: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

LV5223GR

Bi-CMOS IC
LED Driver

Overview

The LV5223GR is 9ch LED driver IC for the cell phones with built-in charge pump circuit.

Features

- LED driver $\times 9$ channels (3-color 1, 3-color 2, GPO (LED) $\times 3,9$ channels in total) and on-chip charge pump circuit.
- Each LED driver current level can be adjusted independently over the serial bus.
- Ring tone and 3-color LEDs (3-color 1, 3-color 2) synchronization function.
- Gradation function (3-color 1, 3-color 2, in total 6 channels only)
- RLED2 and GLED2 support strobe mode.
- Miniature package

Function

- Charge pump circuit ((2 times step up) Output voltage: 5 V)
- LED driver 3-color LED $\times 2+$ GPO (LED) LED driver $\times 3$

Channel 1 LED current can be switched indecently in 5-bit units (0.5 to 16 mA)
Ring tone synchronization function (forced activation with SCTL: H) Gradation function
Channel 1 LED current can be switched indecently in 5 -bit units (0.5 to 16 mA)
Ring tone synchronization function (forced activation with SCTL: H) Gradation function
Only RLED2 and GLED2 support strobe mode; LED current output (2.8 mA to 44.8 mA) (FCTL=high)
GPO1 (LED3), GPO2 (LED4), GPO3 (LED5) when GPO1 to GPO3 are used as the LED driver

- GPO output $\times 3$

Specifications

Maximum Ratings at $\mathrm{Ta}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	V $_{\text {CC }}$ max		5	V
Maximum voltage	V1 max	LED pins, charge pump pin	6	V
Maximum output current	IO max 1	RLED1, GLED1, BLED1 and BLED2 pins	40	mA
	IO max 2	RLED2 and GLED2 pins	50	mA
Allowable power dissipation	Pd max	${ }^{*}$ Mounted on a circuit board	mW	
Operating temperature	Topr		-30 to +80	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg		-40 to +125	${ }^{\circ} \mathrm{C}$

* Specified board: $40 \mathrm{~mm} \times 50 \mathrm{~mm} \times 0.8 \mathrm{~mm}$, glass epoxy board. (2S2P (4-layer board))

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Operating Conditions at $\mathrm{Ta}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage 1	$\mathrm{V}_{\mathrm{BAT}}$		3.0 to 5.0	V
Supply voltage 2	V_{DD}		1.65 to $\mathrm{V}_{\mathrm{BAT}}$	V

Electrical Characteristics at $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

Parameter	Symbol	Conditions	Ratings			Unit
			min	typ	max	
Consumption current						
Consumption current	${ }^{\text {I CC1 }}$	$\mathrm{V}_{\mathrm{BAT}}{ }^{+} \mathrm{V}_{\mathrm{DD}}$ consumption current RESET:L (when reset)		0	5	$\mu \mathrm{A}$
	${ }^{1} \mathrm{Cc}{ }^{2}$	$\mathrm{V}_{\mathrm{BAT}}{ }^{+V_{D D}}$ consumption current RESET:H in serial default		0.5	5.0	$\mu \mathrm{A}$
	${ }^{1} \mathrm{CC} 3$	$\mathrm{V}_{\mathrm{BAT}}{ }^{+} \mathrm{V}_{\mathrm{DD}}$ consumption current charge pump: ON		4		mA
Oscillator block						
Oscillator frequency	Fosc			500		kHz
Charge pump block						
Output voltage	$\mathrm{V}_{\mathrm{O}} 1$	$\mathrm{I}_{\mathrm{O}}=30 \mathrm{~mA}$	4.8	5.0	5.2	V
Maximum current	$\mathrm{l}^{1} 1$	$\mathrm{V}_{\mathrm{BAT}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}} 1>4.3 \mathrm{~V}$	200			mA
Soft start time	TSS	TSS $=1 /$ Fosc $\times 400$ * 1		800		$\mu \mathrm{s}$
LED driver block						
Minimum output current value 1	${ }^{\text {min }} 1$	3-color 1, 2 LED driver FCTL=L Serial data=\#00 $\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$	0.2	0.5	1.0	mA
Maximum output current value 1	${ }^{\prime} \mathrm{MAX}^{1}$	3-color 1, 2 LED driver FCTL=L Serial data=\#FF $\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$	15	16	17	mA
Minimum output current value 2	${ }^{\text {MIN }}$ 2	RLED2, GLED2 pin LED driver FCTL=H Serial data=\#00 $\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$	1.8	2.8	3.8	mA
Maximum output current value 2	${ }^{\text {max }}$ 2	RLED2, GLED2 pin LED driver FCTL=H Serial data=\#FF $\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$	42.0	44.8	47.6	mA
ON resistance	RON1	GPO1(LED3), GPO2(LED4), GPO3(LED5) pins When LED driver ON $\mathrm{I}_{\mathrm{L}}=-40 \mathrm{~mA}$		5		Ω
Non-linearity error	LE1	3-color 1, 2 LED driver $\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$ *2	-2		2	LSB
Differential linearity error	DLE1	3-color 1, 2 LED driver $\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$ *3	-2		2	LSB
Maximum output current	-IL1	3-color LED driver 1, 2 FCTL=L Maximum current setting $\mathrm{V}_{\mathrm{O}}=0.35 \mathrm{~V}$	-10			\%
	$\Delta \mathrm{IL} 2$	RLED2, GLED2 pin LED driver FCTL=H Maximum current setting $\mathrm{V}_{\mathrm{O}}=0.45 \mathrm{~V}$	-10			\%
Leakage current	IL1	3 -color LED driver $1,2 \&$ GPO(LED) $\times 3$ LED driver: OFF $\mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}$			1	$\mu \mathrm{A}$
Control circuit block						
H level 1	$\mathrm{V}_{\text {IN }} \mathrm{H}$	Input H level SCTL	1.3			V
L level 1	$\mathrm{V}_{\text {IN }} \mathrm{V}^{1}$	Input L level SCTL	0		0.45	V
H level 2	$\mathrm{V}_{\text {IN }}{ }^{\text {H2 }}$	Input H level FCTL	1.3			V
L level 2	$\mathrm{V}_{\text {IN }} \mathrm{V}^{\text {2 }}$	Input L level FCTL	0		0.45	V
H level 3	$\mathrm{V}_{\text {IN }}{ }^{\text {H}}$	Input H level serial signal input pin	$\mathrm{V}_{\mathrm{DD}} \times 0.8$			V
				Continued on next page.		

Continued from preceding page.

Parameter	Symbol	Conditions	Ratings			Unit
			min	typ	max	
L level 3	$\mathrm{V}_{\text {IN }} \mathrm{L} 3$	Input L level serial signal input pin	0		$\mathrm{V}_{\mathrm{DD}} \times 0.2$	V
H level 4	$\mathrm{V}_{\text {IN }} \mathrm{H} 4$	Input H level RESET	1.5			V
L level 4	$\mathrm{V}_{\text {IN }} \mathrm{L} 4$	Input L level RESET	0		0.3	V
H level 5	VHO5	Output H level GPO1 GPO2 GPO3 $\mathrm{I}_{\mathrm{L}}=1 \mathrm{~mA}$ When output mode is set to buffer	$V_{D D}-0.3$			V
L level 5	VLO5	Output L level GPO1 GPO2 GPO3 $I_{L}=-1 \mathrm{~mA}$ When output mode is set to buffer	0		0.3	V

*1. Soft start time: Interval from the time the charge pump is started until the time the charge pump output voltage reaches 5 V .
*2. Non-linearity error: The difference between the actual and ideal current values.
*3. Differential linearity error: The difference between the actual and ideal increment when one low-order bi value is added.
Note) The LED current can be charged by changing the value of RT.
(Example: When $\mathrm{RT}=10 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{O}}>0.945 \mathrm{~V}$ and $\mathrm{RGB} 1 \& 2 \mathrm{LED}$ current is set to 14.5 mA , the RGB1\&2 current can be set to flow at $14.5 \mathrm{~mA} \times 27 \mathrm{k} \Omega /$ $10 \mathrm{k} \Omega=39.15 \mathrm{~mA}$)
(When the value of RT has been reduced, adjust the oscillation frequency by increasing the value of CT.)

Package Dimensions

unit: mm (typ)
3357

Block Diagram \& Pin arrangement drawing

Pin Descriptions

Pin No.	Pin name	Description	Protection diode vs. VBAT	Protection diode vs. GND
1	LEDGND1	GND pin1 for LED driver		
2	GLED1	GLED1 driver output pin		\bigcirc
3	BLED1	BLED1 driver output pin		\bigcirc
4	RLED2	RLED2 driver output pin		\bigcirc
5	LEDGND2	GND pin2 for LED driver		
6	GLED2	GLED2 driver output pin		\bigcirc
7	BLED2	BLED2 driver output pin		\bigcirc
8	GPO1(LED3)	GPO1 output \& LED3 driver output pin		\bigcirc
9	GPO2(LED4)	GPO2 output \& LED4 driver output pin		\bigcirc
10	GPO3(LED5)	GPO3 output \& LED5 driver output pin		\bigcirc
11	RT	Standard current setting resistance connection pin	\bigcirc	\bigcirc
12	SDA	Serial data signal input pin	\bigcirc	\bigcirc
13	SCL	Serial clock signal input pin	\bigcirc	\bigcirc
14	$V_{\text {DD }}$	Power supply pin	\bigcirc	\bigcirc
15	PGND	GND pin for Charge pump		
16	C1B	Flying capacitor connection pin B for charge pump	\bigcirc	\bigcirc
17	PV ${ }_{\text {BAT }}$	Power supply for charge pump		
18	C1A	Flying capacitor connection pin A for charge pump		\bigcirc
19	OUT	Output pin for charge pump		\bigcirc
20	TEST	TEST pin	\bigcirc	\bigcirc
21	FCTL	Strobe mode pin	\bigcirc	\bigcirc
22	SCTL	3-color1 \& 3-color2 LED driver external synchronous signal input pin	\bigcirc	\bigcirc
23	TC	Charge pump phase amends pin	\bigcirc	\bigcirc
24	SGND	GND pin for analog circuit		
25	CT	Setting of frequency of oscillator capacity connection pin	\bigcirc	\bigcirc
26	SV ${ }_{\text {BAT }}$	Supply voltage for analog circuit		
27	RESET	RESET signal input pin	\bigcirc	\bigcirc
28	RLED1	RLED1 driver output pin		\bigcirc

Pin Functions

Pin No.	Pin Name	Pin function	Equivalent Circuit
1	LEDGND1	GND pin1 for LED driver	
$\begin{gathered} 2 \\ 3 \\ 4 \\ 6 \\ 7 \\ 28 \end{gathered}$	GLED1 BLED1 RLED2 GLED2 BLED2 RLED1	LED driver pin for RGB1 and RGB2. Feedback is applied so that the current flowing to the output transistor becomes the set current level. When RT=27k Ω, the driver output current levels can be independently adjusted from approx. 0.5 mA to 16 mA in 0.5 mA steps by serial setting. In the strobe mode, the current levels can be independently adjusted from 2.8 mA to 44.8 mA in 2.8 mA steps for the RLED2 and GLED2 pins only.	
5	LEDGND2	GND pin2 for LED driver	
$\begin{gathered} 8 \\ 9 \\ 10 \end{gathered}$	GPO1(LED3) GPO2(LED4) GPO3(LED5)	GPO output/LED driver shared pin. Output can be set to current sink by serial setting or VDD or GND voltage can be output.	
11	RT	Reference current setting resistor connection pin. The reference current is generated by connecting an external resistor to GND. The pin voltage is approximately 0.65 V . By changing this current level, the oscillation frequency and LED driver current (3-color 1 and 3 -color 2 only) can be changed.	
12	SDA	Serial data signal input pin	
13	SCL	Serial clock signal input pin	
14	$V_{D D}$	Power supply pin	
15	PGND	GND pin for Charge pump	
16	C1B	Charge pump flying capacitor connection pin B This pin is connected to the clock driver side of the charge pump.	

Continued from preceding page.

Pin No.	Pin Name	Pin function	Equivalent Circuit
17	PV ${ }_{\text {BAT }}$	Power supply for charge pump	
18	C1A	Charge pump flying capacitor connection pin A This pin is connected to the charge transfer driver side of the charge pump.	
19	OUT	Output pin for charge pump	
20	TEST	Test pin. This must always be connected to GND.	
$\begin{aligned} & 21 \\ & 22 \end{aligned}$	$\begin{aligned} & \text { FCTL } \\ & \text { SCTL } \end{aligned}$	FCTL: Strobe mode pin. SCTL: 3-color 1 and 3-color 2 LED driver external sync signal input pin. When this pin is not going to be used, it must be connected to GND without fail.	
23	TC	Charge pump phase compensation pin. Stable operation of the charge pump is provided by connecting a capacitor to this pin.	
24	SGND	GND pin for analog circuit	
25	CT	Oscillator frequency setting capacitor connection pin. The oscillation frequency can be changed by changing the capacitance of the capacitor.	
26	SV ${ }_{\text {BAT }}$	Supply voltage for analog circuit	
27	RESET	RESET signal input pin. Reset state at L .	

Serial Bus Communication Specifications

1) $I^{2} C$ serial transfer timing conditions

Standard mode

Parameter	Symbol	Conditions	Min.	Typ.	Max.	Unit
SCL clock frequency	fsc1	SCL clock frequency	0	-	100	kHz
Data setup time	ts1	SCL setup time relative to the fall of SDA	4.7	-	-	$\mu \mathrm{s}$
	ts2	SDA setup time relative to the rise of SCL	250	-	-	ns
	ts3	SCL setup time relative to the rise of SDA	4.0	-	-	$\mu \mathrm{s}$
Data hold time	th1	SCL hold time relative to the fall of SDA	4.0	-	-	$\mu \mathrm{S}$
	th2	SDA hold time relative to the fall of SCL	0	-	3.45	$\mu \mathrm{s}$
Pulse width	twL	SCL pulse width for the L period	4.7	-	-	$\mu \mathrm{S}$
	twh	SCL pulse width for the H period	4.0	-	-	$\mu \mathrm{s}$
Input waveform conditions	ton	SCL and SDA (input) rise time	-	-	1000	ns
	tof	SCL and SDA (input) fall time	-	-	300	ns
Bus free time	tbuf	Time between STOP condition and START condition	4.7	-	-	$\mu \mathrm{s}$

High-speed mode

Parameter	Symbol	Conditions	Min.	Typ.	Max.	Unit
SCL clock frequency	fsc1	SCL clock frequency	0	-	400	kHz
Data setup time	ts1	SCL setup time relative to the fall of SDA	0.6	-	-	$\mu \mathrm{s}$
	ts2	SDA setup time relative to the rise of SCL	100	-	-	ns
	ts3	SCL setup time relative to the rise of SDA	0.6	-	-	$\mu \mathrm{s}$
Data hold time	th1	SCL hold time relative to the fall of SDA	0.6	-	-	$\mu \mathrm{s}$
	th2	SDA hold time relative to the fall of SCL	0	-	0.9	$\mu \mathrm{~s}$
Pulse width	twL	SCL pulse width for the L period	1.3	-	-	$\mu \mathrm{s}$
	twH	SCL pulse width for the H period	0.6	-	-	$\mu \mathrm{s}$
Input waveform conditions	ton	SCL and SDA (input) rise time	-	-	300	ns
	tof	SCL and SDA (input) fall time	-	-	300	ns

2) $I^{2} \mathrm{C}$ bus transfer method

Start and stop conditions
During data transfer operation using the $\mathrm{I}^{2} \mathrm{C}$ bus, SDA must basically be kept in constant state while SCL is " H " as shown below.

When data is not being transferred, both SCL and SDA are set in the "H" state.
When SCL=SDA is " H ," the start condition is established when SDA is changed from " H " to "L," and access is started. When SCL is "H," the stop condition is established when SDA is changed from "L" to "H," and access is ended.

Data transfer and acknowledgement response
After the start condition has been established, the data is transferred one byte (8 bits) at a time.
Any number of bytes of data can be transferred continuously.
Each time the 8-bit data is transferred, the ACK signal is sent from the receive side to the send side. The ACK signal is issued when SDA on the send side is released and SDA on the receive side is set to "L" immediately after fall of the clock pulse at the SCL eighth bit of data transfer to "L."
When the next 1-byte transfer is left in the receive state after sending the ACK signal from the receive side, the receive side releases SDA at the fall of the SCL ninth clock.
In the $\mathrm{I}^{2} \mathrm{C}$ bus, there is no CE signal. In its place, a 7-bit slave address is assigned to each device, and the first byte of transfer is assigned to the command (R/W) representing the 7-bit address and subsequent transfer direction. Note that only write is valid in this IC. The 7-bit address is transferred sequentially starting with MSB, and the eighth bit is set to "L" which indicates a write.

In the LV5223GP the slave address is specified as "1110101"

Serial mode setting

	ADDRESS : 00h								
	D7	D6	D5	D4	D3	D2	D1	D0	
resister name	B2SW	G2SW	R2SW	B1SW	G1SW	R1SW	CPSW	STBY	
default	0	0	0	0	0	0	0	0	

D0	STBY
0	Standby
1	Active

STBY setting
*Default
LED operation enabled by releasing STBY (LED can be operated by another power supply

D1	CPSW
0	OFF
1	ON

Charge pump ON/OFF setting
*Default

D2	R1SW
0	OFF
1	ON

RLED1 output setting
*Default

GLED1 output setting
*Default

D4	B1SW
0	OFF
1	ON

BLED1 output setting
*Default

D5	R2SW
0	OFF
1	ON

RLED2 output setting
*Default

D6	G2SW
0	OFF
1	ON

GLED2 output setting
*Default

D7	B2SW
0	OFF
1	ON

BLED2 output setting

*Default

	ADDRESS : 01h							
	D7	D6	D5	D4	D3	D2	D1	D0
resister name	SCTEN1	-	-	R1[4]	R1[3]	R1[2]	R1[1]	R1[0]
default	0	0	0	0	0	0	0	0

D4	D3	D2	D1	D0	current value (mA)
0	0	0	0	0	0.5
0	0	0	0	1	1.0
0	0	0	1	0	1.5
0	0	0	1	1	2.0
0	0	1	0	0	2.5
0	0	1	0	1	3.0
0	0	1	1	0	3.5
0	0	1	1	1	4.0
0	1	0	0	0	4.5
0	1	0	0	1	5.0
0	1	0	1	0	5.5
0	1	0	1	1	6.0
0	1	1	0	0	6.5
0	1	1	0	1	7.0
0	1	1	1	0	7.5
0	1	1	1	1	8.0
1	0	0	0	0	8.5
1	0	0	0	1	9.0
1	0	0	1	0	9.5
1	0	0	1	1	10.0
1	0	1	0	0	10.5
1	0	1	0	1	11.0
1	0	1	1	0	11.5
1	0	1	1	1	12.0
1	1	0	0	0	12.5
1	1	0	0	1	13.0
1	1	0	1	0	13.5
1	1	0	1	1	14.0
1	1	1	0	0	14.5
1	1	1	0	1	15.0
1	1	1	1	0	15.5
1	1	1	1	1	16.0

RLED1 current value setting
*Default

D7	SCTEN1
0	RGB1 SCTL valid
1	RGB1 SCTL non valid

RGB1 SCTL signal enable
*Default

	ADDRESS : 02h							
	D7	D6	D5	D4	D3	D2	D1	D0
resister name	-	-	-	G1[4]	G1[3]	G1[2]	G1[1]	G1[0]
default	0	0	0	0	0	0	0	0

D4	D3	D2	D1	D0	current value (mA)
0	0	0	0	0	0.5
0	0	0	0	1	1.0
0	0	0	1	0	1.5
0	0	0	1	1	2.0
0	0	1	0	0	2.5
0	0	1	0	1	3.0
0	0	1	1	0	3.5
0	0	1	1	1	4.0
0	1	0	0	0	4.5
0	1	0	0	1	5.0
0	1	0	1	0	5.5
0	1	0	1	1	6.0
0	1	1	0	0	6.5
0	1	1	0	1	7.0
0	1	1	1	0	7.5
0	1	1	1	1	8.0
1	0	0	0	0	8.5
1	0	0	0	1	9.0
1	0	0	1	0	9.5
1	0	0	1	1	10.0
1	0	1	0	0	10.5
1	0	1	0	1	11.0
1	0	1	1	0	11.5
1	0	1	1	1	12.0
1	1	0	0	0	12.5
1	1	0	0	1	13.0
1	1	0	1	0	13.5
1	1	0	1	1	14.0
1	1	1	0	0	14.5
1	1	1	0	1	15.0
1	1	1	1	0	15.5
1	1	1	1	1	16.0

GLED1 current value setting
*Default

	ADDRESS : 03h							
	D7	D6	D5	D4	D3	D2	D1	D0
resister name	-	-	-	B1[4]	B1[3]	B1[2]	B1[1]	B1[0]
default	0	0	0	0	0	0	0	0

D4	D3	D2	D1	D0	current value (mA)
0	0	0	0	0	0.5
0	0	0	0	1	1.0
0	0	0	1	0	1.5
0	0	0	1	1	2.0
0	0	1	0	0	2.5
0	0	1	0	1	3.0
0	0	1	1	0	3.5
0	0	1	1	1	4.0
0	1	0	0	0	4.5
0	1	0	0	1	5.0
0	1	0	1	0	5.5
0	1	0	1	1	6.0
0	1	1	0	0	6.5
0	1	1	0	1	7.0
0	1	1	1	0	7.5
0	1	1	1	1	8.0
1	0	0	0	0	8.5
1	0	0	0	1	9.0
1	0	0	1	0	9.5
1	0	0	1	1	10.0
1	0	1	0	0	10.5
1	0	1	0	1	11.0
1	0	1	1	0	11.5
1	0	1	1	1	12.0
1	1	0	0	0	12.5
1	1	0	0	1	13.0
1	1	0	1	0	13.5
1	1	0	1	1	14.0
1	1	1	0	0	14.5
1	1	1	0	1	15.0
1	1	1	1	0	15.5
1	1	1	1	1	16.0

BLED1 current value setting

*Default

	ADDRESS : 04h							
	D7	D6	D5	D4	D3	D2	D1	D0
resister name	SCTEN2	-	-	R2[4]	R2[3]	R2[2]	R2[1]	R2[0]
default	0	0	0	0	0	0	0	0

D4	D3	D2	D1	D0	current value (mA)
0	0	0	0	0	0.5
0	0	0	0	1	1.0
0	0	0	1	0	1.5
0	0	0	1	1	2.0
0	0	1	0	0	2.5
0	0	1	0	1	3.0
0	0	1	1	0	3.5
0	0	1	1	1	4.0
0	1	0	0	0	4.5
0	1	0	0	1	5.0
0	1	0	1	0	5.5
0	1	0	1	1	6.0
0	1	1	0	0	6.5
0	1	1	0	1	7.0
0	1	1	1	0	7.5
0	1	1	1	1	8.0
1	0	0	0	0	8.5
1	0	0	0	1	9.0
1	0	0	1	0	9.5
1	0	0	1	1	10.0
1	0	1	0	0	10.5
1	0	1	0	1	11.0
1	0	1	1	0	11.5
1	0	1	1	1	12.0
1	1	0	0	0	12.5
1	1	0	0	1	13.0
1	1	0	1	0	13.5
1	1	0	1	1	14.0
1	1	1	0	0	14.5
1	1	1	0	1	15.0
1	1	1	1	0	15.5
1	1	1	1	1	16.0

RLED2 current value setting
*Default

D7	SCTEN2
0	RGB2 SCTL valid
1	RGB2 SCTL non valid

RGB2 SCTL signal enable
*Default

	ADDRESS : 05h							
	D7	D6	D5	D4	D3	D2	D1	D0
resister name	-	-	-	G2[4]	G2[3]	G2[2]	G2[1]	G2[0]
default	0	0	0	0	0	0	0	0

D4	D3	D2	D1	D0	current value (mA)
0	0	0	0	0	0.5
0	0	0	0	1	1.0
0	0	0	1	0	1.5
0	0	0	1	1	2.0
0	0	1	0	0	2.5
0	0	1	0	1	3.0
0	0	1	1	0	3.5
0	0	1	1	1	4.0
0	1	0	0	0	4.5
0	1	0	0	1	5.0
0	1	0	1	0	5.5
0	1	0	1	1	6.0
0	1	1	0	0	6.5
0	1	1	0	1	7.0
0	1	1	1	0	7.5
0	1	1	1	1	8.0
1	0	0	0	0	8.5
1	0	0	0	1	9.0
1	0	0	1	0	9.5
1	0	0	1	1	10.0
1	0	1	0	0	10.5
1	0	1	0	1	11.0
1	0	1	1	0	11.5
1	0	1	1	1	12.0
1	1	0	0	0	12.5
1	1	0	0	1	13.0
1	1	0	1	0	13.5
1	1	0	1	1	14.0
1	1	1	0	0	14.5
1	1	1	0	1	15.0
1	1	1	1	0	15.5
1	1	1	1	1	16.0

GLED2 current value setting
*Default

	ADDRESS : 06h							
	D7	D6	D5	D4	D3	D2	D1	D0
resister name	-	-	-	B2[4]	B2[3]	B2[2]	B2[1]	B2[0]
default	0	0	0	0	0	0	0	0

D4	D3	D2	D1	D0	current value (mA)
0	0	0	0	0	0.5
0	0	0	0	1	1.0
0	0	0	1	0	1.5
0	0	0	1	1	2.0
0	0	1	0	0	2.5
0	0	1	0	1	3.0
0	0	1	1	0	3.5
0	0	1	1	1	4.0
0	1	0	0	0	4.5
0	1	0	0	1	5.0
0	1	0	1	0	5.5
0	1	0	1	1	6.0
0	1	1	0	0	6.5
0	1	1	0	1	7.0
0	1	1	1	0	7.5
0	1	1	1	1	8.0
1	0	0	0	0	8.5
1	0	0	0	1	9.0
1	0	0	1	0	9.5
1	0	0	1	1	10.0
1	0	1	0	0	10.5
1	0	1	0	1	11.0
1	0	1	1	0	11.5
1	0	1	1	1	12.0
1	1	0	0	0	12.5
1	1	0	0	1	13.0
1	1	0	1	0	13.5
1	1	0	1	1	14.0
1	1	1	0	0	14.5
1	1	1	0	1	15.0
1	1	1	1	0	15.5
1	1	1	1	1	16.0

BLED2 current value setting
*Default

	ADDRESS : 07h							
	D7	D6	D5	D4	D3	D2	D1	D0
resister name	-	-	FOUT1[2]	FOUT1[1]	FOUT1[0]	FIN1[2]	FIN1[1]	FIN1[0]
default	0	0	0	0	0	0	0	0

D2	D1	D0	FIN1
0	0	0	No slope
0	0	1	Slope $1 / 32$
0	1	0	$1 / 16$
0	1	1	$1 / 8$
1	0	0	$1 / 4$
1	0	1	$1 / 2$
1	1	0	$3 / 4$
1	1	1	Max slope

RGB1 FIN slope setting
*Default

Max. slope is $1 / 2$ of automatic ON/OFF period of RGB1

D5	D4	D3	FOUT1
0	0	0	No slope
0	0	1	Slope $1 / 32$
0	1	0	$1 / 16$
0	1	1	$1 / 8$
1	0	0	$1 / 4$
1	0	1	$1 / 2$
1	1	0	$3 / 4$
1	1	1	Max slope

RGB1 FOUT slope setting
*Default

Max. slope is $1 / 2$ of automatic ON/OFF period of RGB1

	ADDRESS : 08h								
	D7	D6	D5	D4	D3	D2	D1	D0	
resister name	-	-	FOUT2[2]	FOUT2[1]	FOUT2[0]	FIN2[2]	FIN2[1]	FIN2[0]	
default	0	0	0	0	0	0	0	0	

D2	D1	D0	FIN2
0	0	0	No slope
0	0	1	Slope $1 / 32$
0	1	0	$1 / 16$
0	1	1	$1 / 8$
1	0	0	$1 / 4$
1	0	1	$1 / 2$
1	1	0	$3 / 4$
1	1	1	Max slope

RGB2 FIN slope setting
*Default

Max. slope is $1 / 2$ of automatic ON/OFF period of RGB2

D5	D4	D3	FOUT2
0	0	0	No slope
0	0	1	Slope $1 / 32$
0	1	0	$1 / 16$
0	1	1	$1 / 8$
1	0	0	$1 / 4$
1	0	1	$1 / 2$
1	1	0	$3 / 4$
1	1	1	Max slope

RGB2 FOUT slope setting
*Default

	ADDRESS : 09h								
	D7	D6	D5	D4	D3	D2	D1	D0	
resister name	-	-	SYNC	GR1M1	GRON1	AT1[2]	AT1[1]	AT1[0]	
default	0	0	0	0	0	0	0	0	

D2	D1	D0	AT1
0	0	0	0.262 sec
0	0	1	0.524 sec
0	1	0	1.049 sec
0	1	1	2.097 sec
1	0	0	4.194 sec
1	0	1	8.389 sec
1	1	\times	-

RGB1 automatic ON/OFF function setting
*Default

D3	GRON1
0	OFF
1	ON

RGB1 automatic ON/OFF function setting
*Default

D4	GR1M1
0	OFF
1	ON

D5	SYNC
0	OFF
1	ON

RGB1 is executed one time of the gradation.
*Default

Automatic operation ON/OFF cycle and the gradation.
execution setting of RGB2 are done as well as RGB1
*Default

	ADDRESS : 0ah								
	D7	D6	D5	D4	D3	D2	D1	D0	
resister name	-	-	-	GR1M2	GRON2	AT2[2]	AT2[1]	AT2[0]	
default	0	0	0	0	0	0	0	0	

D2	D1	D0	AT2
0	0	0	0.262 sec
0	0	1	0.524 sec
0	1	0	1.049 sec
0	1	1	2.097 sec
1	0	0	4.194 sec
1	0	1	8.389 sec
1	1	\times	-

D3	GRON1
0	OFF
1	ON

RGB2 automatic ON/OFF function setting
*Default

D4	GR1M1
0	OFF
1	ON

RGB2 is executed one time of the gradation.
*Default

	ADDRESS : Obh							
	D7	D6	D5	D4	D3	D2	D1	D0
resister name	-	-	R1Aoff[5]	R1Aoff[4]	R1Aoff[3]	R1Aoff[2]	R1Aoff[1]	R1Aoff[0]
default	0	0	0	0	0	0	0	0

D5-0 RLED1 automatic OFF position setting (default: ALL0)

	ADDRESS : 0ch								
	D7	D6	D5	D4	D3	D2	D1	D0	
resister name	-	-	R1Aon[5]	R1Aon[4]	R1Aon[3]	R1Aon[2]	R1Aon[1]	R1Aon[0]	
default	0	0	0	0	0	0	0	0	

D5-0 RLED1 automatic OFF position setting (default: ALL0)
When R1Aon=R1Aoff, all the periods off.

LED control output waveform (RLED1). Same for GLED1, BLED1, GLED2, GLED2 and BLED2
When D5 to D0 ALL0: Clock 0 rise position.
When D5 to D0 ALL1: Clock 63 rise position.

	ADDRESS : 0dh							
	D7	D6	D5	D4	D3	D2	D1	D0
resister name	-	-	G1Aoff[5]	G1Aoff[4]	G1Aoff[3]	G1Aoff[2]	G1Aoff[1]	G1Aoff[0]
default	0	0	0	0	0	0	0	0

D5-0 GLED1 automatic OFF position setting (default: ALL0)

	ADDRESS : 0eh							
	D7	D6	D5	D4	D3	D2	D1	D0
resister name	-	-	G1Aon[5]	G1Aon[4]	G1Aon[3]	G1Aon[2]	G1Aon[1]	G1Aon[0]
default	0	0	0	0	0	0	0	0

D5-0 GLED1 automatic OFF position setting (default: ALL0)
When G1Aon=G1Aoff, all the periods off.

	ADDRESS : Ofh							
	D7	D6	D5	D4	D3	D2	D1	D0
resister name	-	-	B1Aoff[5]	B1Aoff[4]	B1Aoff[3]	B1Aoff[2]	B1Aoff[1]	B1Aoff[0]
default	0	0	0	0	0	0	0	0

D5-0 BLED1 automatic OFF position setting (default: ALL0)

	ADDRESS : 10h								
	D7	D6	D5	D4	D3	D2	D1	D0	
resister name	-	-	B1Aon[5]	B1Aon[4]	B1Aon[3]	B1Aon[2]	B1Aon[1]	B1Aon[0]	
default	0	0	0	0	0	0	0	0	

D5-0 BLED1 automatic OFF position setting (default: ALL0)
When B1Aon=B1Aoff, all the periods off.

	ADDRESS : 11h							
	D7	D6	D5	D4	D3	D2	D1	D0
resister name	-	-	R2Aoff[5]	R2Aoff[4]	R2Aoff[3]	R2Aoff[2]	R2Aoff[1]	R2Aoff[0]
default	0	0	0	0	0	0	0	0

D5-0 RLED2 automatic OFF position setting (default: ALL0)

	ADDRESS : 12 h							
	D7	D6	D5	D4	D3	D2	D1	D0
resister name	-	-	R2Aon[5]	R2Aon[4]	R2Aon[3]	R2Aon[2]	R2Aon[1]	R2Aon[0]
default	0	0	0	0	0	0	0	0

D5-0 RLED2 automatic OFF position setting (default: ALL0)
When R2Aon=R2Aoff, all the periods off.

	ADDRESS : 13h								
	D7	D6	D5	D4	D3	D2	D1	D0	
resister name	-	-	G2Aoff[5]	G2Aoff[4]	G2Aoff[3]	G2Aoff[2]	G2Aoff[1]	G2Aoff[0]	
default	0	0	0	0	0	0	0	0	

D5-0 GLED2 automatic OFF position setting (default: ALL0)

	ADDRESS : 14h								
	D7	D6	D5	D4	D3	D2	D1	D0	
resister name	-	-	G2Aon[5]	G2Aon[4]	G2Aon[3]	G2Aon[2]	G2Aon[1]	G2Aon[0]	
default	0	0	0	0	0	0	0	0	

D5-0 GLED2 automatic OFF position setting (default: ALL0)
When G2Aon=G2Aoff, all the periods off.

	ADDRESS : 15 h								
	D7	D6	D5	D4	D3	D2	D1	D0	
resister name	-	-	B2Aoff[5]	B2Aoff[4]	B2Aoff[3]	B2Aoff[2]	B2Aoff[1]	B2Aoff[0]	
default	0	0	0	0	0	0	0	0	

D5-0 BLED2 automatic OFF position setting (default: ALL0)

	ADDRESS : 16 h							
	D7	D6	D5	D4	D3	D2	D1	D0
resister name	-	-	B2Aon[5]	B2Aon[4]	B2Aon[3]	B2Aon[2]	B2Aon[1]	B2Aon[0]
default	0	0	0	0	0	0	0	0

D5-0 BLED2 automatic OFF position setting (default: ALL0)
When B2Aon=B2Aoff, all the periods off.

	ADDRESS : 17h								
	D7	D6	D5	D4	D3	D2	D1	D0	
resister name	GTO3EN	GPO2EN	GPO1EN	-	-	GPO3	GPO2	GPO1	
default	0	0	0	0	0	0	0	0	

D0	GPO1
0	GPO1 (LED3) output: Open when GPO1EN=0, low when GPO1EN=1
1	GPO1 (LED3) output: LED-Drv ON when GPO1EN $=0$, high when GPO1EN=1

GPO1(LED3) output setting
*Default

D1	GPO2
0	GPO2 (LED4) output: Open when GPO2EN=0, low when GPO2EN=1
1	GPO2 (LED4) output: LED-Drv ON when GPO2EN=0, high when GPO2EN=1

GPO2(LED4) output setting
*Default

D2	GPO3
0	GPO3 (LED5) output: Open when GPO3EN=0, low when GPO3EN=1
1	GPO3 (LED5) output: LED-Drv ON when GPO3EN=0, high when GPO3EN=1

GPO3(LED5) output setting
*Default

D5	GPO1EN
0	When GPO1 (LED3) output is used as LED-Drv
1	When GPO1 (LED3) output is used as GPO

GPO1(LED3) output

Setting for using GPO or LED-Drv
*Default

D6	GPO2EN
0	When GPO2 (LED4) output is used as LED-Drv
1	When GPO2 (LED4) output is used as GPO

GPO2(LED4) output
Setting for using GPO or LED-Drv
*Default

D7	GPO3EN
0	When GPO3 (LED5) output is used as LED-Drv
1	When GPO3 (LED5) output is used as GPO

GPO3(LED5) output
Setting for using GPO or LED-Drv
*Default
*GPO1EN must be set to 1 without fail when the GPO1 (LED3) pin is to be used as GPO.
When GPO1EN is set to 1 , do not apply a voltage higher than the $V_{\text {DD }}$ voltage to the GPO1 (LED3) pin.
The same applies to the GPO2 (LED4) and GPO3 (LED5) pins.

	ADDRESS : 18h								
	D7	D6	D5	D4	D3	D2	D1	D0	
resister name	FCTENR2	-	-	-	FCTR2[3]	FCTR2[2]	FCTR2[1]	FCTR2[0]	
default	0	0	0	0	0	0	0	0	

D3	D2	D1	D0	Current value(mA)
0	0	0	0	2.8
0	0	0	1	5.6
0	0	1	0	8.4
0	0	1	1	11.2
0	1	0	0	14.0
0	1	0	1	16.8
0	1	1	0	19.6
0	1	1	1	22.4
1	0	0	0	25.2
1	0	0	1	28.0
1	0	1	0	30.8
1	0	1	1	33.6
1	1	0	0	36.4
1	1	0	1	39.2
1	1	1	0	42.0
1	1	1	1	44.8

Strobe mode: RLED2 current level established when FCTL is high.
*Default

D7	FCTENR2
0	FCTL non valid
1	FCTL valid

RLED2 FCTL signal enable
*Default

ADDRESS: 19h

D4	D3	D2	D1	D0
-	FCTG2[3]	FCTG2[2]	FCTG2[1]	FCTG2[0]
0	0	0	0	0

D3	D2	D1	D0	Current value(mA)
0	0	0	0	2.8
0	0	0	1	5.6
0	0	1	0	8.4
0	0	1	1	11.2
0	1	0	0	14.0
0	1	0	1	16.8
0	1	1	0	19.6
0	1	1	1	22.4
1	0	0	0	25.2
1	0	0	1	28.0
1	0	1	0	30.8
1	0	1	1	33.6
1	1	0	0	36.4
1	1	0	1	39.2
1	1	1	0	42.0
1	1	1	1	44.8

Strobe mode: GLED2 current level established when FCTL is high *Default

D7	FCTENG2
0	FCTL non valid
1	FCTL valid

GLED2 FCTL signal enable
*Default

Precautions for serial transmission and usage note

* ON operation of the charge pump must be performed when the LED is off.
* Do not turn ON the LED for 800μ s typ. (soft start time) after the charge pump has been turned on.
* When the fade operation of LED is performed, turn off the charge pump after the fade-out has been completed.
* Gradation level must be selected without fail when gradation is OFF.
* When the charge pump is operating, use the LED driver in such a way that the total current flowing to the LEDs.
* Even in the strobe mode (FCTL=H), the gradation operation is performed for RLED2 and GLED2 when RLED2 and GLED2 are set to gradation ON.
* Even in the strobe mode ($\mathrm{FCTL}=\mathrm{H}$), current flows to RLED2 and GLED2 in synchronization with the SCTL signal when SCTL is valid.
* When the LED pins are not to be used

When LEDs are not connected to the LED pins, connect the LED driver pins to VBAT or GND.

* Precaution when using the SCTL pin or FCTL pin When the SCTL pin or FCTL pin is set to high, current flows to the SCTL or FCTL input circuit. (This is also true in the STBY or reset mode.)
When the pin is not going to be used, it must be set to low without fail.
* By default, the GP01 (LED3) pin is left open. When the GP01 (LED3) pin is to be set high by default, connect a pull-up resistor to the pin. Conversely, when the GP01 (LED3) pin is to be set low by default, connect a pull-down resistor to the pin. Connect pull-up or pull-down resistors to the GP02 (LED4) and GP03 (LED5) pins as well in the same way.

LV5223GR serial map

- Table upper row: Register name Table the lower: Default value

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

