

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

LX2172/73

1.25A HIGH-EFFICIENCY 100kHz SWITCHING REGULATOR

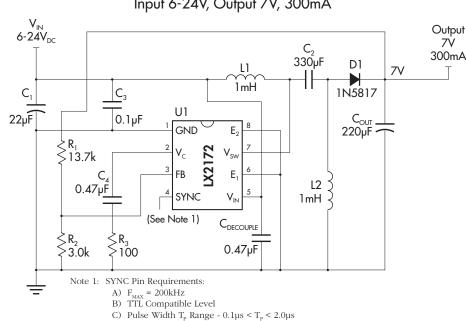
THE INFINITE POWER OF INNOVATION

PRELIMINARY DATA SHEET

DESCRIPTION

The LX2172/73 are fixed-frequency, current-mode switching regulator integrated circuits. These ICs contain all necessary control circuitry plus a 1.25A on-board transistor to design a complete DC:DC switching regulator with minimum external components.

All functions are integrated into a single IC, available in 8-pin DIP and SOIC or a 5-pin TO-220 power package, making them extremely easy to design with and use. The LX2172/73 are optimized for


boost and flyback applications, but can also be used in forward and inverting converter configuations.

The LX2172 can be connected to an external clock for synchronization, and can enter micropower operation when the $\rm V_{\rm c}$ pin is pulled low. The LX2173 has an enable function, which permits extremely low micropower operation, consuming under 10 μ A current when the ENABLE pin is brought low.

NOTE: For current data & package dimensions, visit our web site: http://www.linfinity.com.

PRODUCT HIGHLIGHT

SEPIC CONVERTER USING THE LX2172 Input 6-24V, Output 7V, 300mA

KEY FEATURES

- 1.25A, 65V Internal Power Switch
- 3V 25V Input Voltage Range
- Current-Mode Operation
- Improved Internal Cycle-By-Cycle Current Limiting
- Thermal Shutdown
- Less Than 10µA Quiescent Current In Microprocessor Shutdown Mode
- External Frequency Synchronization Possible
- 100kHz Operating Frequency

APPLICATIONS

- Boost Converter
- Laptop / Notebook Computers
- Portable Equipment
- Small Motor Applications
- Flyback Converters

AVAILABLE OPTIONS PER PART #

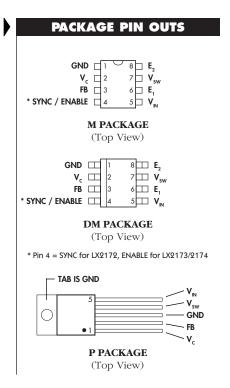
Part #	Pin 4 Connections
LX2172	SYNC Input
LX2173	Low µPower Mode (HI ENABLE)

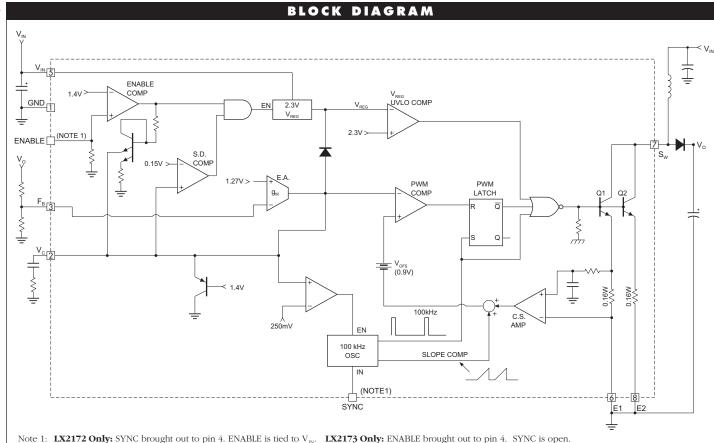
= Samples Not Yet Available.

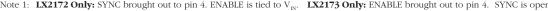
PACKAGE ORDER INFORMATION					
T _A (°C)	M Plastic DIP 8-pin	DM Plastic SOIC 8-pin	Plastic TO-220 5-pin		
0 to 70	LX217xCM	LX217xCDM	LX217xCP		

Note: All surface-mount packages are available in Tape & Reel. Append the letter "T" to part number. (i.e. LX217xCDMT)

1.25A HIGH-EFFICIENCY 100kHz SWITCHING REGULATOR


Preliminary Data


ABSOLUTE MAXIMUM RATINGS Digital Inputs (SYNC)-0.3 to 7V Storage Temperature Range-65°C to +150°C Note 1. Exceeding these ratings could cause damage to the device. All voltages are with respect


to Ground. Currents are positive into, negative out of the specified terminal. THERMAL DATA M PACKAGE: THERMAL RESISTANCE-JUNCTION TO AMBIENT, 0, **DM PACKAGE:** THERMAL RESISTANCE-JUNCTION TO AMBIENT, θ , P PACKAGE: THERMAL RESISTANCE-JUNCTION TO TAB, $\theta_{_{\rm IT}}$ 4.5°C/W THERMAL RESISTANCE-JUNCTION TO AMBIENT, θ

Junction Temperature Calculation: $T_{I} = T_{A} + (P_{D} \times \theta_{IA}).$

The θ_{1A} numbers are guidelines for the thermal performance of the device/pc-board system. All of the above assume no ambient airflow.

1.25A HIGH-EFFICIENCY 100KHZ SWITCHING REGULATOR

PRELIMINARY DATA SHEET

ELECTRICAL CHARACTERISTICS

(Unless otherwise specified, these specifications apply over the ranges $T_A = 0$ to 70°C for the LX217xC. $V_{IN} = V_C = 5V$. All devices must be functional over junction temperature of -65°C to 150°C. Typ. number represents $T_A = 25$ °C value.)

Parameter	Symbol	Test Conditions		2172 / 2 ⁻		Units
	7,		Min.	Тур.	Max.	
Reference Section						
Initial Accuracy	V _{REF}	$T_J = 25$ °C, Measured at FB pin	1.224	1.244	1.264	٧
	' REF	Over Temperature, Measured at FB pin	1.214	1.244	1.274	٧
Line Regulation		$3V < V_{cc} < 25V$		0.03		% / V
Oscillator Section						
Switching Frequency		T _A = 25°C	90	100	110	kHz
	f	Over Temperature	85	100	115	kHz
Line Voltage Stability		V _{IN} = 3V to 25V			±5	%
Error Amplifier Section	'		•	•		
Input Bias Current		$T_J = 25$ °C; $V_{FB} = V_{REF}$		350	750	nA
	I _B	Over Temperature			1100	nA
Open Loop Gain	A _{VOL}	,		500	1000	V / V
Transconductance	S _m	$T_J = 25$ °C; $V_{FB} = V_{REF}$; $\Delta I = \pm 25\mu A$	3000	4400	6000	μМНС
	J _m	Over Temperature	2400		7000	µMHC
Output Sink Current	I _{EA (SINK)}		120	200		μA
Output Source Current	I _{EA (SOURCE)}		120			μA
Output HI Voltage	V _{COURT}	V _{FB} = 1V	1.8	2.1	2.3	v
Output LO Voltage		V _{FB} = 1.5V	0.2	0.3	0.52	٧
Slew Rate	S	The state of the s		2		V/µse
C.S. Comparator Section			 	1	1	
C.S. Delay to Driver Output		10% Over drive GBNT		100		ns
V _c to Output Transconductance				2		A/V
PWM Section	I	I	I		1	
E.A. Output to PWM Drive Offset (VPWM)	V _{OFS}	Duty Cycle = 0	0.6	1.2	1.25	V
Minimum Duty Cycle	OFS			36	40	%
Maximum Duty Cycle			80	90	98	%
Output Drive Section	l l		1			,
Output Switch Breakdown Voltage		I _{sw} = 1.5mA	65			V
Output Switch On Resistance	R _{ON}	I _O = 2A	- 05	0.4	0.6	Ω
Switch Current Limit	TON	D.C = 50%	1.25	1.7	2.8	A
oviter carrone since	I _{LIM}	50% < D.C < 80%	1.0	1.5	2.0	A
Total Switching Loss (On Time + Off Time)		$V_N = 25V$, D.C = 50%, $I_0 = 1A$, $V_{sw} = 60V$	1.0	100	2.0	mW
Input Supply Section		1 · N 20 · / 5 · C = 50 /5 / 10 = 17 · / · SW = 50 ·			1	1
Start-Up Threshold			2.2	2.7	2.9	V
		ENABLE = HI, $V_c = 0.6V$, $I_O = 0A$	7.7	5	8	mA
V _c Shutdown Threshold	I _Q		100	150	260	mV
Y _C SHULGOWH THESHOLD		$3V < V_N < V_{MAX}, T_J = 25^{\circ}C$	50	130	300	mv mV
Sleen Mode Current		3V < V _{IN} < V _{MAX} , Over Temperature	50	100	300	
Sleep Mode Current		ENABLE = HI, $V_c = 50 \text{mV}$ ENABLE = LO (LX2173 only)		5		μA

1.25A HIGH-EFFICIENCY 100KHz SWITCHING REGULATOR

PRELIMINARY DATA SHEET

ELECTRICAL CHARACTERISTICS						
Parameter	Symbol Test Conditions	LX2172 / 2173			Units	
raidilletei	Sylliooi	rest conditions	Min.	Тур.	Max.	Ullits
SYNC Input Section (LX2172 only)						
SYNC Pulse Width			0.2		2	µsec
SYNC Input HI			2		6	٧
SYNC Input LO					0.7	٧
SYNC Input Current HI Input :		Input = 2V		100	400	μΑ
SYNC Input Current LO Ir		Input = 0.4V		1	5	μΑ
ENABLE Section (LX2173 only)						
Enable Input Threshold			0.4	1.2	2.4	٧
HI Input Current		Input = 2.4V			200	μΑ
LO Input Current		Input = 0.4V			100	μA

			FUNCTIONAL PIN DESCRIPTION
Pin Name	Pin # (8-pin Pkgs.)	Pin # (5-pin TO-220)	Description
GND	1	3	Signal ground. Keep separate from power grounds $(E_1 \text{ and } E_2)$.
V _c	2	1	Output of transconductance error amplifier. An R-C compensation network is connected from this pin to the ground to stabilize the feedback loop. If this pin is pulled lower than 0.15V, the IC goes into micropower mode.
FB	3	2	Error amplifier inverting input. A resistor divider from the output of the converter to this pin sets its nominal voltage.
SYNC	4		LX2172 only. This pin is used to synchronize the device directly with a logic level input pulse. External synchronization frequency must always be at a higher frequency than the minimum internal clock. When not used, should be left open.
ENABLE	4		LX2173 only. This pin is the input to the enable comparator. A voltage under 1.4V will put the device in micropower mode. Pin must be connected to $V_{\rm IN}$ when not in use.
V _{IN}	5	5	Input supply voltage (3.0V to 25V).
E,	6		Power return of first transistor (Q_1) . This pin must be connected to ground.
V _{sw}	7	4	$\label{lem:constraint} Collector\ of\ output\ transistors.\ Connect\ to\ external\ inductor\ or\ input\ voltage,\ depending\ on\ circuit\ topology.$
E ₂	8		Grounding this pin sets the current limit point to the maximum value. If pin is left open, the current limit is set to half its maximum value.

1.25A HIGH-EFFICIENCY 100KHZ SWITCHING REGULATOR

PRELIMINARY DATA SHEET

THEORY OF OPERATION

IC OPERATION

Referring to the block diagram, when $V_{\rm IN}$ is above the UVLO start threshold the 2.3V UVLO comparator output switches to low state, allowing Q1 to turn on upon receiving a clock pulse from the internal 100kHz oscillator. Once Q1 is on, current in the inductor ramps up. Inductor current is then sensed, and amplified by a current sense amplifier and compared to a threshold set by the output of the error amplifier minus the offset voltage ($V_{\rm OFS}$ typically 0.9V). This allows the PWM comparator to reset the flip flop, causing Q1 to turn off. The oscillator then sets the flip flop, and the operation repeats itself.

CURRENT LIMIT

Current limiting is performed by sensing the peak switch current and turning Q1 off until the next clock cycle. When the converter goes into current limit the error amplifier output goes to the rail and sets a maximum limit on the current.

ERROR AMPLIFIER

The function of the error amplifier is to set a threshold voltage for inductor peak current and control the switch duty cycle so that the power supply output voltage is closely regulated. Regulation is accomplished by sensing the output voltage and comparing it to the internal 1.27V bandgap reference. A compensation network is placed from the output of the amplifier to ground for closed loop stability purposes, as well as a high d.c. gain for tight regulation. The function of $V_{\rm OFS}$ is to keep Q1 off without requiring an error amplifier output to swing to ground level. It is required the $V_{\rm OL}$ of the error amplifier is always less than the offset at all times. The transfer function between the error amplifier output $(V_{\rm C})$ and peak inductor current is therefore given by:

$$V_{C} - V_{OFS} = I_{P} * G * R_{S}$$

Where: $I_p = Inductor peak current$

G = Current sense gain (typically 6)

 R_s = Internal sense resistor

OSCILLATOR

The oscillator is designed to operate at 100kHz frequency. Its function is to turn the switch Q1 on at a fixed 10µs interval and to provide a slope compensation for the feedback loop. Slope compensation is required for fixed frequency continuous Current Mode regulators operating above 50% duty cycle in order to prevent loop instability. The SYNC input is a logic input that allows easy synchronization to an external clock. Synchronization is done such that the external clock terminates the cycle before the internal oscillator sets the PWM latch again.

UNDER-VOLTAGE LOCKOUT

The 2.3V internal regulator is monitored as the input supply ramps up, ensuring glitch-free operation.

EXTRA PINS ON 8-PIN DEVICE

The 8-pin versions of the LX217x have the emitters of the power transistors brought out separately. Connecting these pins to ground reduces errors due to ground pin voltage drops. The $\rm E_2$ pin also allows the user to half the switch current limit if the pin is left open. Note that the switch resistance will increase when $\rm E_2$ is open, so efficiency will decrease and heat dissipation will increase, especially for currents over 300mA.

MICROPOWER SHUTDOWN

The LX2172/73 enter micropower shutdown mode when the $V_{\rm C}$ pin is pulled below 0.15V. Supply current required for biassing shutdown circuitry is less than 250 μA . The LX2173 has an ENABLE pin which allows ultra-low micropower shutdown operation, consuming less than $10\mu A$.

1.25A HIGH-EFFICIENCY 100kHz SWITCHING REGULATOR

PRELIMINARY DATA SHEET

THEORY OF OPERATION

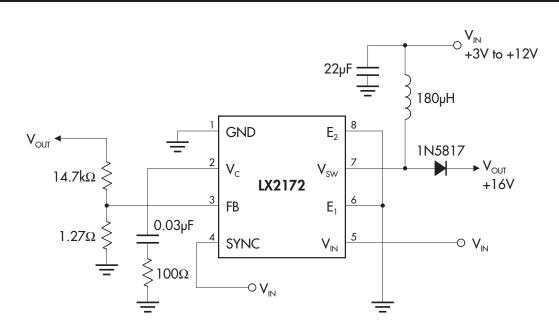


FIGURE 1 — Boost Coverter Circuit Using The LX2172 / 2173

PRELIMINARY DATA - Information contained in this document is pre-production data, and is proprietary to Linfinity. It may not modified in any way without the express written consent of Linfinity. Product referred to herein is offered in sample form only, and Linfinity reserves the right to change or discontinue this proposed product at any time.

