter test mode).				
		Wide-Fix mode.				
		Difference from Pin 44 voltage at 10.7 MHz				

[NC block] NC input (pin 59), S-meter AC input (pin 57)

Parameter	Symbol	Conditions	min	typ	max	Unit
FM NC gate time	FM τGATE	NC input, pulse cycle = 1kHz, 44pin = 2V applied, pulse width = 1μs,	36	40	44	μs
		at 200mVp-o pulse input (after MPX-VCO adjustment), measurement at pin 24.				
FM NC noise sensitivity	SN-DETOUT	NC input (pin 59), 44pin = 2V applied, measure the pulse input level at which the noise canceller starts operation, pulse cycle = 1kHz, pulse width = 1µs	95	130	165	mVp-o
FM NC noise sensitivity	SN-Vsm	S-meter (AC) input (pin 57), 44pin = 0V applied, measure the pulse input level at which the noise canceller starts operation, pulse cycle = 1kHz, pulse width = 1µs		90		mVp-o
AM NC gate time	AM τGATE (1)	S-meter (AC) input (pin 57), pulse cycle = 1kHz, pulse width = 1µs, measurement at pin 24. 44pin = 1.5V	270	390	510	μs
AM NC noise sensitivity	SN	S-meter (AC) input (pin 57), measure the pulse input level at which the noise canceller starts operation, pulse cycle=1kHz, pulse width=1µs		220		mVp-o

[Multipath-noise rejection circuit] MRC input (pin 58)

Parameter	Symbol	Conditions	min	typ	max	Unit
MRC output	VMRC	Pin 56 voltage when 3.5 V is applied to V44	2.7	2.95	3.2	V
MRC operation level	MRC-ON	SG (AG5) out level when pin 44 = 3.5V and	110	155	220	mVrms
		pin 56 = 2.6V, f = 70kHz				

[AM characteristics] AM AMANT input

Parameter	Symbol	Conditions	min	typ	max	Unit
Practical sensitivity	S/N-30	1MHz, 30dBμV, fm = 1kHz, 30%mod, pin 49	20			dB
Detection output	Vo-AM	1MHz, 74dBμV, fm = 1kHz, 30%mod, pin 49	130	180	250	mVrms
AGC-F.O.M	V AGC-FOM	1MHz, 74dBμV, output reference, input width at which the output decreases by 10dB, pin 49	52	56	60	dB
Signal-to-noise ratio	S/N-AM	1MHz, 74dBμV, fm = 1kHz, 30%mod	51	60		dB
Total harmonic distortion ratio - 1	THD-AM-1	1MHz, 74dBμV, fm = 1kHz, 80%mod		0.3	1	%
Total harmonic distortion ratio - 2	THD-AM-2	1MHz, 120dBµV, fm = 1kHz, 80%mod		0.5	1.5	%
AM HCC output attenuation	AM HCC	1MHz, 74dBμV, fm = 3kHz, 30%mod, V78 = 3V→0.6V, 25 pin	-13	-9	-5	dB
S-meter DC output	VSMAMDC-1	No input, 44 pin DC output	0	0.1	0.5	V
	VSMAMDC-2	1MHz, 30dBμV, non-mod, 44 pin DC output	0.7	1.3	1.9	V
	VSMAMDC-3	1MHz, 120dBμV, non-mod, 44 pin DC output	2.4	3.0	4.2	V
S-meter AC output	VSMAMAC-1	1MHz, -20dBμV, fm = 1kHz, 80%mod, 57 pin DC output		0	0.5	mVrms
	VSMAMAC-2	1MHz, 74dBμV, fm = 1kHz, 80%mod, 57 pin DC output	90	140	180	mVrms
Wide band AGC sensitivity	W-AGC.AM	1.4MHz, input at V6 = 0.7V	86	92	98	dBμV
SD sensitivity	SD-sen.AM	1MHz, ANT input level at which the SD pin is turned ON	25	30	35	dBμV
IF count sensitivity	IF-count-sens. AM	IF count sensitivity, 1MHz, non-mod			22	dBμV

Pin Function

Pin No.	Function name	Block
1	MIX-OUT1	FE
2	RF-V _{CC} _8V	
3	AM-MIX-IN2	AM
4	AM-MIX-IN1	AM
5	AM-RFAGC	AM
6	AM-ATT	AM
7	FM-RFDAC	FE
8	AM-IFAGC/FM-RFAGC	AM/FM
9	FM-ANTDAC	FE
10	FM-IN1	PLL
11	FM-IN2	PLL
12	RF-GND2	PLL
13	FM-ANT-D	FE
14	VCO-GND	
15	OSC-V _{CC}	
16	AM/FM-OSC(B)	FE
17	AM/FM-OSC(C)	FE
18	SIGNAL QUARITY	IF
19	VT	PLL
20	AM/FM FET	PLL
21	CPAM	PLL
22	CPFM	PLL
23	FET GND	PLL
24	DC MONITOR	MPX
25	F3	LOGIC
26	UL/IFEND/BUSY	LOGIC
27	SD_OUT/ST_IND	
28	Q_OUT	MPX
29	RD_DA	LOGIC
30	RD_CL	LOGIC
31	S_DA	LOGIC
32	S_CK	LOGIC
33	RESET	LOGIC
34	BUS(TP34)	LOGIC
35	D_V _{CC} _5V	
36	VREG_3V	
37	D_GND	
38	XTAL_OUT	X'tal
39	XTAL_IN	X'tal
40	XTAL_GND	

Pin No.	Function name	Block
41	RDS_LPF	IF
42	F2	LOGIC
43	F1	LOGIC
44	S-METER	IF
45	AFC-OUT.	IF
46	AFC-C	IF
47	Noise-AGC	NC
48	GND	
49	MPX Lch-OUT	MPX
50	MPX Rch-OUT	MPX
51	CHCC	MPX
52	MPX_IN	MPX
53	NC-MPX-V _{CC}	
54	Phase_dat	MPX
55	Phase_dat	MPX
56	MRC-TIME	MRC
57	VSM-AC	IF
58	MRC-IN	MRC
59	NC-IN	NC
60	DET-OUT	IF
61	VREG49	AM/FM
62	AM-IF-IN1	AM
63	AM-IF-IN2	AM
64	MUTE-CONT	IF
65	IFAGC-LPF	FE
66	AM_LC/Pilot-Det.	AM
67	SepADJ	MPX
68	AM-MIX2	AM
69	2 nd -MIXIN2	AM
70	2 nd -MIXIN1	AM
71	ModDET	NC
72	IF-GND	
73	1 st -IF-OUT	FM
74	IF-V _{CC} -5V	
75	1 st -IF-IN1	FE
76	1 st -IF-IN2	FE
77	AM-RF-AGC	AM
78	HCC-CONT	AM/FM
79	RFAGC-IN BYPASS	FE
80	MIX-OUT2	FE

Pin Discription

Pin name	Function	Discription	Internal Equivalent Circuit
1 80	MIXER OUT1 MIXER OUT1	FM/AM MIX OUT (common)	T 80 RF_GND(PIN12)
2	RF V _{CC}		V _{CC} = 8V
3 4	AM MIXER input 1 AM MIXER input 2	AM MIX IN Input impedance = 10kΩ	$RF_{-}V_{CC}(PIN2)$ (4) $2.5k\Omega $ $10k\Omega $ $110\Omega $ $12k\Omega $ $RF_{-}GND(PIN2)$
5	AM RF AGC	RF AGC rectifier capacitor Determination of distortion ratio during low-frequency modulation Increase C5; Distortion → improved Response → slow Decrease C5; Distortion → worse Response → quick	$\begin{array}{c} RF_V_{CC(PIN2)} \\ \\ \\ AGC_DEC \\ \\ \\ IK\Omega \\ \\ IK\Omega \\ \\ \\ IF_GND(PIN72) \\ \\ IS_GND(PIN72) \\ \\ IS_GND$
6	AM ANT ATT	For pin diode drive I6 = 8mA ANT damping current	$\begin{array}{c} RF_V_{CC(PIN2)} \\ & \downarrow \\ & \downarrow \\ IK\Omega \\ & \downarrow \\ IF_GND(PIN72) \end{array}$

Continued from preceding page.

	from preceding page.		
Pin name	Function	Discription	Internal Equivalent Circuit
7	FM-RF-DAC	FM RF tuning DAC	$\begin{array}{c} RF_V_{CC(PIN2)} \\ & \downarrow \\ \\ & \downarrow $
8	AM IF AGC FM RF AGC	IF AGC voltage: DC smoothing capacitor pin FM RF AGC voltage: Voltage = Hi (around 8V) with AGC OFF. The voltage lowers when a level is inserted into the AGC circuit. AGC is applied at the voltage of V _{CC} -Vbe.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
9	FM-ANT-DAC (IRR-DAC)	FM ANT tuning DAC Can be used as an IRR-DAC selected with a changeover switch.	$\begin{array}{c} RF_V_{CC(PIN2)} \\ \downarrow \\ 0.8mA \\ 1k\Omega \\ \downarrow \\ IF_GND(PIN72) \end{array} $
10 11	FM MIXER IN1 FM MIXER IN2	FM MIX input	10 10 10 $20\Omega \leq 20\Omega \leq 20\Omega \leq 20\Omega$ $RF_GND(PIN12)$
12	RF GND2	(FE, FM, AM)	RF GND
		\ ,,,	-

Continued from preceding page.

Continuct	from preceding page.	1	
Pin name	Function	Discription	Internal Equivalent Circuit
13	Antenna Damping Drive pin	Pin 13: Antenna damping current flows when the RF AGC voltage becomes V _{CC} -Vbe.	$RF_V_{CC}(PIN2)$ $75k\Omega$ 300Ω 300Ω $RF_GND(PIN12)$
14	VCO_GND		GND
15	osc v _{cc}	(OSC)	V _{CC} = 8V
16 17	OSC1 OSC2	OSC pin	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
18	SIGNAL QUARITY (UNDESIRE DET)	DC smoothing is performed by the output impedance and external capacity. Note that too large capacity will reduce the responsiveness of the IF filter as the voltage of this pin is also used to control the IF filter.	$\begin{array}{c} \text{IF_V}_{\text{CC}}(\text{PIN74}) \\ \hline \\ 0.5\text{k}\Omega \\ \hline \\ 0.5\text{k}\Omega \\ \hline \\ 3\text{mA} \\ 1\text{k}\Omega \\ \hline \\ \text{IF_GND}(\text{PIN72}) \\ \end{array}$

Continued	I from preceding page.		
Pin name	Function	Discription	Internal Equivalent Circuit
19 20 21 22 23	VT LPFD CPAM CPFM FET_GND	LPFD: Internal FET drain output pin for PLL This pin is combined with CPFM/CPAM pins to form a low pass filter for PLL. CPFM, CPAM: Charge pump output pins These pins are placed in high-impedance state in BACKUP mode, at power-on-reset time, and in PLL stop state.	$\begin{array}{c} \text{RF_V}_{\text{CC}}(\text{PIN2}) \\ \text{3k}\Omega \\ \\ \text{5M_ON} \\ \text{10k}\Omega \\ \\ \text{100}\Omega \\ $
24	DC MONITOR	Adjustment mode Internal signal output monitor pin See BIT specifications. Normal mode: This pin outputs the SD signal.	24
25 26 42 43	F3 UL/IFEND/BUSY F2 F1	F3 This pin must be left open. Output port UL/IFEND/BUSY: These pin generates the signal that identifies the Radio PLL-Unlock, IF count end, or I ² C BUS Busy state. F1, F2 These pins must be left open. Default pull-down ON.	UL/IFEND/BUSY, F3 pin 25 3 2 3 2 3 2 D_GND (PIN37) F1, F2 pin
27 28 31 32	SD_OUT/ST_IND Q_OUT S_DA S_CK	SD_OUT/ST_IND SD, ST_IND signal output pin QOUT Quality-out signal output pin SDA, SCK I²C interface pins. Both are of open drain type. External pull-up resistors are needed. Use the same power supply for the pull-up resistors and Pin 34 BUS. These pins are set to an input port at RESET time.	SD_OUT/ST_IND,Q_OUT pin SD_GND (PIN37) S_DA,S_CK pin Continued on next page.

Continued from preceding page.

	I from preceding page.		
Pin name	Function	Discription	Internal Equivalent Circuit
29 30	RD_DA RD_CL	RDS demodulator signal output pins Output Low when the RDF is OFF.	29 3 2 1 1 RD_DA,RD_CL pin
33	RESET	System reset pin A low-level to this pin resets the system and PC starts executing the program from address 0. When power is turned on, it is necessary to apply low-level to this pin for 50ms or more after the 8V/5V power supply is stabilized (leaving this pin open is inhibited). See the RESET timing diagrams.	33 1 2 2
34 35 37	BUS D_V _{CC} _5V D_GND	Power/GND pins BUS: Power supply for the main microcontroller interface pins. DV _{CC} 5V, GDND: Main operating power supply	
36	VREG_3V	Internal operating low-voltage output pin Connect a bypass capacitor to this pin.	3236
38 39 40	XTAL_OUT XTAL_IN XTAL_GND	Pins connected to the 20.5MHz oscillating element XTAL_GND: X'tal oscillator circuit GND	1 39 20.5MHz 20.5MHz XTALGND(PIN40)
41	RDS_LPF	Low pass filter for RDS VCO Used to form an external low pass filter	D_V _{CC_} 5V(PIN35) 3.3kΩ 3.9nF 68nF D_GND(PIN37) D_GND(PIN37)
44	AM/FM S_METER (DC)	Current drive type S-meter output Pin 44: Eliminates the AC component by external capacity. Pin 57: Leaves the AC components (Pin for NC noise extraction and for neighboring interfering noise extraction)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Continued from preceding page.

	I from preceding page.	Pired #	Liveries 1 1 100 %
Pin name		Discription	Internal Equivalent Circuit
45	AFC_OUT	Null voltage As compared with internal 2.7V regulator.	$IF_{\text{CC}}(\text{PIN74})$ $2.7\text{V}_{\text{VIOe}}$ $IF_{\text{GND}}(\text{PIN72})$ $10k\Omega$ $1k\Omega$ $20k\Omega$ 45 $1k\Omega$ $11k\Omega$
46	AFC_C	At reception SW-ON Shorts between pin 45 and AFC capacity. (series, small capacity shorted) At RDS SW-OFF Opens between pin 45 and AFC capacity. (series, small capacity + large capacity configuration)	SW IF_GND(PIN72)
47	NOISE AGC MOS: NCAGCO		$BB_{CC}(PIN53)$ $55k\Omega$ $10k\Omega$ $BB_{GND}(PIN48)$
48	GND	(NC, MPX, MRC)	GND
49 50	MPX output (LEFT) MPX output (RIGHT)	MPX outputs Impedance changed over with the deemphasis changeover. Low = $3.3k\Omega$ High = $5.0k\Omega$ (50/75 μ s changeover with the external capacity of 0.015μ s)	$\begin{array}{c} RF_V_{CC}(PIN2) \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$

	from preceding page.		1
Pin name	Function	Discription	Internal Equivalent Circuit
51	HCC capacitor pin	With pin 51 external capacity and internal resistor R, high-cut frequency characteristics are set. Internal resistance can be changed over with 3 bits $(10k\Omega, 30k\Omega, 50k\Omega, 70k\Omega, 90k\Omega, 110k\Omega, 130k\Omega, 150k\Omega)$ (HCC cut off)	$RF_{VCC}(PIN2)$ RF_{W} $10k\Omega$ RF_{W} RF_{W} $10k\Omega$ RF_{W}
52	MPX PLL input	LPF formed with internal resistance 30kΩ	BB_V _{CC} (PIN53)
		and pin 34 eternal capacity ↓ HPF formed by subtracting the above LPS passage signal from the Composite signal. ↓ Supply to MPX PLL circuit	52 1kΩ 30kΩ 1kΩ BB_GND(PIN48)
53	NC MPX V _{CC}	(NC, MPX, MRC)	V _{CC} = 5V
54 55	Phase-Comparator for MPX		BB_V _{CC} (PIN53) 10kΩ \$ 13kΩ \$ 10kΩ \$ 500Ω BB_GND(PIN48)
56	MRC TIME	The time constant for the Multipath-Noise Detector is determined with the following: 100Ω resistor and external capacity during discharge IConstant and external capacity during charge. IConstant can be changed over with 2bits (MRC time constant).	$RF_{\text{CC}}(\text{PIN2})$ $ \text{Iconst} $ $ \text{56} $ $ \text{500}\Omega $ $ \text{500}\Omega $ $ \text{20k}\Omega $ $ \text{20s} $ $ \text{BB_GND}(\text{PIN48})$

Continued from preceding page.

	from preceding page.		
Pin name	Function	Discription	Internal Equivalent Circuit
57 58	Vsm AC MRC input		$\begin{array}{c} \text{C57} \\ \text{IF_V}_{\text{CC}}(\text{PIN74}) \\ \text{5.3k}\Omega \end{array} \begin{array}{c} \text{58} \\ \text{\leq68k}\Omega \\ \\ \text{$30\text{k}\Omega$} \\ \end{array} \begin{array}{c} \text{$1\text{k}\Omega$} \\ \text{$30\text{k}\Omega$} \\ \end{array}$
59	Noise canceller input	Noise Canceller Input Input impedance 50kΩ	BB_V _{CC} (PIN53) 15pF 1kΩ 50kΩ NC-BIAS BB_GND(PIN48)
60	FM/AM DET OUT	AM/FM detection output Output impedance Low impedance in the FM mode 12kΩ in the AM mode	$\begin{array}{c c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$

Continued from preceding page.

	d from preceding page.		T
Pin name	Function	Discription	Internal Equivalent Circuit
67	SEPA ADJ	The input level of sub-decoder is varied through BIT control. (The output level of MONO and MAIN remains unchanged.) (Separation Control)	SUB BIAS $13k\Omega$ $1k\Omega$ 500Ω 500Ω $BB_GND(PIN48)$
68	AM 2 nd MIXER output	The mixer coil connected to the pin 68 mixer output must be wired to V _{CC} = 8V.	RF_V _{CC} (PIN2) \$100Ω 68
69 70	FM 2 nd MIXER input1 FM 2 nd MIXER input2	FM 2 nd MIXER 10.7MHz → 450kHz FM AMP (10.7MHz) AMP for S-meter voltage AM MIXER input AMP for AM Noise AGC pickup	69 100Ω 1
71	Modulation INDEX	Set the detection output level as DC output. C71 is the smoothing capacitor.	BB_V _{CC} (PIN53)

Continued	I from preceding page.		
Pin name		Discription	Internal Equivalent Circuit
73	AM/FM 1st IF MIXER AMP output	Output impedance = 330Ω	RF_V _{CC} (PIN2)
74	IF V _{CC}	(IF)	V _{CC} = 5V
75 76	AM/FM 1st IF MIXER AMP input	AM/FM 450kHz AMP Input impedance = 330Ω	75 76 \$300Ω \$300Ω IF_GND(PIN12)
77	AM RF AGC	RF AGC rectifier capacitor Determination of the distortion ratio during low-frequency modulation Increase C77: Distortion → improved Response → slow Decrease C77: Distortion → worse Response → quick * Same as pin 79.	$RF_V_{CC}(PIN2)$ $\lessapprox 800k\Omega$ $\lessapprox 1k\Omega$ $\if_{QND}(PIN72)$ $\if_{QND}(PIN72)$
78	HCC control input pin	With the Pin 78 input voltage, attenuation of the high pass component is controlled. ↓ At weak input, high pass is cut to reduce the noise feeling. • Same control for FM/AM HCC. • The f-characteristics are set by changing over the external capacity (Pin 51) and internal resistor. • Threshold can be controlled with 5 bits. (FM/AM HCC DAC).	$RF_V_{CC}(PIN2)$ $\downarrow 50k\Omega$ $BB_GND(PIN48)$ $BB_GND(PIN48)$
79	AM RF AGC BYPASS	RF AGC rectifier capacitor Determination of the distortion ratio during low-frequency modulation Increase C77: Distortion → improved Response → slow Decrease C77: Distortion → worse Response → quick * Same as pin 77. * See pin 1 description.	30kΩ 1kΩ IF_GND(PIN72)

FM/AM level Diagram

FM FE

FM IF

FM IF Filter (BPF)

1. Detection

The following types of detection are performed, and when there is a response to any detection, the IF filter bandwidth is reduced.

When there is no response, the bandwidth remains wide. (-3dB BW: 40 to 180kHz)

- (1) Modulation index detection: Detects the modulation index of the FM DET OUT block
- (2) Neighboring interference detection: Detects neighboring interference
- (3) AFC detection: Detects the AFC voltage of the FM DET block

2. Control

The sensitivity of each of the above detection functions is adjusted by BIT. Control is self-contained within AKAGI. The control voltage is generated from neighboring interference detection, modulation index detection, and AFC detection.

Thus, ultimately the IF filter band is adjusted using a single control voltage.

This control voltage varies only the IF filter band.

The control voltage can be fixed from the main microcontroller, so the 40 to 180kHz band can also be adjusted by main microcontroller control. (Fine adjustment is possible in approximately 50 steps.)

(1) IF filter modulation index detection

Detection output: Detects the audio signal level from NCIN (Pin 59)

LPF fc = 70kHz (1st order). The low pass filter is fixed inside the IC.

IC internal control is performed so that the modulation index detection function operates at a certain electric field strength or less. (The electric field threshold value can be changed by BIT.)

When modulation index detection operates, the IF filter bandwidth is reduced.

The modulation index detection function does not perform control to widen the IF filter bandwidth.

(2) IF filter neighboring interference detection

There are two detection block systems. The S-meter AC component is detected in the weak electric field (S-meter voltage = 2V or less), and neighboring interference is detected from DET OUT in the medium electric field or more (S-meter voltage = 2V or more).

The detection path is changed inside the IC according to the electric field.

S-meter AC component detection only or DETOUT block detection path only can also be changed by BIT at all electric fields.

The BPF consists of a HPF with fc = 100kHz (4th order) and an LPF with fc = 100kHz (1st order). The HPF can be selected from 50 or 100kHz, and the LPF fc can be lowered by adding a capacity to the S-meter AC (Pin 57).

(3) IF filter AFC detection

The IF filter band is controlled by changing the AFC voltage (Pin 45).

The AFC voltage is generated by converting the frequency offset relative to the IF frequency (450kHz) to a voltage. Neighboring interference detection responds even when the desired signal and the interference signal are the same level, but AFC detection responds when the interference signal level is higher than that of the desired signal. Therefore, AFC detection is used in an auxiliary manner for portions that cannot be detected by the neighboring interference detection path.

Signal Quality

Signal quality uses the same path as neighboring interference detection. (The path can be changed by BIT.)

- Detection block (Smeter AC/DETOUT) switching inside the IC according to the electric field
- Smeter AC detection fixed at all electric fields
- DETOUT detection fixed at all electric fields

There are two output systems as follows:

- The neighboring interference detection voltage is compared by the comparator to generate the quality output (Q-OUT: Pin 28).
- The neighboring interference detection voltage is output in a linear manner (Signal Quality: Pin 18).

Signal Quality (Pin 18) performs DC smoothing using the output impedance ($1k\Omega$) and an external capacity. This pin voltage is also used to control the IF filter, so care must be taken as the IF filter response will become slow if the capacitance value is too large.

The S-meter path performs detection from before the BPF (IF filter), so there is no difference in the quality output due to filter band fluctuation.

The DET OUT (Pin 59) path performs detection from after the BPF (IF filter), so filter band fluctuation produces a difference in the quality output.

(The multipath signal is detected by Smeter_AC, so differences do not easily occur in Q-OUT.)

