imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

LV8862JA

BI-CMOS LSI Single-phase FAN Motor Driver

Overview

LV8862JA is a driver IC used for single-phase fan motor. High-efficiency and low-noise are realized by reducing reactive power using Silent PWM. This IC's feature is low on-resistance 0.6Ω & High-efficiency. Therefore, it is optimal for high power fan motor and home appliance equipment.

Feature

- Single-phase full wave operation by Silent PWM drive
- Speed is controllable by PWM input
- Hall bias output pin
- Integrated Quick Start Circuit
- FG (rotation detection)/ RD (lock detection) output pin (open drain output)
- Integrated current limiter circuit (limit at Io=500mA with RL= 0.5Ω connection, limit value is determined based on Rf.)
- Integrated lock protector circuit and automatic recovery circuit
- Integrated thermal shut-down (TSD) circuit

Typical Applications

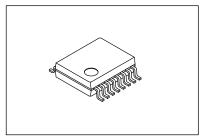
- Fan motor units
- Desk top PCs
- Refrigerator
- Projectors

Specifications

Absolute Maximum Ratings at $Ta = 25^{\circ}C$, GND = 0V

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	VCC max		20	V
OUT pin output current	IOUT max		1.5	Α
Output withstand	VOUT max		20	V
RD/FG output pin withstand	VRD/FG max		18	V
RD/FG output maximum current	IRD/FG max		10	mA
RGL output maximum current	IRGL max		5	mA
HB output maximum current	IHB max		10	mA
PWM input pin withstand	VPWM max		6	V
Allowable power dissipation	Pd max	On a specified board *1	0.8	W
Operating temperature	Topr	*2	-40 to + 95	°C
Storage temperature	Tstg		–55 to + 150	°C

*1 Specified board: 76.1mm x 114.3mm x 1.6mm, glass epoxy board


*2 Do not exceed Tjmax=150°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

ORDERING INFORMATION

See detailed ordering and shipping information on page 12 of this data sheet.

SSOP16 (225mil)

Parameter	Symbol	Conditions	Ratings	Unit
Operating supply voltage range	VCC op1	Recommended supply voltage range	3.6 to 16	V
Hall input common phase input voltage range	VICM		0.3 to VRGL-1.5	V
PWM pin input voltage range	PWM		0 to 5.5	V
SSW pin input voltage range	SSW		0 to VRGL	V
Input PWM frequency range	PWMF		20 to 50	kHz

Recommended Operating Conditions at Ta = 25 °C, GND = 0V

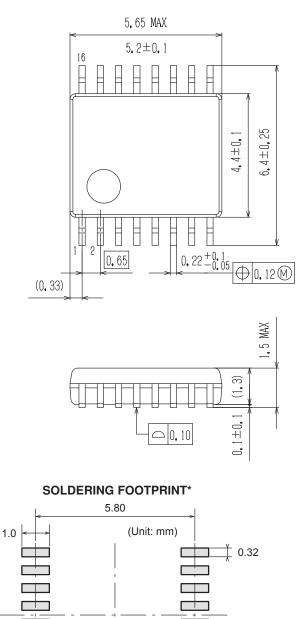
Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

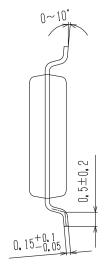
Electrical Characteristics at Ta = 25 °C, $V_{CC} = 12V$, GND = 0V

Devenueter	Querrale al	Conditions	Ratings			Unit
Parameter	Symbol	Conditions	min	typ	max	Unit
Circuit consumption current	ICC	Active		2.5	3.5	mA
Circuit consumption current	ICCo	Stand-by		2.0	3.0	mA
RGL pin output voltage	VRGL		3.0	3.15	3.3	V
HB pin output voltage	VHB	IHB=5mA	1.16	1.25	1.28	V
Output ON resistance	Ron	Io=1.0A, upper + lower ON resistance		0.6	0.8	Ω
Hall input bias current	IHIN				1.0	μA
Current limiter	VRF		220	250	280	mV
PWM pin input Low level	VPWML		0		1.0	V
PWM pin input High level	VPWMH		2.0		VRGL	V
PWM input minimum pulse width	TPWM		1			μSec
RD/FG output pin Low voltage	VRD/FG	IRD/FG=3mA		0.22	0.30	V
FG output leakage current	IRDL/FGL	VRD/FG=18V			10	μA
FG comparator hysteresis width	∆VHYS	including offset	±5	±12	±18	mV
Output ON time in Lock-detection	TACT		0.6	0.8	1.0	Sec
Output OFF time in Lock-detection	TDET		6	7.2	9	Sec
Output ON/OFF ratio in Lock-detection	TRTO	TRTO=TDET/TACT	7.5	9.0	11.0	
Thermal shutdown operating temperature	TSD	*Design guarantee		180		°C
Thermal shutdown hysteresis width	ΔTSD	*Design guarantee		40		°C

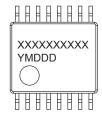
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

Truth table

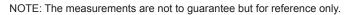

Operating state	IN1	IN2	PWM	OUT1	OUT2	FG	RD
Rotation – drive mode	L	н	н	Н	L	L	L
	Н	L		L	Н	OFF	L
Potation regeneration mode	L	н	L	L	L	L	L
Rotation – regeneration mode	Н	L		L	L	OFF	L
Lock protector	L	Н		OFF	L	L	OFF
	Н	L	_	L	OFF	OFF	OFF


Package Dimensions

unit : mm

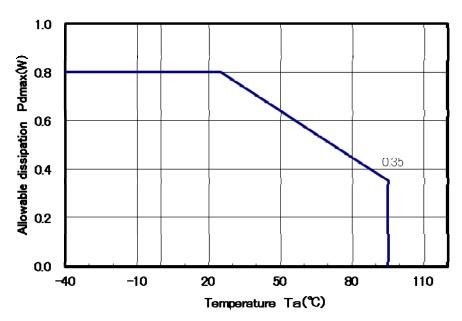

SSOP16 (225mil) CASE 565AM

ISSUE A

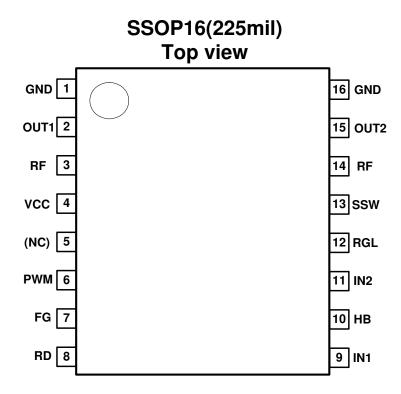


GENERIC MARKING DIAGRAM*

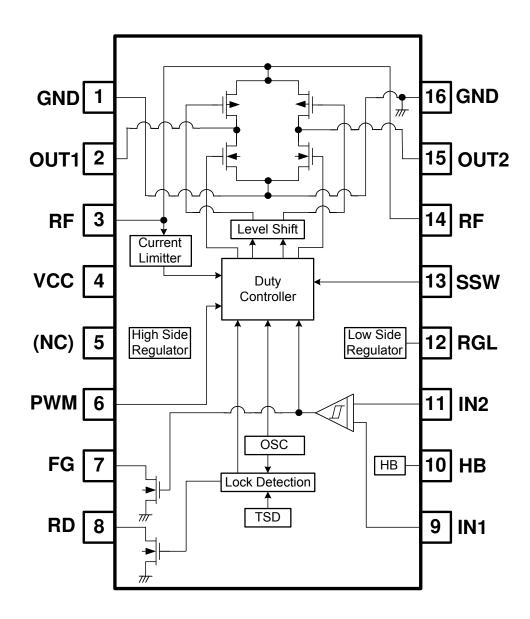
XXXXX = Specific Device Code Y = Year M = Month DDD = Additional Traceability Data


*This information is generic. Please refer to device data sheet for actual part marking. Pb–Free indicator, "G" or microdot " =", may or may not be present.

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.


0.65

Pdmax-Ta

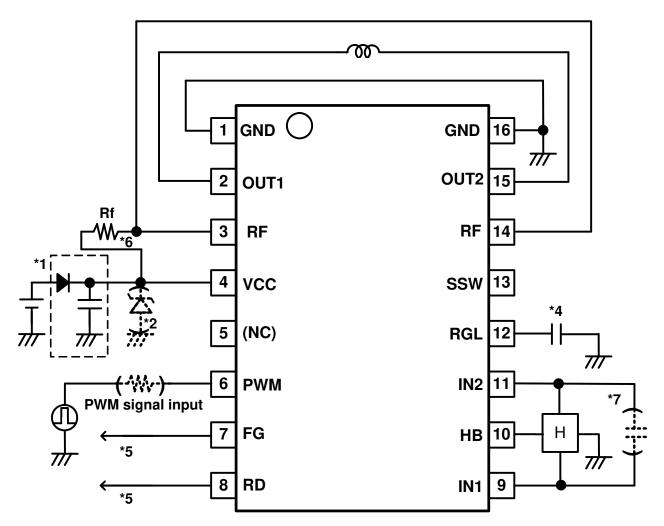


Specified board: 76.1mm x 114.3mm x 1.6mm, glass epoxy board

Pin Assignment

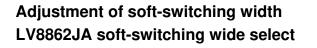
Block diagram

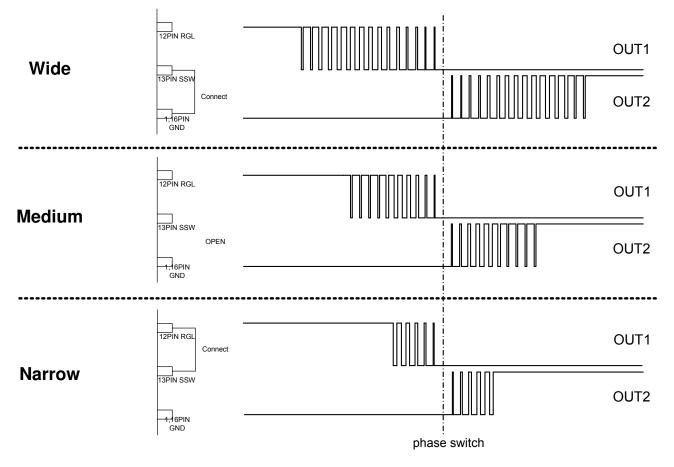
Pin function


*On cir	cuit board ,	$\stackrel{\frown}{\rightarrow}$ means VCC , \uparrow means RGL.	
No.	Pin name	Function	Equivalent circuit
2	OUT1	Output pin for motor driver	
15	0012		
3 14	RF	Resistive connection pin for current limiter	777
4	VCC	Power supply pin	
6	PWM	Input pin for PWM control *OPEN: pull up to High * When input is High → output is High When input is Low → output is Low	
7	FG	FG (rotation detection) pulse output pin	
8	RD	RD (lock detection) signal output pin *During rotation → output is Low During lock→ output is High	(8) <i>717 717</i>
9	IN1	Hall input + pin	
11	IN2	Hall input – pin	

*On circuit board , $\stackrel{\bigtriangleup}{\rightarrow}$ means VCC , \uparrow means RGL.

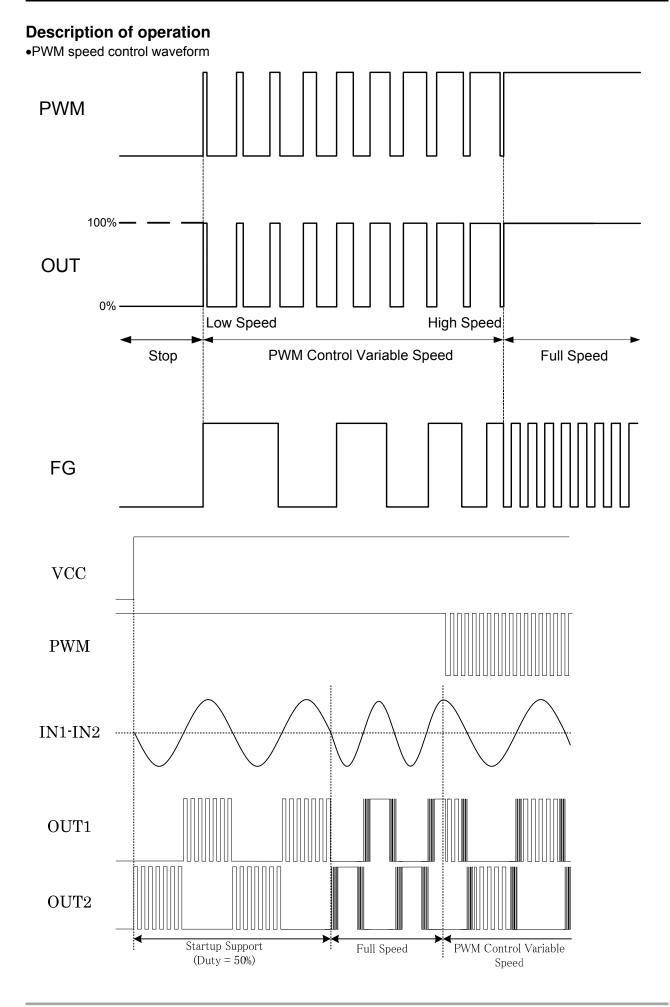
Continue to the next page

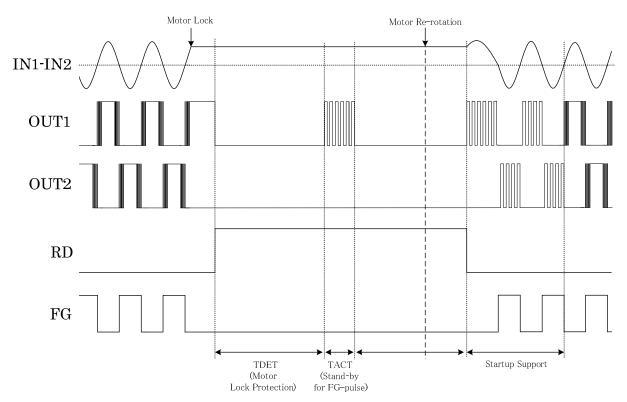

No.	e previous page Pin name	Function	Equivalent circuit
10	HB	Hall bias output pin	
12	RGL	Regulator voltage output pin for internal circuit and lower output Tr driver	
13	SSW	Voltage input pin for control between soft switches *OPEN: pin voltage is middle. *Soft switch zone is changed by short to RGL or GND.	
1 16	GND	Ground pin	
3 14	RF	Resistive connection pin for current limiter	


Sample application circuit

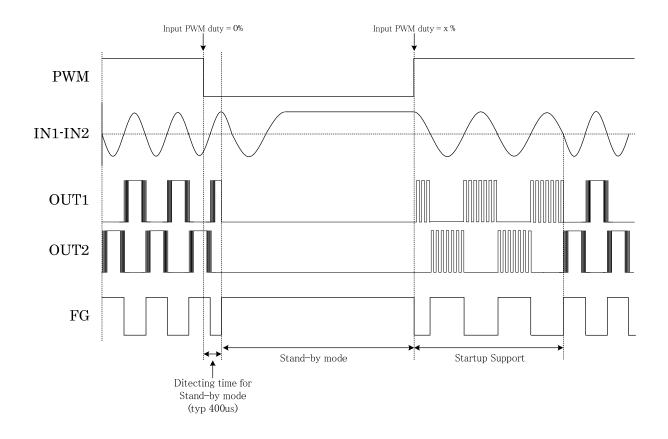
- *1 When diode Di is used to prevent destruction of IC from reverse connection, make sure to implement the large capacitor Cr to secure regenerative current route.
- *2 If kickback at a phase change is greater, insert zener diode between GND and VCC or implement the larger capacitor between GND and VCC mentioned in *1.
- *4 Make sure to implement enough capacitance 0.1uF or higher between RGL pin and GND pin for stable performance.
- *5 FG pin and RD pin are open drain output. Keep the pins open when unused.
- *6 The current limiter is activated when the current detection resistor voltage exceeds 250mV between RF and VCC. Where RL= 0.5Ω , current limiter is activated at Io=500mA. Setting is made using Rf resistance.
- *7 Hall element outputs stable hall signal with good temperature characteristic when it is biased with constant voltage from HB pin. If you wish to alleviate heating of IC, do not use HB pin. When you do not use this Pin (Pin HB), pull down with resistor of around $10k\Omega$ (recommended).

To defend signal against the noise, it is necessary to wire as short as possible from hall sensor to each pin and to connect the capacitor between IN1 and IN2. Value from 1,000pF to 10,000pF is recommended for the capacitor. But its value should be selected in consideration with the actual motor action.




LV8862JA realizes high efficiency and low noise by controlling reactive power using soft switch before and after phase switch by variable PWM-duty.

The width of soft switch before and after switching is controlled by SSW pin voltage. Therefore, it is adjustable by connecting to SSW and RGL or GND or open.


When the motor rotation speed is very high, there is possibility to show unstable soft-switching waveform.

Lock protection operation waveform

•Stand-by mode operation waveform

ORDERING INFORMATION

Device	Package	Shipping (Qty / Packing)
LV8862JA-AH	SSOP16 (225mil) (Pb-Free / Halogen Free)	2000 / Tape & Reel

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products harmes against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, direc