: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

LV5234V

ON Semiconductor ${ }^{\circledR}$
http://onsemi.com

Bi-CMOS IC

9-channel LED Driver

Overview

The LV5234V is a 9-channel LED driver IC that is capable of switching between constant-current output and open drain output. It enables 3 -wire serial bus control (address designation) $/ I^{2} \mathrm{C}$ serial bus control to be set arbitrarily using an external pin. Also possible are 9-channel LED ON/OFF control and the setting of the PWM luminance in 256 steps. The device also has a built-in fade-in/fade-out function. Up to 32 driver ICs can be connected using the slave address setting pins.

Function

- 9-channel output constant-current LED driver/open drain output LED driver (selected by using an external pin)

Supports separate ON/OFF setting for each LED output, high withstand voltage (VOUT $<42 \mathrm{~V}$)

- In the constant-current mode (OUTSCT: L), the reference current is set by the value of resistor connected to the external pin (RT1).

Built-in D/A (5 bits) for switching current level $\ldots 0.96 \mathrm{~mA}$ to 30.7 mA (RGB drive)
Constant current (IO max $=50 \mathrm{~mA}$) for full-color LEDs $\times 9$ channels

- In the open drain mode (OUTSCT: H), high current drive (IO max=100mA) $\times 9$ channels
- Luminance adjustment using internal PWM control (256 steps)
- 8-bit PWM luminance dimming (0% to 99.6%)
- 3-phase PWM
- Fade-in/fade-out function (PWM control priority), supporting synchronous connection
- Supports separate fade ON/OFF for each LED output (fade time common for all channels)
- Interrupt control possible for fade function
- Selection of 3 -wire $/ \mathrm{I}^{2} \mathrm{C}$ serial bus control signals enabled (switching using an external pin)

Slave addressing (5 bits, connection of up to 32 driver ICs possible)

- Low current consumption
- Output malfunction protection circuits (thermal protection function, UVLO detection protection function)

SSOP30(275mil)
${ }^{*} I^{2} \mathrm{C}$ Bus is a trademark of Philips Corporation.

ORDERING INFORMATION

See detailed ordering and shipping information on page 24 of this data sheet.

LV5234V
Specifications
Absolute Maximum Ratings at $\mathrm{Ta}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	VCC max		6	V
Output voltage	Vo max	LED off	42	V
Output current	10 max		100	mA
Allowable power dissipation	Pd max	$\mathrm{Ta} \leq 25^{\circ} \mathrm{C}$ *	0.84	W
Operating temperature	Topr		-25 to +75	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg		-40 to +125	${ }^{\circ} \mathrm{C}$

* Specified board : $114.3 \mathrm{~mm} \times 76.1 \mathrm{~mm} \times 1.6 \mathrm{~mm}$, glass epoxy board.
[Warning]: If you should intend to use this IC continuously under high temperature, high current, high voltage, or drastic temperature change, even if it is used within the range of absolute maximum ratings or operating conditions, there is a possibility of decrease reliability. Please contact us for a confirmation.

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

Recommended Operating Conditions at $\mathrm{Ta}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Ratings	Unit
Recommended supply voltage	V_{CC}	$\mathrm{SV}_{\mathrm{CC}}$	5.0	V
Operating supply voltage range	V_{CC} op	$\mathrm{SV}_{\mathrm{CC}}$	4.5 to 5.5	V

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

Electrical Characteristics at $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$

Parameter	Symbol	Conditions	Ratings			Unit
			min	typ	max	
Consumption current	${ }^{1} \mathrm{CC}{ }^{2}$	LED off		3.5	5.5	mA
Oscillator frequency	Fosc		900	1000	1100	kHz
Reference current pin voltage	VRT	RT1 $=22 \mathrm{k}$,	0.92	0.98	1.04	V
MAX output current	$\Delta \mathrm{IL}$	$\mathrm{V}_{\mathrm{O}}=0.7$ to 4.0 V (Same channel line regulation)	-10			\%
Between bits output current	$\Delta^{\prime} \mathrm{OL}$	$\mathrm{I}_{\mathrm{O}}=30.7 \mathrm{~mA}$ (Between bits pairing characteristics)			5	\%
Maximum LED driver output current 1	IMAX1	LED OUTSCT= L	28.8	30.7	32.6	mA
LEDO output on resistance	Ron1	LED1, LED2, LED3 (l ($=100 \mathrm{~mA}$)		4	10	Ω
OFF leak current	Ileak	LED off			10	$\mu \mathrm{A}$
Driver output malfunction protection voltage	Vt	$\mathrm{SV}_{\mathrm{CC}}$	2.58	2.70	2.82	V

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

Control circuit at $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

Parameter	Symbol	Conditions	Ratings			Unit
			min	typ	max	
H level 1	VH1	Input H level OUTSCT	4.7		5	V
L level 1	VL1	Input L level OUTSCT	-0.2		0.3	V
H level 2	VH2	Input H level CTLSCT	$0.7 \times \mathrm{V}_{\mathrm{CC}}$		V_{CC}	V
L level 2	VL2	Input L level CTLSCT	-0.2		0.3	V
H level 3	VH3	Input H level RESET	$0.8 \times \mathrm{V}_{\mathrm{CC}}$		V_{CC}	V
L level 3	VL3	Input L level RESET	-0.2		$0.2 \times \mathrm{V}_{\mathrm{CC}}$	V
H level 4	VH4	Input H level SCLK, SDATA, SDEN	$0.8 \times \mathrm{V} \mathrm{CC}$		V_{CC}	V
L level 4	VL4	Input L level SCLK, SDATA, SDEN	-0.2		$0.2 \times \mathrm{V}_{\mathrm{CC}}$	V
H level 5	VH7	Input H level A0 to A4	$0.7 \times \mathrm{V}_{\mathrm{CC}}$		V_{CC}	V
L level 5	VL7	Input L level A0 to A4	-0.2		0.3	V

Package Dimensions

unit : mm

SSOP30 (275mil)

CASE 565AT
ISSUE A

SOLDERING FOOTPRINT*

NOTE: The measurements are not to guarantee but for reference only.
*For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

GENERIC MARKING DIAGRAM*

XXXXX = Specific Device Code
Y = Year
$\mathrm{M}=$ Month
DDD = Additional Traceability Data
*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " \quad ", may or may not be present.

Block Diagram

Pin Assignment

30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
$\begin{aligned} & \text { F } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \stackrel{0}{0} \\ & \stackrel{N}{5} \end{aligned}$	$\stackrel{5}{5}$	İ		$\begin{array}{\|c} \stackrel{\llcorner }{W} \\ \hline \end{array}$	O		哭	$\stackrel{0}{0}_{0}^{0}$	登	$\begin{aligned} & \overline{0} \\ & \text { Ẅ } \end{aligned}$	を	\％	\％
$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \underset{U}{u} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 李 } \\ & \stackrel{8}{6} \end{aligned}$	$\stackrel{\underset{\sim}{\mathrm{u}}}{\stackrel{\mathrm{a}}{2}}$	2	$\begin{aligned} & \stackrel{\substack{\underset{u}{u}}}{ } \end{aligned}$	$\begin{aligned} & \widetilde{\widetilde{x}} \\ & \underset{\sim}{u} \end{aligned}$	〇	$\begin{aligned} & \text { ®̃ } \\ & \stackrel{\Xi}{巴} \end{aligned}$	$\begin{aligned} & \text { ⿹\zh26灬 } \\ & \hline \end{aligned}$	N	\sum_{0}^{N}	$\begin{aligned} & \text { 厄్ర } \\ & \hline \end{aligned}$	8	¢
1	2	［3］	4	5	6	7	8	9	10	11］	12	13	14］	15

Pin Descriptions

Pin No.	Pin name	I/O	Description
1	$\mathrm{SV}_{\mathrm{CC}}$	-	Power supply pin
2	SCLK	1	Serial clock signal input pin
3	SDATA	I	Serial data signal input pin
4	SDEN	I	Serial enable signal input pin
5	NC	-	No connection
6	LEDR1	0	LEDR1 output pin
7	LEDR2	0	LEDR2 output pin
8	PGND1	-	GND pin dedicated for LED driver
9	LEDR3	0	LEDR3 output pin
10	LEDG1	0	LEDG1 output pin
11	LEDG2	O	LEDG2 output pin
12	PGND2	-	GND pin dedicated for LED driver
13	LEDG3	O	LEDG3 output pin
14	A0	1	Slave address input pin A0
15	A1	1	Slave address input pin A1
16	A2	1	Slave address input pin A2
17	A3	1	Slave address input pin A3
18	A4	1	Slave address input pin A4
19	LEDB1	0	LEDB1 output pin
20	LEDB2	0	LEDB2 output pin
21	PGND3	-	GND pin dedicated for LED driver
22	LEDB3	0	LEDB3 output pin
23	CTLSCT	1	3-wire serial bus// ${ }^{2} \mathrm{C}$ serial bus selecting control pin (L: 3-wire serial, $\mathrm{H}: \mathrm{I}^{2} \mathrm{C}$)
24	SGND	-	Analog circuit GND pin
25	TEST	1	Test pin (connected to GND)
26	RESET	1	Reset signal input pin
27	RT1	0	LED current setting resistor connection pin 1
28	CT	0	Oscillation frequency setting capacitor connection pin
29	OUTSCT	I	Output type switching control pin L: Constant-current output H: Open drain output
30	OSC_OUT	0	Oscillator output pin (synchronous connection)

OUTSCT Settings at $\mathrm{SV}_{\mathrm{CC}}=5.0 \mathrm{~V}$

	LED Driver Output Pin
OUTSCT pin	LED1, LED2, LED3
L=-0.2 to 0.3 V	Constant current output Built-in current value switching D/A (5 bits) 0.96 mA to $30.7 \mathrm{~mA}, \mathrm{RT} 1=22 \mathrm{k} \Omega(\mathrm{f}=1 \mathrm{MHz})$
$\mathrm{H}=4.7$ to 5.0 V	Open drain output Current value is determined by external limiting resistor. $R O N=4 \Omega$

Pin Functions

Pin No.	Pin Name	Pin function	Equivalent Circuit
1	$\mathrm{SV}_{\mathrm{CC}}$	Power supply pin	
$\begin{aligned} & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & \text { SCLK } \\ & \text { SDATA } \\ & \text { SDEN } \end{aligned}$	Serial clock signal input pin Serial data signal input pin Serial enable signal input pin	
16 17 18 23 29	A0 A1 A2 A3 A4 CTLSCT OUTSCT	Slave address setting pin A0 Slave address setting pin A1 Slave address setting pin A2 Slave address setting pin A3 Slave address setting pin A4 Serial bus communication setting pin When set to low: The 3-wire serial bus signals are set as the input signals. When set to high: The $I^{2} C$ serial bus signals are set as the input signals. LED driver output type setting pin When set to low: Constant-current output is set for the LED driver. When set to high: Open drain output is set for the LED driver.	
24	SGND	GND pin	
25	TEST	Test pin This pin must always be connected to GND.	
26	RESET	Reset signal input pin Reset status when set to low.	
27	RT1	Reference current setting resistor connection pin. By connecting the external register between this pin and GND, the reference current is generated. The pin voltage is approximately 0.98 V . By changing the current level, it is possible to change the oscillator frequency and LED driver current value (in the constant-current mode).	

LV5234V
Continued from preceding page.

Pin No.	Pin Name	Pin function	Equivalent Circuit
28	CT	Oscillator frequency setting capacitor connection pin/oscillator input pin. By changing the value of capacitance, it is possible to change the oscillator frequency. The capacitor must be connected to this pin of the master-side IC. The CT pin of the slave-side IC must be connected as the oscillator input pin.	
30	OSC_OUT	Oscillator output pin When a multiple number of driver ICs are connected for use, the oscillators can be connected in synchronization by connecting the OSC_OUT output to the CT pin of the ICs to be connected.	
$\begin{gathered} 6 \\ 7 \\ 9 \\ 10 \\ 11 \\ 13 \\ 19 \\ 20 \\ 22 \end{gathered}$	LEDR1 LEDR2 LEDR3 LEDG1 LEDG2 LEDG3 LEDB1 LEDB2 LEDB3	LEDR1 output pin LEDR2 output pin LEDR3 output pin LEDG1 output pin LEDG2 output pin LEDG3 output pin LEDB1 output pin LEDB2 output pin LEDB3 output pin If these pins are not going to be used, they must always be connected to GND.	
$\begin{gathered} 8 \\ 12 \\ 21 \\ \hline \end{gathered}$		GND pin dedicate for LEDR GND pin dedicate for LEDG GND pin dedicate for LEDB	
5	NC	No connection	

Application Circuit Diagrams

- Specifications when one driver IC is used

Use as a master-side IC
Slave selection: A0-A4: low
Address setting: Master (010-0000)
Nothing must be connected to the NC pins

- Specifications when more than one driver IC is used

Use as a master-side IC
Slave selection: A0 : high
A1-A4: low
Address setting: Master (010-0000)

Use as a slave-side IC
Slave selection: A0 high: A1-A4 low
Address setting: Slave (010-0001)

The oscillator frequency is determined by the master IC.
The synchronous connection of the oscillator can be established by connecting the oscillator output (OSC_OUT) to the CT pins of the slave-side ICs.
Nothing must be connected to the NC pins.

Serial Bus Communication Specifications

1) 3-wire serial bus transfer timing conditions

Parameter	Symbol	Conditions	Min.	Typ.	Max.	Unit
Cycle time	tcy1	SCLK clock period	200	-	-	ns
Data setup time	ts0	SDEN setup time relative to the rise of SCLK	90	-	-	ns
	ts1	SDATA setup time relative to the rise of SCLK	60	-	-	ns
Data hold time	th0	SDEN hold time relative to the fall of SCLK	200	-	-	ns
	th1	SDATA hold time relative to the fall of SCLK	60	-	-	ns
Pulse width	tw1L	Low period pulse width of SCLK	90	-	-	ns
	tw1H	High period pulse width of SCLK	90	-	-	ns
	tw2L	Low period pulse width of SDEN	1	-	-	μs

Data length: 24 bits
Clock frequency: 5 MHz or less
When 24 SCLK clock signals have been input during the high period of SDEN, the SDATA is taken in at the rising edge of SCLK.
Note: If the number of SCLK clock signals during the high period of SDEN is 23 or less, SDATA is not taken in. If it is 25 or more, the register address is automatically incremented every time 1 byte is taken in.

The slave address is assigned by the first byte, and the register address on the serial map is specified by the next byte.
The third byte transfers the data to the address specified by the register address that was written by the second byte and if the data subsequently continues even after this, the register address is automatically incremented for the fourth and subsequent bytes. As a result, it is possible to send the data continuously from the specified addresses. Data of less than one byte is ignored. However, when the address reaches 15 h , in the next byte to be transferred becomes 00 h .

Example of a write operation:

2) $I^{2} C$ serial transfer timing conditions

Standard mode

Parameter	Symbol	Conditions	Min.	Typ.	Max.	Unit
SCL clock frequency	fsc1	SCL clock frequency	0	-	100	kHz
	ts1	SCL setup time relative to the fall of SDA	4.7	-	-	$\mu \mathrm{s}$
	ts2	SDA setup time relative to the rise of SCL	250	-	-	ns
	ts3	SCL setup time relative to the rise of SDA	4.0	-	-	$\mu \mathrm{s}$
	th1	SCL hold time relative to the fall of SDA	4.0	-	-	$\mu \mathrm{s}$
	th2	SDA hold time relative to the fall of SCL	0	-	-	$\mu \mathrm{s}$
	twL	SCL pulse width for the L period	4.7	-	-	$\mu \mathrm{s}$
	twH	SCL pulse width for the H period	4.0	-	-	$\mu \mathrm{s}$
	ton	SCL and SDA (input) rise time	-	-	1000	ns
Bus free time	tof	SCL and SDA (input) fall time	-	-	300	ns

High-speed mode

Parameter	Symbol	Conditions	Min.	Typ.	Max.	Unit
SCL clock frequency	fsc1	SCL clock frequency	0	-	400	kHz
Data setup time	ts1	SCL setup time relative to the fall of SDA	0.6	-	-	$\mu \mathrm{s}$
	ts2	SDA setup time relative to the rise of SCL	100	-	-	ns
	ts3	SCL setup time relative to the rise of SDA	0.6	-	-	$\mu \mathrm{s}$
Data hold time	th1	SCL hold time relative to the fall of SDA	0.6	-	-	$\mu \mathrm{s}$
	th2	SDA hold time relative to the fall of SCL	0	-	-	$\mu \mathrm{s}$
Pulse width	twL	SCL pulse width for the L period	1.3	-	-	$\mu \mathrm{s}$
	twH	SCL pulse width for the H period	0.6	-	-	$\mu \mathrm{s}$
Input waveform conditions	ton	SCL and SDA (input) rise time	-	-	300	ns
	tof	SCL and SDA (input) fall time	-	-	300	ns
Bus free time	tbuf	Time between STOP and START conditions	1.3	-	-	$\mu \mathrm{s}$

$I^{2} \mathrm{C}$ bus transfer method
Start and stop conditions
During data transfer operation using the $\mathrm{I}^{2} \mathrm{C}$ bus, SDA must basically be kept in constant state while SCL is " H " as shown below.

When data is not being transferred, both SCL and SDA are set in the "H" state.
When SCL=SDA is "H," the start condition is established when SDA is changed from " H " to "L," and access is started. When SCL is "H," the stop condition is established when SDA is changed from "L" to "H," and access is ended.

Data transfer and acknowledgement response
After the start condition has been established, the data is transferred one byte (8 bits) at a time.
Any number of bytes of data can be transferred continuously.
Each time the 8-bit data is transferred, the ACK signal is sent from the receive side to the send side. The ACK signal is issued when SDA on the send side is released and SDA on the receive side is set to "L" immediately after fall of the clock pulse at the SCL eighth bit of data transfer to "L."
When the next 1-byte transfer is left in the receive state after sending the ACK signal from the receive side, the receive side releases SDA at the fall of the SCL ninth clock.
In the $I^{2} \mathrm{C}$ bus, there is no CE signal. In its place, a 7-bit slave address is assigned to each device, and the first byte of transfer is assigned to the command $(\mathrm{R} / \mathrm{W})$ representing the 7 -bit address and subsequent transfer direction. Note that only write is valid in this IC. The 7-bit address is transferred sequentially starting with MSB, and the eighth bit is set to "L" which indicates a write.

Slave address condition

	SLAVE ADDRESS							
	SA7	SA6	SA5	SA4	SA3	SA2	SA1	SAO
resister name	-	-	A4	A3	A2	A1	A0	-
default	0	1	0	0	0	0	0	-

Terminal PIN				
A4	A3	A2	A1	A0
L	L	L	L	L
L	L	L	L	H
L	L	L	H	L
L	L	L	H	H
L	L	H	L	L
L	L	H	L	H
L	L	H	H	L
L	L	H	H	H
L	H	L	L	L
L	H	L	L	H
L	H	L	H	L
L	H	L	H	H
L	H	H	L	L
L	H	H	L	H
L	H	H	H	L
L	H	H	H	H
H	L	L	L	L
H	L	L	L	H
H	L	L	H	L
H	L	L	H	H
H	L	H	L	L
H	L	H	L	H
H	L	H	H	L
H	L	H	H	H
H	H	L	L	L
H	H	L	L	H
H	H	L	H	L
H	H	L	H	H
H	H	H	L	L
H	H	H	L	H
H	H	H	H	L
H	H	H	H	H

SA7	SA6	SA5	SA4	SA3	SA2	SA1	SAO
0	1	0	0	0	0	0	-
0	1	0	0	0	0	1	-
0	1	0	0	0	1	0	-
0	1	0	0	0	1	1	-
0	1	0	0	1	0	0	-
0	1	0	0	1	0	1	-
0	1	0	0	1	1	0	-
0	1	0	0	1	1	1	-
0	1	0	1	0	0	0	-
0	1	0	1	0	0	1	-
0	1	0	1	0	1	0	-
0	1	0	1	0	1	1	-
0	1	0	1	1	0	0	-
0	1	0	1	1	0	1	-
0	1	0	1	1	1	0	-
0	1	0	1	1	1	1	-
0	1	1	0	0	0	0	-
0	1	1	0	0	0	1	-
0	1	1	0	0	1	0	-
0	1	1	0	0	1	1	-
0	1	1	0	1	0	0	-
0	1	1	0	1	0	1	-
0	1	1	0	1	1	0	-
0	1	1	0	1	1	1	-
0	1	1	1	0	0	0	-
0	1	1	1	0	0	1	-
0	1	1	1	0	1	0	-
0	1	1	1	0	1	1	-
0	1	1	1	1	0	0	-
0	1	1	1	1	0	1	-
0	1	1	1	1	1	0	-
0	1	1	1	1	1	1	-

:LV5234

Serial each mode setting

	ADDRESS: 00h							
	D7	D6	D5	D4	D3	D2	D1	D0
register name	-	PWM[2]	PWM[1]	PWMIO	-	-	MAS	-
default	0	0	0	0	0	0	0	0

D6	D5	D4	time(ms)
0	0	0	0.5
0	0	1	1.0
0	1	0	2.0
0	1	1	4.0
1	0	0	8.0
-	-	-	-
-	-	-	-
-	-	-	-
-	-	-	-

PWM cycle setting
*Default

D1	MAS
0	Master
1	Slave

Master/Slave setting

*Default

	ADDRESS: 01h									
	D7	D6	D5	D4	D3	D2	D1	D0		
register name	-	FOUT[2]	FOUT[1]	FOUT[0]	-	FIN[2]	FIN[1]	FIN[0]		
default	0	0	0	0	0	0	0	0		

D6	D5	D4	time (ms)
0	0	0	No slope
0	0	1	0.5
0	1	0	1.0
0	1	1	2.0
1	0	0	4.0
1	0	1	8.0
1	1	0	16.0
1	1	1	32.0

out slope setting
*Default

Speed of fade a step
(It takes 256 above-mentioned, set value \times seconds until the fade is completed.)

D2	D1	D0	time (ms)
0	0	0	No slope
0	0	1	0.5
0	1	0	1.0
0	1	1	2.0
1	0	0	4.0
1	0	1	8.0
1	1	0	16.0
1	1	1	32.0

Fin slope setting *Default

Speed of fade a step
(It takes 256 above-mentioned, set value \times seconds until the fade is completed.)

	ADDRESS : 02h							
	D7	D6	D5	D4	D3	D2	D1	D0
register name	-	-	-	RLED[4]	RLED[3]	RLED[2]	RLED[1]	RLED[0]
default	0	0	0	0	0	0	0	0

D4	D3	D2	D1	D0	Current value (mA)
0	0	0	0	0	0.96
0	0	0	0	1	1.92
0	0	0	1	0	2.88
0	0	0	1	1	3.84
0	0	1	0	0	4.80
0	0	1	0	1	5.76
0	0	1	1	0	6.72
0	0	1	1	1	7.68
0	1	0	0	0	8.64
0	1	0	0	1	9.60
0	1	0	1	0	10.56
0	1	0	1	1	11.52
0	1	1	0	0	12.48
0	1	1	0	1	13.44
0	1	1	1	0	14.40
0	1	1	1	1	15.36
1	0	0	0	0	16.32
1	0	0	0	1	17.28
1	0	0	1	0	18.24
1	0	0	1	1	19.20
1	0	1	0	0	20.16
1	0	1	0	1	21.12
1	0	1	1	0	22.08
1	0	1	1	1	23.04
1	1	0	0	0	24.00
1	1	0	0	1	24.96
1	1	0	1	0	25.92
1	1	0	1	1	26.88
1	1	1	0	0	27.84
1	1	1	0	1	28.80
1	1	1	1	0	29.76
1	1	1	1	1	30.72

RLED current value setting

* Default

	ADDRESS : 03h								
	D7	D6	D5	D4	D3	D2	D1	D0	
register name	-	-	-	GLED[4]	GLED[3]	GLED[2]	GLED[1]	GLED[0]	
default	0	0	0	0	0	0	0	0	

D4	D3	D2	D1	D0	Current value (mA)
0	0	0	0	0	0.96
0	0	0	0	1	1.92
0	0	0	1	0	2.88
0	0	0	1	1	3.84
0	0	1	0	0	4.80
0	0	1	0	1	5.76
0	0	1	1	0	6.72
0	0	1	1	1	7.68
0	1	0	0	0	8.64
0	1	0	0	1	9.60
0	1	0	1	0	10.56
0	1	0	1	1	11.52
0	1	1	0	0	12.48
0	1	1	0	1	13.44
0	1	1	1	0	14.40
0	1	1	1	1	15.36
1	0	0	0	0	16.32
1	0	0	0	1	17.28
1	0	0	1	0	18.24
1	0	0	1	1	19.20
1	0	1	0	0	20.16
1	0	1	0	1	21.12
1	0	1	1	0	22.08
1	0	1	1	1	23.04
1	1	0	0	0	24.00
1	1	0	0	1	24.96
1	1	0	1	0	25.92
1	1	0	1	1	26.88
1	1	1	0	0	27.84
1	1	1	0	1	28.80
1	1	1	1	0	29.76
1	1	1	1	1	30.72

GLED current value setting

* Default

	ADDRESS : 04h								
	D7	D6	D5	D4	D3	D2	D1	D0	
register name	-	-	-	$B L E D[4]$	BLED[3]	BLED[2]	BLED[1]	BLED[0]	
default	0	0	0	0	0	0	0	0	

D4	D3	D2	D1	D0	Current value (mA)
0	0	0	0	0	0.96
0	0	0	0	1	1.92
0	0	0	1	0	2.88
0	0	0	1	1	3.84
0	0	1	0	0	4.80
0	0	1	0	1	5.76
0	0	1	1	0	6.72
0	0	1	1	1	7.68
0	1	0	0	0	8.64
0	1	0	0	1	9.60
0	1	0	1	0	10.56
0	1	0	1	1	11.52
0	1	1	0	0	12.48
0	1	1	0	1	13.44
0	1	1	1	0	14.40
0	1	1	1	1	15.36
1	0	0	0	0	16.32
1	0	0	0	1	17.28
1	0	0	1	0	18.24
1	0	0	1	1	19.20
1	0	1	0	0	20.16
1	0	1	0	1	21.12
1	0	1	1	0	22.08
1	0	1	1	1	23.04
1	1	0	0	0	24.00
1	1	0	0	1	24.96
1	1	0	1	0	25.92
1	1	0	1	1	26.88
1	1	1	0	0	27.84
1	1	1	0	1	28.80
1	1	1	1	0	29.76
1	1	1	1	1	30.72

BLED current value setting

* Default

	ADDRESS : 05h								
	D7	D6	D5	D4	D3	D2	D1	D0	
register name	-	B2ON	G2ON	R2ON	-	B1ON	G1ON	R1ON	
default	0	0	0	0	0	0	0	0	

D6	B2ON
0	OFF
1	ON

LEDB2 ON/OFF setting

* Default

D5	G2ON
0	OFF
1	ON

D4	R2ON
0	OFF
1	ON

D2	B1ON
0	OFF
1	ON

D1	G1ON
0	OFF
1	ON

D0	R1ON
0	OFF
1	ON

LEDG2 ON/OFF setting

* Default

LEDR2 ON/OFF setting

* Default

LEDB1 ON/OFF setting

* Default

LEDG1ON/OFF setting

* Default

LEDR1 ON/OFF setting

* Default

	ADDRESS : 06h							
	D7	D6	D5	D4	D3	D2	D1	D0
register name	-	-	-	-	-	B3ON	G3ON	R3ON
default	0	0	0	0	0	0	0	0

D2	B3ON
0	OFF
1	ON

LEDB3 ON/OFF setting

* Default

D1	G3ON
0	OFF
1	ON

LEDG3 ON/OFF setting

* Default

D0	R3ON
0	OFF
1	ON

LEDR3 ON/OFF setting

* Default

	ADDRESS : 07h								
	D7	D6	D5	D4	D3	D2	D1	D0	
register name	-	-	R3PON[1]	R3PON[0]	R2PON[1]	R2PON[0]	R1PON[1]	R1PON[0]	
default	0	0	0	0	0	0	0	0	

D5	D4	R3PON
0	0	PMW output priority
0	1	Fade output priority
1	0	Compulsion ON/OFF output priority
-	-	-

LEDR3 output setting

* Default

D3	D2	R2PON
0	0	PMW output priority
0	1	Fade output priority
1	0	Compulsion ON/OFF output priority
-	-	-

LEDR2 output setting

* Default

D1	D0	R1PON
0	0	PMW output priority
0	1	Fade output priority
1	0	Compulsion ON/OFF output priority
-	-	-

LEDR1 output setting

* Default

	ADDRESS : 08h									
	D7	D6	D5	D4	D3	D2	D1	D0		
register name	-	-	G3PON[1]	G3PON[0]	G2PON[1]	G2PON[0]	G1PON[1]	G1PON[0]		
default	0	0	0	0	0	0	0	0		

D5	D4	G3PON
0	0	PMW output priority
0	1	Fade output priority
1	0	Compulsion ON/OFF output priority
-	-	-

D3	D2	G2PON
0	0	PMW output priority
0	1	Fade output priority
1	0	Compulsion ON/OFF output priority
-	-	-

LEDG3 output setting

* Default

LEDG2 output setting

* Default

LEDG1 output setting

* Default

	ADDRESS : 09h							
	D7	D6	D5	D4	D3	D2	D1	D0
register name	-	-	B3PON[1]	B3PON[0]	B2PON[1]	B2PON[0]	B1PON[1]	B1PON[0]
default	0	0	0	0	0	0	0	0

D5	D4	B3PON
0	0	PMW output priority
0	1	Fade output priority
1	0	Compulsion ON/OFF output priority
-	-	-

LEDB3 output setting

* Default

D3	D2	B2PON
0	0	PMW output priority
0	1	Fade output priority
1	0	Compulsion ON/OFF output priority
-	-	-

LEDB2 output setting

* Default

D1	D0	B1PON
0	0	PMW output priority
0	1	Fade output priority
1	0	Compulsion ON/OFF output priority
-	-	-

[^0]| | ADDRESS : Oah | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
| register name | - | R3CM | R2CM | R1CM | - | R3FD | R2FD | R1FD |
| default | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

D6	R3CM
0	Compulsion OFF
1	Compulsion ON

LEDR3 compulsion ON/OFF setting

* Default

D5	R2CM
0	Compulsion OFF
1	Compulsion ON

D4	R1CM
0	Compulsion OFF
1	Compulsion ON

D2	R3FD
0	Fade invalidity
1	Fade effective

D1	R2FD
0	Fade invalidity
1	Fade effective

D0	R1FD
0	Fade invalidity
1	Fade effective

LEDR2 compulsion ON/OFF setting

* Default

LEDR1 compulsion ON/OFF setting

* Default

LEDR3 fade function ON/OFF setting

* Default

LEDR2 fade function ON/OFF setting

* Default

LEDR1 fade function ON/OFF setting

* Default

	ADDRESS : Obh							
	D7	D6	D5	D4	D3	D2	D1	D0
register name	-	G3CM	G2CM	G1CM	-	G3FD	G2FD	G1FD
default	0	0	0	0	0	0	0	0

D6	G3CM
0	Compulsion OFF
1	Compulsion ON

LEDG3 compulsion ON/OFF setting

* Default

D5	G2CM
0	Compulsion OFF
1	Compulsion ON

LEDG2 compulsion ON/OFF setting

* Default

D4	G1CM
0	Compulsion OFF
1	Compulsion ON

LEDG1 compulsion ON/OFF setting

* Default

D2	G3FD
0	Fade invalidity
1	Fade effective

LEDG3 fade function ON/OFF setting

* Default

D1	G2FD
0	Fade invalidity
1	Fade effective

D0	G1FD
0	Fade invalidity
1	Fade effective

LEDG2 fade function ON/OFF setting

* Default

LEDG1 fade function ON/OFF setting

* Default

	ADDRESS : 0ch								
	D7	D6	D5	D4	D3	D2	D1	D0	
register name	-	B3CM	B2CM	B1CM	-	B3FD	B2FD	B1FD	
default	0	0	0	0	0	0	0	0	

D6	B3CM
0	Compulsion OFF
1	Compulsion ON

LEDB3 compulsion ON/OFF setting

* Default

D5	B2CM
0	Compulsion OFF
1	Compulsion ON

D4	B1CM
0	Compulsion OFF
1	Compulsion ON

D2	B3FD
0	Fade invalidity
1	Fade effective

D1	B2FD
0	Fade invalidity
1	Fade effective

D0	B1FD
0	Fade invalidity
1	Fade effective

LEDB2 compulsion ON/OFF setting

* Default

LEDB1 compulsion ON/OFF setting

* Default

LEDB3 fade function ON/OFF setting * Default

LEDB2 fade function ON/OFF setting

* Default

LEDB1 fade function ON/OFF setting * Default

	ADDRESS : Odh							
	D7	D6	D5	D4	D3	D2	D1	D0
register name	R1PWM[7]	R1PWM[6]	R1PWM[5]	R1PWM[4]	R1PWM[3]	R1PWM[2]	R1PWM[1]	R1PWM[0]
default	0	0	0	0	0	0	0	0

LEDR1 PWM Duty setting

D	Duty (\%)
00 h	0.0
ffh	99.6

(Default ALL0)

$$
\text { Duty }(\%)=\frac{\text { R1PWM[7:0] }}{256}
$$

	ADDRESS : Oeh							
	D7	D6	D5	D4	D3	D2	D1	D0
register name	G1PWM[7]	G1PWM[6]	G1PWM[5]	G1PWM[4]	G1PWM[3]	G1PWM[2]	G1PWM[1]	G1PWM[0]
default	0	0	0	0	0	0	0	0

LEDG1 PWM Duty setting

D	Duty (\%)
OOh	0.0
ffh	99.6

(Default ALL0)

$$
\text { Duty }(\%)=\frac{\text { G1PWM[7:0] }}{256}
$$

	ADDRESS : Ofh							
	D7	D6	D5	D4	D3	D2	D1	D0
register name	B1PWM[7]	B1PWM[6]	B1PWM[5]	B1PWM[4]	B1PWM[3]	B1PWM[2]	B1PWM[1]	B1PWM[0]
default	0	0	0	0	0	0	0	0

LEDB1 PWM Duty setting

D	Duty (\%)
00h	0.0
ffh	99.6

(Default ALL0)

$$
\text { Duty }(\%)=\frac{\text { B1PWM[7:0] }}{256}
$$

LV5234V

	ADDRESS : 10 h							
	D7	D6	D5	D4	D3	D2	D1	D0
register name	R2PWM[7]	R2PWM[6]	R2PWM[5]	R2PWM[4]	R2PWM[3]	R2PWM[2]	R2PWM[1]	R2PWM[0]
default	0	0	0	0	0	0	0	0

LEDR2 PWM Duty setting
(Default ALL0)

D	Duty (\%)
O0h	0.0
ffh	99.6

$$
\text { Duty }(\%)=\frac{\mathrm{R} 2 \mathrm{PWM}[7: 0]}{256}
$$

	ADDRESS : 11 h							
	D7	D6	D5	D4	D3	D2	D1	D0
register name	G2PWM[7]	G2PWM[6]	G2PWM[5]	G2PWM[4]	G2PWM[3]	G2PWM[2]	G2PWM[1]	G2PWM[0]
default	0	0	0	0	0	0	0	0

LEDG2 PWM Duty setting
(Default ALL0)

D	Duty (\%)
00 h	0.0
ffh	99.6

$$
\text { Duty }(\%)=\frac{\text { G2PWM[7:0] }}{256}
$$

	ADDRESS : 12h							
	D7	D6	D5	D4	D3	D2	D1	D0
register name	B2PWM[7]	B2PWM[6]	B2PWM[5]	B2PWM[4]	B2PWM[3]	B2PWM[2]	B2PWM[1]	B2PWM[0]
default	0	0	0	0	0	0	0	0

LEDB2 PWM Duty setting
(Default ALL0)

D	Duty (\%)
OOh	0.0
ffh	99.6

$$
\text { Duty }(\%)=\frac{\text { B2PWM[7:0] }}{256}
$$

	ADDRESS: 13h								
	D 7	D 6	D 5	D 4	D 3	D 2	D 1	D0	
register name	R3PWM[7]	R3PWM[6]	R3PWM[5]	R3PWM[4]	R3PWM[3]	R3PWM[2]	R3PWM[1]	R3PWM[0]	
default	0	0	0	0	0	0	0	0	

LEDR3 PWM Duty setting (DefaultALL0)

D	Duty (\%)
OOh	0.0
ffh	99.6

$$
\text { Duty }(\%)=\frac{\text { R3PWM[7:0] }}{256}
$$

	ADDRESS : 14h									
	D7	D6	D5	D4	D3	D2	D1	D0		
register name	G3PWM[7]	G3PWM[6]	G3PWM[5]	G3PWM[4]	G3PWM[3]	G3PWM[2]	G3PWM[1]	G3PWM[0]		
default	0	0	0	0	0	0	0	0		

LEDG3 PWM Duty setting
(Default ALL0)

D	Duty (\%)
00h	0.0
ffh	99.6

$$
\text { Duty }(\%)=\frac{\text { G3PWM[7:0] }}{256}
$$

	ADDRESS : 15h							
	D7	D6	D5	D4	D3	D2	D1	D0
register name	B3PWM[7]	B3PWM[6]	B3PWM[5]	B3PWM[4]	B3PWM[3]	B3PWM[2]	B3PWM[1]	B3PWM[0]
default	0	0	0	0	0	0	0	0

LEDB3 PWM Duty setting

D	Duty (\%)
00 h	0.0
ffh	99.6

(Default ALL0)

$$
\text { Duty }(\%)=\frac{\mathrm{B} 3 P W M[7: 0]}{256}
$$

- Table upper row: Register name

Table the lower: Default value

00h	A7	A6	A5	A4	A3	A2	A1	A0	D7	D6	D5	D4	D3	D2	D1	D0
	0	0	0	0	0	0	0	0	\times	PWM[2:0]			\times	\times	MAS	\times
									0	0	0	0	0	0	0	0
01h	0	0	0	0	0	0	0	1	\times	FOUT[2:0]			\times	FIN[2:0]		
									0	0	0	0	0	0	0	0
02h		0	0	0	0	0	1	0	\times	\times	\times	RLED[4:0]				
									0	0	0	0	0	0	0	0
03h		0	0	0	0	0	1	1	\times	\times	\times	GLED[4:0]				
									0	0	0	0	0	0	0	0
04h	0	0	0	0	0	1	0	0	\times	\times	\times	BLED[4:0]				
	0								0	0	0	0	0	0	0	0
05h		0	0	0	0	1	0	1	\times	B2ON	G2ON	R2ON	\times	B1ON	G10N	R1ON
									0	0	0	0	0	0	0	0
06h		0	0	0	0	1	1	0	\times	\times	\times	\times	\times	B3ON	G3ON	R3ON
									0	0	0	0	0	0	0	0
07h		0	0	0	0	1	1	1	\times	\times	R3PON[1:0]		R2PON[1:0]		R1PON[1:0]	
	0								0	0	0	0	0	0	0	0
		0	0	0	1	0	0	0	\times	\times	G3PON[1:0]		G2PON[1:0]		G1PON[1:0]	
									0	0	0	0	0	0	0	0
		0	0	0	1	0	0	1	\times	\times	B3PON[1:0]		B2PON[1:0]		B1PON[2:0]	
									0	0	0	0	0	0	0	0
Oah		0	0	0	1	0	1	0	\times	R3CM	R2CM	R1CM	\times	R3FD	R2FD	R1FD
									0	0	0	0	0	0	0	0
Obh	0	0	0	0	1	0	1	1	\times	G3CM	G2CM	G1CM	\times	G3FD	G2FD	G1FD
									0	0	0	0	0	0	0	0
									\times	B3CM	B2CM	B1CM	\times	B3FD	B2FD	B1FD
									0	0	0	0	0	0	0	0
0dh		0	0	0	1	1	0	1	R1PWM[7:0]							
									0	0	0	0	0	0	0	0
Oe		0	0	0	1	1	1	0	G1PWM[7:0]							
									0	0	0	0	0	0	0	0
	0	0	0	0	1	1	1	1	B1PWM[7:0]							
Ofh									0	0	0	0	0	0	0	0
	0	0	0	1	0	0	0	0	R2PWM[7:0]							
10									0	0	0	0	0	0	0	0
	0	0	0	1	0	0			G2PWM[7:0]							
11							0	1	0	0	0	0	0	0	0	0
	0	0	0	1	0				B2PWM[7:0]							
12						0	1	0	0	0	0	0	0	0	0	0
	0	0	0	1	0	0		1	R3PWM[7:0]							
13									0	0	0	0	0	0	0	0
	0			1	0							G3P	7:0]			
									0	0	0	0	0	0	0	0
												B3PV	7:0]			
,	0	0	0	1	0	1	0		0	0	0	0	0	0	0	0
				giste	addr											

ORDERING INFORMATION

Device	Package	Shipping (Qty / Packing)
LV5234V-MPB-H	SSOP30 (275mil) (Pb-Free / Halogen Free)	$48 /$ Fan-Fold
LV5234V-TLM-H	SSOP30 (275mil) (Pb-Free / Halogen Free)	$1000 /$ Tape \& Reel
LV5234VZ-MPB-H	SSOP30 (275mil) (Pb-Free / Halogen Free)	$48 /$ Fan-Fold
LV5234VZ-TLM-H	SSOP30 (275mil) (Pb-Free / Halogen Free)	$1000 /$ Tape \& Reel

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

[^0]: LEDB1 output setting

 * Default

