: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

DESCRIPTION

The LX2260 is a high brightness multichannel LED driver, designed for automotive display illumination. It offers the designer a high degree of flexibility to accommodate different LED configurations (white or RGB), drive currents, input and output voltages while providing a high degree of control, protection and fault management of the system.

The LX2260 is very well suited for applications where high brightness LED backlighting is combined with a wide dimming range and high reliability such as in Automotive Infotainment, Marine or Cockpit applications.

The LX2260 driver supports up to 4 independent LED strings and can be integrated in systems supporting up to 40 W . The drive current of each string can be programmed up to 500 mA , with a typical channel-to-channel matching accuracy within ± 1.5 percent. The FETs of the boost converter and each LED current sink are external to provide the flexibility and scalability to accommodate a variety of LED configurations as well as to provide optimal thermal management of the system.

Dimming inputs providing either independent control of several white LED strings or color mixing capability for optimal light temperature control. PWM frequency of up to 25 kHz is supported to avoid audible noise.

The LX2260 has the unique capability to automatically adjust its operation according to the instantaneous input and output voltage requirements to operate in a boost, buck-boost, or buck converter mode (this is not a traditional buck/boost circuit) thus automatically maintaining the optimally chosen LED current regulation.

Fault conditions can be reported through a digital 2 wires serial bus interface (I2C and SMBus compatible) and include LED short, LED open, and IC over temperature indicators as well as information about the LED string voltage.

The IC also provides externally programmable LED current rise and fall time that can be used to optimize system EMI.
The LX2260 is designed to provide protection as well as continued operation in case of several fault conditions (StayLIT ${ }^{\text {TM }}$). Among the protection features we offer output short circuit protection, over-voltage protection, and over-temperature shutdown. In addition, with the use of an external thermistor to sense the LED temperature, the LED current can be compensated to stay within a given LED temperature profile.

IMPORTANT: For the most current data, consult MICROSEMI's website:
http://www.microsemi.com;

	PACKAGE ORDER INFO	THERMAL DATA
$\mathrm{T}_{\mathrm{A}}\left({ }^{\circ} \mathrm{C}\right)$	LQ Plastic $5 \times 7 \mathrm{~mm}{ }^{2}$ QFN 38-pin	$\theta_{\mathrm{JA}}=19.3{ }^{\circ} \mathrm{C} / \mathrm{W}$
	RoHS Compliant / Pb-free	THERMAL RESISTANCE-JUNCTION TO AMBIENT
$\begin{gathered} -40^{\circ} \mathrm{C} \text { to } \\ 85^{\circ} \mathrm{C} \end{gathered}$	LX2260ILQ	Junction Temperature Calculation: $\mathrm{TJ}=\mathrm{TA}+(\mathrm{PD} x \theta \mathrm{jA})$. The $\theta \mathrm{JA}$ numbers are guidelines for the thermal performance of the
Note: Available in Tape \& Reel. Append the letters "TR" to the part number. (i.e. LX2260ILQ-TR)		device/pc-board system. All of the above assume no ambient airflow.

ABSOLUTE MAXIMUM RATINGS

Supply Input Voltage VCC, Sense, PFET,VH,VD1-4, EN, VLED-0.3V to 44V
VH to VCC ... - 6V
VL to GND .. 0.3 V to 6 V
SDA, SCLK, PWM1-4, FFLAG..-0.3V to 6V
All other pins... 0.3 V to VL+0.3V
Maximum Junction Temperature .. $150^{\circ} \mathrm{C}$
Storage Temperature Range... $65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Peak Package Solder Reflow Temperature (40 seconds maximum exposure)........... $260^{\circ} \mathrm{C}$

Notes: Exceeding these ratings could cause damage to the device. All voltages are with respect to GND. Currents are positive into, negative out of specified terminal. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" are not implied. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability.

FUNCTIONAL PIN DESCRIPTION

Pin Name	Pin \#	Description
GND	1	GND pin: The external NFET for DC-DC converter should return to this GND
ICOMP	2	Power converters current slope compensation. Connect a resistor from this pin to GND to compensate current slope. See "slope compensation section" for detail.
COMPT	3	Boost Mode Compensation: Connect a resistor from this pin and the junction of the COMPK resistor and capacitor for auto tri-mode design.
COMPK	4	Buck and Buck-Boost mode Compensation. Connect a capacitor in series with a resistor across this pin and GND. If needed, another capacitor connected from this pin to GND for type II compensation
CSS	5	Feedback Soft-start: Connect a capacitor 4.7
VL typical from this pin and GND.		
OT/ADIM	7	8
FS power supply output - Power Pin - Provides a regulated 5V typical to the internal and external 5V		
circuits. Typical 2mA current source for external use.		

Production Datasheet

FUNCTIONAL PIN DESCRIPTION		
Pin Name	Pin \#	Description
SLOPE	10	LED current rise/fall time programmable pin. Connect a resistor from this pin to GND to program LED current rise/fall time for EMI purpose. If not used, tie this pin to 5 V .
SDA	11	Serial Data In/Output. Read data for fault conditions, LED string status via drain voltage, VLED voltage. SDA also can be used to set the LED peak current amplitude by writing to register 08h. Connect to GND if SDA is not used.
SCLK	12	Serial Clock Input. Maximum clock is 100 kHz . Connect to GND if not used.
FFLAG	13	Fault signal output. Open drain output. This pin goes low when a fault condition is detected.
PWM1-4	14-17	Pulse Width Modulated dimming signal - Signal input. PWM input can be tied together for a common PWM signal or use for individual PWM control.
ADR	18	Address Setting: connect to VL, GND or leave it open for three different address choices. Refer to the address table below.
GND	19	GND pin
IS1-4	$\begin{aligned} & 20,23 \\ & 26,29 \end{aligned}$	LED current setting. - Program this pin with an external resistor to set the LED current with 300 mV internal reference voltage. I-LED $=300 \mathrm{mV} / \mathrm{R}_{\text {IS }}$
VG1-4	$\begin{aligned} & 21,24 \\ & 27,30 \end{aligned}$	Gate Drive - CMOS Output Pin: Connect to the gate of the external NMOSFET current sink. Any unused pins must be tied to ground to distinguish between intentionally unused and LED failed open.
VD1-4	$\begin{aligned} & 22,25, \\ & 28,31 \end{aligned}$	Drain - Signal Pin - This connects to Drain pin of the external N-MOSFET switch. The boost output voltage regulates based on the lowest VD , and the lowest voltage is kept at 0.9 V (typical). Any unused pins can be left open.
OVP	32	Over Voltage Protection - Signal input: An external voltage divider sets the maximum LED voltage. System will stop switching when OVP limit hits, and resume when it goes lower than the limit.
VLED	33	LED voltage. Connect this pin directly to common anode strings voltage.
DRV	34	Low-side NFET gate drive: Connect to the gate of the N -channel MOSFET
PFET	35	High-side PMOS gate drive: Connect to gate of a PFET. When the boost output short detected or EN signal low, PFET will open. Otherwise, PFET is a converter switch in buck or buck-boost mode.
VH	36	High side power rail. Connect a $1 \mu \mathrm{~F} 10 \mathrm{~V}$ capacitor from this pin to VCC.
SENSE	37	Converters current sense negative pin. The differential input voltage across $\mathrm{R}_{\text {SENSE }}$ resistor used to set the peak inductor current. Use Kelvin connection directly to the RSENSE output side
VCC	38	Power supply input - Provides power to the IC. Must be closely decoupled to ground with ceramic capacitors.

SIMPLIFIED BLOCK DIAGRAM

Production Datasheet

ELECTRICAL CHARACTERISTICS

Unless otherwise specified, the following specifications apply over the operating ambient temperature of $-40^{\circ} \mathrm{C} \leq T_{A} \leq 85^{\circ} \mathrm{C}$ and the following test conditions: $\mathrm{VCC}=12 \mathrm{~V} ; \mathrm{V}_{\mathrm{OT}}=0 \mathrm{~V}, \mathrm{EN}=3 \mathrm{~V}, \mathrm{R}_{\mathrm{FS}}=100 \mathrm{k} \Omega$, $\mathrm{R}_{\text {SLOPE }}=82.5 \mathrm{k} \Omega$, Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

Parameter	Symbol	Test Conditions / Comment	Min	Typ	Max	Units
Input Power Supply						
Input Voltage	Vcc	Withstand voltage VCC $=40 \mathrm{~V}$	6		28	v
Quiescent current	ICCon	EN $>2 \mathrm{~V}$, No PFET \& NFET connected			10	mA
Sleep current	ICC ${ }_{\text {sLEEP }}$	$\mathrm{EN}<0.8 \mathrm{~V}, \mathrm{VCC}=28 \mathrm{~V}$			25	$\mu \mathrm{A}$
Control and Logic						
EN Logic High	$\mathrm{V}_{\text {Enh }}$		2			V
EN Logic Low	$\mathrm{V}_{\text {ENL }}$				0.8	V
EN Current High	IENH	$\mathrm{EN}=3.3 \mathrm{~V}$			5	$\mu \mathrm{A}$
EN Current Low	$\mathrm{I}_{\text {en-L }}$	EN < 0.8V			5	$\mu \mathrm{A}$
Address High Input	$\mathrm{V}_{\text {ADRH }}$		VL-0.8			V
Address Low Input	$V_{\text {ADRL }}$				0.8	V
Address Open	$\mathrm{V}_{\text {ADRO }}$			VL/2		V
Address Input Low Current	$\mathrm{I}_{\text {ADRH }}$		-20	-7		$\mu \mathrm{A}$
Address Input High Current	$\mathrm{I}_{\text {ADRL }}$			7	20	$\mu \mathrm{A}$
FFLAG Output Low Voltage	$\mathrm{V}_{\text {FFLAGH }}$	$\mathrm{l}_{\text {LOAD }}=3 \mathrm{~mA}$			0.4	V
FFLAG Output High Leakage Current	$V_{\text {fFLagl }}$	$\mathrm{V}_{\text {FFLAG }}=5.5 \mathrm{~V}$			10	$\mu \mathrm{A}$

DC/DC PWM Error Amplifier

Peak Output Current	lout		+/-40	$\mu \mathrm{A}$
Output Resistance	Rout		4000	k Ω
Forward Transconductance	gm	At EA inputs (lout/($\mathrm{V}_{\text {LEd }} / 20-\mathrm{V}_{\text {css }}$)	120	$\mu \mathrm{mho}$
COMP Switch On Resistance		$\mathrm{V}_{\text {COMPT }}=\mathrm{V}_{\text {COMPK }}=1.6 \mathrm{~V}$	0.5	k Ω

Soft Start/Drain Voltage Sense Error Amplifier

CSS Source Sink Peak Current	Icss	Lowest VD > 700mV		+/-20		$\mu \mathrm{A}$
		Lowest VD $<700 \mathrm{mV}$		120		
Forward Transconductance	gm			80		$\mu \mathrm{mho}$
Output Resistance				5000		$\mathrm{k} \Omega$
Valid Output Voltage Range	$\mathrm{V}_{\text {css }}$	$1 / 20$ of $\mathrm{V}_{\text {LED }}$	0.5		2	V
Start Up Time	Tsu	$\mathrm{C}_{\mathrm{css}}=2.2 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{ISx}}=2 \Omega, \mathrm{~V}_{\mathrm{IS}} \text { setting } 300 \mathrm{mV} \text {, }$ 100% PWM, at IS voltage > 90%		5	20	mS
Pulse Width Modulation Input						
PWM Input Low Voltage	VPWM_L				0.8	V

Microsemi

Production Datasheet

ELECTRICAL CHARACTERISTICS

Unless otherwise specified, the following specifications apply over the operating ambient temperature of $-40^{\circ} \mathrm{C} \leq T_{A} \leq 85^{\circ} \mathrm{C}$ and the following test conditions: $\mathrm{VCC}=12 \mathrm{~V} ; \mathrm{V}_{\text {OT }}=0 \mathrm{~V}, \mathrm{EN}=3 \mathrm{~V}, \mathrm{R}_{\mathrm{FS}}=100 \mathrm{k} \Omega$, $\mathrm{R}_{\text {SLOPE }}=82.5 \mathrm{k} \Omega$, Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

Parameter	Symbol	Test Conditions / Comment	Min	Typ	Max	Units
PWM Input High Voltage	VPWM_H		2			V
PWM Input Frequency	$\mathrm{F}_{\text {PWM }}$		0.1		25	kHz
Minimum PWM Pulse Width	PWM ${ }_{\text {MIN }}$	Digital Dimming; SLOPE = VL	2			$\begin{gathered} \mu \mathrm{s} \\ +2 \mathrm{t}_{\mathrm{R}} \\ \text { or } \mathrm{t}_{\mathrm{F}} \end{gathered}$
		Adjustable Slope Option to set t_{R} and t_{F}	2.5			
PWM Input Pull-down Resistor	PWM ${ }_{\text {R }}$			100		$\mathrm{k} \Omega$
PWM Input to Output Delay$\left(\mathrm{V}_{\text {IS }}=\mathrm{High}\right)$		SLOPE $=\mathrm{VLL}$ (minimum $\mathrm{t}_{\mathrm{R}}, \mathrm{t}_{\mathrm{F}}$)		6.5		$\mu \mathrm{s}$
		$\mathrm{R}_{\text {SLOPE }}=82.5 \mathrm{k} \Omega\left(\mathrm{t}_{\left.\mathrm{R}, \mathrm{t}_{\mathrm{F}} \sim 4 \mu \mathrm{~S}\right)}\right.$		9		$\mu \mathrm{s}$

Device Protection

OVP Threshold Voltage	$\mathrm{V}_{\text {TH OVP }}$	
Over Temperature Shutdown	TovT-SHDN	Ris at
Shut Down Recovery	T RECOVERY	At
Over Temperature Warning	ToVT-WARN	Ris at
Clear Warning		At
Load Dump Protection	V ISET	$\mathrm{V}_{\text {IS }}$ $\mathrm{V}_{\text {IN }}$ Fo

LED Current Output

Sink Current Overshoot	$\mathrm{V}_{\text {ISET OVERS }}$
Sink Current Over/Under shoot in transition mode	$\mathrm{V}_{\text {ISET }}$
V-source Pk-Pk Matching Among Strings	$\mathrm{V}_{\text {ISET 150 }}$
Maximum IS voltage	$\mathrm{V}_{\text {ISx }}$
Minimum VD regulation	V_{Dx}
IS Input Bias Current	$\mathrm{I}_{\text {IS }}$
DC Gain	A_{OL}

$\mathrm{V}_{\text {IS }}$ setting at 100%, PWM Dimming For Design Reference Only			5	\%
$\mathrm{V}_{\text {IS }}$ setting at 100%, buck-boost transition. $\mathrm{V}_{\mathrm{IN}}: 10 \mathrm{~V} \Leftrightarrow 32 \mathrm{~V}, \mathrm{dV} / \mathrm{dt}=1 \mathrm{~V} / \mathrm{msec}$ For Design Reference Only			10	\%
$\begin{aligned} & \mathrm{R}_{\text {sense }}=2 \Omega, \quad 0.8 \mathrm{~V} \leq \mathrm{VD} \leq 3 \mathrm{~V} \text { (note } 1 \text {) } \\ & \mathrm{T}_{\text {AMB }}=25^{\circ} \mathrm{C}, \mathrm{PWM}=100 \% \text { duty cycle } \end{aligned}$			1.5	\%
$\mathrm{F}_{\text {PWM }}=200 \mathrm{~Hz}, \mathrm{PWM}=25 \%$ duty cycle			3	\%
$\mathrm{R}_{\text {sense }}=2 \Omega$, Average of the four outputs	291		309	mV
$\mathrm{R}_{\text {sense }}=2 \Omega$, Each outputs	286.6		313.6	mV
At the lowest VD pin, $\mathrm{I}_{\mathrm{DS}}=150 \mathrm{~mA}$	800		1000	mV
$\mathrm{V}_{\text {IS }}=300 \mathrm{mV}$			300	nA
		80		dB
VG voltage that maintains DC accuracy	1.5		4	V
			0.1	V
$\mathrm{V}_{\mathrm{VG}}=2.5 \mathrm{~V}, \mathrm{~V}_{\text {IS }}=0.4 \mathrm{~V}, \mathrm{PWM}=\mathrm{HIGH}$		-7		mA
$\mathrm{V}_{\mathrm{VG}}=2.5 \mathrm{~V}, \mathrm{~V}_{\text {IS }}=0.2 \mathrm{~V}, \mathrm{PWM}=\mathrm{HIGH}$		7		mA

Current Source Driver Opamp

On State VG Voltage Range	$\mathrm{VG}_{\text {RANGE }}$
Off State VG Voltage	$\mathrm{VG}_{\text {OFF }}$
VG Sink Current	$\mathrm{VG}_{\text {SNK }}$
VG Source Current	$\mathrm{VG}_{\text {SRC }}$

Microsemi

Page 6

Production Datasheet

ELECTRICAL CHARACTERISTICS

Unless otherwise specified, the following specifications apply over the operating ambient temperature of $-40^{\circ} \mathrm{C} \leq T_{A} \leq 85^{\circ} \mathrm{C}$ and the following test conditions: $\mathrm{VCC}=12 \mathrm{~V} ; \mathrm{V}_{\text {OT }}=0 \mathrm{~V}, \mathrm{EN}=3 \mathrm{~V}, \mathrm{R}_{\mathrm{FS}}=100 \mathrm{k} \Omega$, $\mathrm{R}_{\text {SLOPE }}=82.5 \mathrm{k} \Omega$, Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

Parameter	Symbol	Test Conditions / Comment	Min	Typ	Max	Units
VG Load Capacitance	$\mathrm{C}_{\text {LG }}$				1500	pF
LED Current On/Off slope						
SLOPE Reference Voltage	$\mathrm{V}_{\text {SLOPE }}$			2		V
I-LED Rise Time	$\mathrm{T}_{\text {I-LED RISE }}$	$\begin{aligned} & \text { SLOPE }=5 \mathrm{VL} \\ & \mathrm{~F}_{\text {PWM }}=200 \mathrm{~Hz}, \mathrm{PWM}=50 \% \text { duty cycle } \\ & \mathrm{C}_{\mathrm{LG}}<500 \mathrm{pF} \end{aligned}$	1	1.5	2.5	$\mu \mathrm{s}$
I-LED Fall Time	$T_{\text {ILLED FALL }}$		1	1.5	2.5	$\mu \mathrm{s}$
I-LED Rise Time	$\mathrm{T}_{\text {I-LED RISE }}$	$R_{\text {sLOPE }}=82.5 \mathrm{k} \Omega$, $\mathrm{T}_{\text {RISE }} / \mathrm{T}_{\text {FALL }}=10 \%$ to 90% $\mathrm{F}_{\mathrm{PWM}}=200 \mathrm{~Hz}, \mathrm{PWM}=50 \%$ duty cycle Clg $<500 \mathrm{pF}$	3	4.2	5.5	$\mu \mathrm{s}$
I-LED Fall Time	$\mathrm{T}_{\text {ILED }}$ FALL		3	4.2	5.5	$\mu \mathrm{s}$

LED Temperature Compensation (LED Current Profile)

OT Start Threshold Voltage	$\mathrm{V}_{\text {Ott }}$	I-LED starts compensation at I-LED $=95 \%$ current setting. Register 08h $=01111111$; PWM1-4 = High	1.8	2.0	2.2	V
OT Max_Voltage Compensation	$\mathrm{V}_{\text {ot }}$	At stop point, l-LED $=15 \%$ current setting. Register 08h = 01111111; PWM1-4 = High	3.3	3.5	3.8	V
		And goes down to 6.7% when VTH OT $>4.5 \mathrm{~V}$. PWM1-4 = High; Register 08h= 01111111	3.5	3.7	3.95	V
OT Input Bias Current	lotils				1	$\mu \mathrm{A}$
Analog Dimming (Analog dimming can be set via SMBus or Fuse)						
AD Voltage		I-LED $=95 \%$; PWM1-4 $=$ HIGH; Register 08h $=01111111$	1.8	1.9	2.0	V
		$\begin{aligned} & \text { I-LED }=6.7 \% ; \text { PWM1-4 }=\mathrm{HIGH} ; \\ & \text { Register } 08 \mathrm{~h}=01111111 \end{aligned}$	0.05	0.2	0.34	
AD Input Bias Current	$A D_{\text {IIB }}$		-1		1	$\mu \mathrm{A}$
Analog Control Output Range	$V_{\text {IS }}$	Register 08h $=01111111$, PWM1-4 $=$ High	5		100	\%
SMBus LED Peak Current Adjustment						
Adjustment Range	IPADJ	$\mathrm{V}_{\text {IS }}=300 \mathrm{mV}$ represents maximum current setting	15.4		100	\% $\mathrm{V}_{\text {IS }}$
Resolution	$I_{\text {RES }}$	2 mV translates out to be 7 bits DAC		2		mV
LED short/open protection						
LED Short Threshold Voltage (note 1)	VDx $\mathrm{s}_{\text {SHORT }}$	$\begin{aligned} & \mathrm{F}_{\mathrm{PwM}}=25 \mathrm{kHz}, \\ & \text { Duty cycle }>7 \mu \mathrm{sec} \end{aligned}$	6.7	7.2	7.7	V
Derated IS Voltage		VD > 7.75		10		\%
LED Open Threshold Voltage	VDxopen	$\mathrm{F}_{\mathrm{PWM}}=25 \mathrm{kHz}, \mathrm{PWM}=10 \%$ duty cycle		0.24		V
Inductor Over Current protection						
Maximum Short Circuit Current	ILSHORT	With $10 \mathrm{~m} \Omega$ current sense resistor For Design Reference Only		10		A
Over Current Threshold Voltage	Voc	At current sense inputs		90		mV

Production Datasheet

ELECTRICAL CHARACTERISTICS

Unless otherwise specified, the following specifications apply over the operating ambient temperature of $-40^{\circ} \mathrm{C} \leq T_{A} \leq 85^{\circ} \mathrm{C}$ and the following test conditions: $\mathrm{VCC}=12 \mathrm{~V} ; \mathrm{V}_{\text {OT }}=0 \mathrm{~V}, \mathrm{EN}=3 \mathrm{~V}, \mathrm{R}_{\mathrm{FS}}=100 \mathrm{k} \Omega, \mathrm{R}_{\text {SLOPE }}=82.5 \mathrm{k} \Omega$, Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

Parameter	Symbol	Test Conditions / Comment	Min	Typ	Max	Units

SENSE Input

Sense Input Voltage Range	V $_{\text {SENSE }}$				100	mV
Sense Input Bias Current	ISENSE			0.3		$\mu \mathrm{~A}$
VL Regulator (5.0V)						

VL Output	5 V
VL Source Current	$5 \mathrm{~V}_{\text {CURRENT }}$
UVLO	VLuvLo

$6 \mathrm{~V} \leq \mathrm{VCC} \leq 28 \mathrm{~V} ;$ no external load
External load current, $\mathrm{VCC}=6 \mathrm{~V}$,
VL drop by $\leq 5 \%$
VL rising, $\mathrm{VHYS}=0.50 \mathrm{~V}$

4.75	5.00	5.25	V
3.75	4.25	4.65	mA

VH (VCC-5.25V) Regulator

VH Output Voltage	VH
UVLO	VHuvLo

$6 \mathrm{~V} \leq \mathrm{VCC} \leq 28 \mathrm{~V} ; 0 \mathrm{~mA} \leq \mathrm{IVH} \leq 15 \mathrm{~mA}$ Reference to VCC	-4.75	-5.25	-5.5	V
VH falling, VHYS $=0.50 \mathrm{~V}$. Internal POR activates on VH falling UVLO threshold, reference to VCC		-4.25		V

Oscillator	
FS Reference Voltage	
Oscillator Frequency	
Oscillator Frequency Setting Range	
DC/DC Switching NFET Driver	
DRV	

DRV Voltage High	V $_{\text {DRVH }}$
DRV Rise Time	$\mathrm{T}_{\text {RISE }}$
DRV Fall Time	$\mathrm{T}_{\text {FALL }}$
Off Voltage	V $_{\text {DRVOFF }}$

		5		V
$C L=1000 \mathrm{pF}$		26		ns
$\mathrm{CL}=1000 \mathrm{pF}$		15		ns
$\mathrm{EN}=0 \mathrm{~V}$		0		V

DC/DC Switching PFET Driver

PFET High Voltage	V $_{\text {PFETH }}$
PFET Low Voltage	$\mathrm{V}_{\text {PPFETL }}$
PFET Rise Time	$\mathrm{T}_{\text {RISE }}$
PFET Fall Time	$\mathrm{T}_{\text {FALL }}$

EN $=0 \mathrm{~V}$, refer to VCC		0		V
Refer to VCC		-5.25		V
CL $=1000 \mathrm{pF}$		14		ns
CL $=1000 \mathrm{pF}$		25		ns

Converter mode condition

Boost to Buck-Boost Transition	BS-BB	At VLED. VLED falling		13.76	
Buck-Boost to Boost Transition	BB-BS	At VLED. VLED rising	V		
Buck to Buck-Boost Transition	BK-B	At VLED. VLED rising	14.65		V
Buck-Boost to Buck Transition	BB-BK	At VLED. VLED falling	9.21		V

Microsemi

Production Datasheet

ELECTRICAL CHARACTERISTICS

Unless otherwise specified, the following specifications apply over the operating ambient temperature of $-40^{\circ} \mathrm{C} \leq T_{A} \leq 85^{\circ} \mathrm{C}$ and the following test conditions: $\mathrm{VCC}=12 \mathrm{~V} ; \mathrm{V}_{\text {OT }}=0 \mathrm{~V}, \mathrm{EN}=3 \mathrm{~V}, \mathrm{R}_{\mathrm{FS}}=100 \mathrm{k} \Omega, \mathrm{R}_{\text {SLOPE }}=82.5 \mathrm{k} \Omega$, Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

Parameter	Symbol	Test Conditions / Comment	Min	Typ	Max	Units
Overall System Efficacy	η	$\mathrm{VIN}=12 \mathrm{~V} \& 26 \mathrm{~V}$, VS setting at 100%, PWM $=100 \%$ (Boost mode \& Buck Mode) For Design Reference Only	90			\%
SMBus						
SDA, SCLK Input Low Voltage	ILV				0.7	V
SDA, SCLK Input High Voltage	I_{HV}		2			V
SDA, SCLK Input Hysteresis	$\mathrm{IH}_{Y S}$			100		mV
SDA,SCLK Input Bias Current	$I_{\text {IB }}$		-5		+5	$\mu \mathrm{A}$
SDA Output Low Sink Current	$\mathrm{O}_{\text {SNK }}$	$\mathrm{V}_{\mathrm{SDA}}=0.4 \mathrm{~V}$	4			mA
SMBus Frequency	$F_{\text {Smbus }}$		10		100	kHz
SMBus Free time	$\mathrm{T}_{\text {BuF }}$		4.7			$\mu \mathrm{s}$
SCLK Serial Clock High Period	$\mathrm{T}_{\text {HIGH }}$		4			$\mu \mathrm{s}$
SCLK Serial Clock Low Period	Tow		4.7			$\mu \mathrm{s}$
Start Condition Set-up Time	Tsu:STA		4.7			$\mu \mathrm{s}$
Start Condition Hold-up Time	THD:STA		4			$\mu \mathrm{s}$
Stop Condition Set-up Time from SCLK	Tsu:sto		4			$\mu \mathrm{s}$
SDA Valid to SCLK Rising Edge Set-up Time, Slave Clocking Data	$\mathrm{T}_{\text {SU:DAT }}$		250			ns
SCLK Falling Edge to SDA Transition	THD:DAT		0			ns
SCLK Falling Edge to SDA Valid, Reading Out Data	$T_{D V}$		200			ns

Note: 1. When the different $V_{\text {DRAIN }}$ voltages are more than 2 V , then a single LED short may shut off the string that has a highest $V_{\text {DRAIN }}$ (VD hits the limit). However $V_{\text {SOURCE }} \mathrm{pk}-\mathrm{pk}$ matching will not be effected in this circumstance.

SERIAL INTERFACE

SMBus Interface

LX2260 is a nine-register device which uses SMBus or $\mathrm{I}^{2} \mathrm{C}$ protocols to communicate with the host system. All registers are defined as full byte wide. Some registers contain reserved (undefined) bits with a default value of " 0 ", or are read only bits that are status indicators. Two of the nine registers are capable of both read and write, and seven registers are read only. See the LX2260 Register Definitions section for details.

The LX2260 communicates over the SMBus and operates in a "slave" mode receiving commands and sending / receiving data to / from the host or "master". Only standard two-wire SMBus and $\mathrm{I}^{2} \mathrm{C}$ compatible serial bus and protocols may be used for this device. The LX2260 can be configured for one of the three addresses by connecting the ADR input pin to ground, V_{DD}, or simply leaving it OPEN.

Address Strapping Codes

Option \#	ADR	Address
$\mathbf{1}$	GND	0101100 b
$\mathbf{2}$	OPEN	0101110 b
$\mathbf{3}$	V $_{\text {DD }}$	0101111 b

In this document, the SMBUs address occupies high seven bits of an eight bit field on the bus, the low bit is always the R/W bit.

Address $=0101110 \times \mathbf{x b}$

Address = 0101111xb

1	7	1	1	8	1	1
S	Slave Address	Wr	A	Data Byte	A	P
	0101111	0				

SMBus Protocol

The only required command protocols are SMBus Send Byte, Receive Byte, Read Byte / Word, and the Write Byte / Word protocols.

Writes to registers can be performed by either the SMBus Write Byte / Word protocols and/or by internal IC logic, depending on the register type.

Read can be performed on all registers by issuing the Read Byte / Word protocol. Read Only registers can be written only by internal logics. Their contents will not be affected by SMBus write commands.

When LX2260 is initially powered, it will first test the address selection pin input to determine its own address and then look for its unique address each time it detects a "Start Condition". If the address does not match, the LX2260 ignores all bus activity until it encounters another "Start Condition".

SMBus Packet Protocol Diagram Element Key

\mathbf{S}	Slave Address	Wr	A	Data Byte	A	P
			\mathbf{X}		X	

S Start Condition

Rd Read (bit value of 1)
Wr Write (bit value of 0)
A Acknowledge (' 0 ' for an ACK, or ' 1 ' for a NACK)
P Stop Condition
Command Code Register Address
$\square \quad$ Master-to-Slave $\square \quad$ Slave-to-Master
Protocols used to communicate with LX2260 must be per standard SMBus specification version 2.0 or higher.

SERIAL INTERFACE

SMBus Timing Measurement

Register Definitions

The LX2260 includes a registers to monitor the fault status. The slave address is set by the ADR signal inputs as follows:

VD Register: Address is 00 h to 03 h . This register has 8 bits that allows monitoring the drain voltage (VD). This voltage will reveal the string status, i.e., LED short/open. It is suggested that the input PWM duty cycle be reduced when a LED short is detected to avoid LED current sink NFET overheating.
VLED Register: Address is 04 h . This register has 8 bits that allow monitoring the Boost output voltage (VLED).
String $1 \& 2$ Status Register: Address is 05 h. This register has 8 status bits that allows monitoring the string $1 \& 2$ status.
String $\mathbf{3} \& 4$ Status Register: Address is 06 h . This register has 8 status bits that allows monitoring the string $3 \& 4$ status.
Fault/Status Register: Address is 07 h. This register has 8 status bits that allows monitoring the backlight controller's operating state.

REGISTER 00h	VD1 (drain voltage monitoring)
REGISTER 01h	VD2 (drain voltage monitoring)
REGISTER 02h	VD3 (drain voltage monitoring)
REGISTER 03h	VD4 (drain voltage monitoring)
REGISTER 04h	VLED (LED Anode voltage monitoring)
REGISTER 05h	String 1 \& 2 status
REGISTER 06h	String 3 \& 4 status
REGISTER 07h	Faults
REGISTER 08h	LED Peak Current Reference Voltage Adjustment

REGISTER 00h to 03h							
Drain voltage monitoring							
VD							
Bit 7 (R)	Bit $6(\mathrm{R})$	Bit 5 (R)	Bit 4 (R)	Bit 3 (R)	Bit 2 (R)	Bit 1 (R)	Bit $0(\mathrm{R})$

BIT FIELD	DEFINITION	DESCRIPTION
Bit $0-7(\mathrm{R})$	Drain voltage	8-bit drain voltage monitoring. 256 steps for 8V. (bit 7 is MSB)

SERIAL INTERFACE

REGISTER 04h			LED voltage monitoring		DEFAULT VALUE 0x00		
VLED							
Bit 7 (R)	Bit 6 (R)	Bit 5 (R)	Bit 4 (R)	Bit 3 (R)	Bit 2 (R)	Bit 1 (R)	Bit 0 (R)

BIT FIELD	DEFINITION	DESCRIPTION					
Bit 7	String \#1 not Used	Set 1 when string \#1 is not used to mask string faults on the string. Bit 6 and 7 are written to register 05 h by the systems via SMBus to let the LX2260 know the unused string so the LX2260 can remove it from the fault detection/reporting. At power up system must disregard fault reporting and FFLAG (software timer) until the systems has finished setting string not used bit (set bit 6 and or 7 to high) and have received acknowledge from LX2260. LX2260 sends an acknowledgement after masking string fault.					
Bit 6	String \#2 not Used	Set 1 when string \#2 in not used to mask string faults on the string.					
Bit 5	S1_OV	String 1 Over Voltage ($1=\mathrm{VD}>6.75 \mathrm{~V}$)					
Bit 4	S1_OPEN	String 1 Open ($1=$ string open)					
Bit 3	S1_NOTUSE	String 1 status ($1=$ string is not used)					
Bit 2	S2_OV	String 2 Over Voltage ($1=\mathrm{VD}>6.75 \mathrm{~V}$)					
Bit 1	S2_OPEN	String 2 Open ($1=$ string open)					
Bit 0	S2 NOTUSE	String 2 status ($1=$ string is not used)					
$\rightarrow \longrightarrow$							
BIT FIELD	DEFINITION		DESCRIPTION				
REGISTER 06h			String 3\&4 Status Register		DEFAULT VALUE 0x00		
String \#4 not Used	String \#3 not Used	S3_OV	S3_OPEN	S3_NOTUSE	S4_OV	S4_OPEN	S4_ NOTUSE
Bit 7 (W)	Bit 6 (W)	Bit 5 (R)	Bit 4 (R)	Bit 3 (R)	Bit 2 (R)	Bit 1 (R)	Bit 0 (R)
Bit 7	String \#3 not Used	Set 1 when string \#3 in not used to mask string faults on the string. Bit 6 and 7 are written to register 06h by the systems via SMBus to let the LX2260 know the unused string so the LX2260 can remove it from the fault detection/reporting. At power up system must disregard fault reporting and FFLAG (software timer) until the systems has finished setting string not used bit (set bit 6 and or 7 to high) and have received acknowledge from LX2260. LX2260 send acknowledge after masking string fault					
Bit 6	String \#4 not Used	Set 1 when string \#4 in not used to mask sting faults on the string.					
Bit 5	S3_OV	String 3 Over Voltage ($1=\mathrm{VD}>6.75 \mathrm{~V}$)					
Bit 4	S3_OPEN	String 3 Open ($1=$ string open)					
Bit 3	S3 NOTUSE	String 3 status ($1=$ string is not used)					
Bit 2	S4_OV	String 4 Over Voltage ($1=\mathrm{VD}>6.75 \mathrm{~V}$)					
Bit 1	S4_OPEN	String 4 Open ($1=$ string open)					
Bit 0	S4_NOTUSE	String 4 status ($1=$ string is not used)					

SERIALINTERFACE TIMING

REGISTER 07h			Faults Register		DEFAULT VALUE 0x00		
RESERVED	RESERVED	RESERVED	RESERVED	OC SHDN	OC	OTP	T Warning
Bit 7 (R)	Bit 6 (R)	Bit 5 (R)	Bit 4 (R)	Bit 3 (R/W)	Bit 2 (R)	Bit 1 (R/W)	Bit 0 (R)

BIT FIELD	DEFINITION	DESCRIPTION
Bit 3	OC SHDN	OC shutdown $(1=$ OCP shut down, $0=$ OC SHDN OK $)$. Reset after reading or by En $=$ Low
Bit 2	OC	Input OC $(1=$ over current condition, $0=$ OC OK). Reset after reading or by En = Low
Bit 1	OTP	OTP Shutdown $\left(1=\right.$ OTP shut down, $\left.0=\mathrm{T}_{\mathrm{OK}}\right)$. note 1$)$
Bit 0	T WARNING	Temperature warning $\left(1=\mathrm{T}_{\text {WARNING }}, 0=\mathrm{T}_{\mathrm{OK}}\right) .($ note 2$)$

REGISTER 08h			DLED Setting Register				DEFAULT VALUE 0x7F
ADIM	Bit6	Bit5	Bit 4	Bit3	Bit2	Bit1	Bit0
Bit 7 (R/W)	Bit 6 (R/W)	Bit $5(\mathrm{R} / \mathrm{W})$	Bit 4 (R/W)	Bit 3 (R/W)	Bit $2(\mathrm{R} / \mathrm{W})$	$\mathrm{Bit} 1(\mathrm{R} / \mathrm{W})$	$\mathrm{Bit} 0(\mathrm{R} / \mathrm{W})$

BIT FIELD	DEFINITION	DESCRIPTION
Bit 7	ADIM	Analog Dimming Mode setting $(0=$ OT, $1=$ ADIM $)$
Bit $6: 0$	ILED bit6:0	To program LED current setting reference voltage, see note below.

Register 08h: LED Peak Current Adjustment (7 bits used for 128 steps)

Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	$\mathrm{V}_{\text {IS }}(\mathrm{mV})$
0	0	0	0	0	0	0	46
0	0	0	0	0	0	1	48
0	0	0	0	0	1	0	50
0	0	0	0	0	1	1	52
0	0	0	0	1	0	0	54
\downarrow							
1	1	1	1	1	1	0	298
1	1	1	1	1	1	1	300

Default LED reference is 300 mV regardless SDA/SCLK state at POR.
Note:

1. OTP bit change state from " 0 " to " 1 " and latched when the real time OTP changes from " 0 " to " 1 ".
2. T WARNING bit changes state from " 0 " to " 1 " and latched when the real time T WARNING change from " 0 " to " 1 ".

SERIAL INTERFACE TIMING

Timeout Measurement Interval

Faults Timing Diagram

OTP Timing (Bit 1, Reg 07h)

FFLAG stays low when the chip is in over temperature shutdown mode.
OTP bit is latched by over temperature warning signal.
FFLAG and OTP reset after reading and real time OTP is low. (Real time OTP not show)
There are some Tdelay (Td) from real time OTP "1" to set OTP \& FFLAG, as well as from end read cycle to reset OTP and FFLAG. Td must $<1 \mu \mathrm{sec}$.
This timing diagram shows relationship between Over temperature Shutdown output and OTP bit, FFLAG only without any other fault conditions. In an actual application, FFLAG will not represent Over Temp Shutdown from temperature monitor because FFLAG is a NORed output of all faults and over temperature warning is always true when Over Temp Shutdown is true.

SERIAL INTERFACE TIMING

OC Timing

FFLAG is Low whenever OC or OC SHDN occurs and extended by an internal timer.
OC and FFLAG register bits are reset after reading. (Real time OC not shown)
Fault bits are set back when the fault conditions present.

FFLAG is Low whenever T Warning occurs.
T Warning bit is reset after read access and when real time T warning is low.
There are some Tdelay (Td) from real time T WARNING "1" to set T WARNING \& FFLAG, as well as from end read cycle to reset T WARNING \& FFLAG. Td must $<1 \mu \mathrm{sec}$.

SERIAL INTERFACE TIMING

Strings Status Timing Diagram
String Status

FFLAG is Low whenever String OV or String OPEN occurs.
FFLAG reset after reading.
Strings status are latched and be reset by recycling EN signal or Vcc
There are some Tdelay (Td) from String OPEN/OV high to set FFLAG, as well as from re-cycle EN/VCC to reset String OPEN/OV and FFLAG. Td must < $1 \mu \mathrm{sec}$.

Production Datasheet

THEORY OF OPERATION

Introduction

The LX2260 is a fixed frequency current-mode PWM controller designed to regulate the necessary voltage to drive an LED array. Depending on the input voltage and the required LED string voltage, the LX2260 will decide to operate in boost converter mode, buck converter mode, or buck-boost converter mode with fixed switching frequency from 400 kHz to 800 kHz , which is programmed by an external resistor. In all modes of operation the LX2260 will regulate to the lowest drain voltages (typ. 0.9 V) to minimize the power loss through the external current sink NFETs.

Current Sense Resistor Selection

The voltage across an external input current sense resistor is used for limiting the switching current (coil current) cycle-by-cycle. For $I p k_{\text {LIMIT }}=10 \mathrm{~A}$ (recommended), then

$$
R_{S E N S E}=\frac{100 \mathrm{mV}}{I p k_{L I M I T}}=\frac{100 \mathrm{mV}}{10 \mathrm{~A}}=10 \mathrm{~m} \Omega
$$

Inductor Selection

To keep the circuit in constant current mode (CCM), the maximum ripple current should be less than twice the minimum load current. The final value of the inductor will be a compromise between buck and boost modes. Due to the effect of RHP zero on Error Amplifier compensation, select the minimum load $=\mathrm{I}_{\text {OUT }}$. The following formulae should be used to calculate the inductor values in both buck and boost modes.

Minimum inductor value for boost converter:
Where $\mathrm{f}_{\mathrm{S}} \approx 600 \mathrm{kHz}$

$$
L_{\text {BOOST }} \geq \frac{V_{I N} \cdot\left(V_{O}-V_{I}\right)}{\left(V_{O} \cdot f_{S} \cdot I_{O} \cdot \% \Delta_{I}\right)}
$$

Where $V_{I N}=V_{O} / 2, \% \Delta I=\Delta_{I} / I_{O}$
Minimum inductor value for buck converter:

$$
L_{B U C K} \geq \frac{V_{O} \cdot\left(V_{I}-V_{O}\right)}{\left(V_{I} \cdot f_{S} \cdot I_{O} \cdot \% \Delta_{I}\right)}
$$

Where $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{I}(\mathrm{MAX})}, \% \Delta \mathrm{I}=\Delta_{\mathrm{I}} / \mathrm{I}_{\mathrm{O}}$
The actual mode transition threshold can be calculated by the following equations:
Buck-Boost to Buck $=\mathrm{V}_{\text {LED }} \cong 0.9 * \mathrm{VCC}-1.6[\mathrm{~V}]$
Buck to Buck-Boost $=\mathrm{V}_{\text {LED }} \cong 0.9^{*} \mathrm{VCC}-2.4[\mathrm{~V}]$
Buck-boost to Boost $=\mathrm{V}_{\mathrm{LED}} \cong 1.11 * \mathrm{VCC}+1.34[\mathrm{~V}]$
Boost to Buck-Boost $=$ VLED $\cong 1.11^{*} \mathrm{VCC}+0.44$ [V]

Slope Compensation.

LX2260 operates in fixed frequency CCM mode. Therefore, in some conditions, the duty cycle may extend beyond 50%. This condition will cause sub-harmonic instability. The cure for this is adding an additional ramp current. An external resistor (minimum $100 \mathrm{k} \Omega$) will set the ramp current for the internal current slope compensation circuit.

Use the following equation to set the external resistor for the slope compensation:

$$
R_{I C O M P}[k \Omega] \approx \frac{66.7 * L[\mu H]}{R_{S E N S E}[m \Omega]}
$$

Start-up

The start-up or wake-up is controlled to minimize inrush or to eliminate the starting surge current required from the input power supply. EN pin input is always alive, therefore the LX2260 consumes a minimal amount of current even when the chip is in sleep mode ($\mathrm{EN}=\mathrm{low}$).

LX2260's start-up time is set by an external capacitor $\mathrm{C}_{\mathrm{CSS}}, \mathrm{V}_{\text {LED }}$, the highest V_{DS}, and PWM duty cycle ($\mathrm{D}_{\mathrm{PWM}}$). During start-up, $\mathrm{C}_{\mathrm{CSS}}$ is charged up at $120 \mu \mathrm{~A}$ until lowest VD reaches to 700 mV . Use the following equation to estimate the start up T_{SU} where $\mathrm{D}_{\text {PWM }}$ is in decimal number.

$$
T_{S U}[S e c] \approx \frac{C_{C S S}[\mu F] *\left(\left(V_{L E D}-1\right)+V_{D S_{-} M A X}\right)}{120 \mu A * 20 * D_{P W M}}
$$

To speed up the startup time with low PWM duty cycle, user may try to stagger the PWM inputs so that the DC/DC converter stays active for an extended time. The LX2260's DC/DC converter is active when any of the active string's PWM inputs are high.

Over Current and Over Current Shutdown (OC SHDN).
In any mode of power conversion or any test condition, once over current (OC) is detected, the PDRV turns off for 4 switching clock cycles and then resumes operation. An internal 4 event counter accumulates the number of over current triggers that happen within 128 clock cycles. In other words, the 4 event counter is reset by $1 / 128$ clock. At the 4th over current event (in case there is the $1 / 128$ reset coming before the 4th trigger, total number of over current triggers that cause shutdown became more than 4), the chip shuts off the DC-DC converter and discharges CSS capacitor to 75 mV . The chip resumes operation thereafter. If the over current condition is still present, the chip repeats the shut down and recovery cycle. The status of over current (OC) will set Bit 2 of register 07h to " 1 ". Bit 2 will reset after reading.

THEORY OF OPERATION-CONTINUTED

Over Temperature Protection (OTP).

In any mode of power conversion or any test condition, once over OTP is detected (typical is $150^{\circ} \mathrm{C}$), the LX2260 will shutdown. The status of OTP will set Bit 1 of register 07 h to " 1 ". Bit 1 will reset after reading in real time and OTP is low. System will resume operation when temperature drops below the shutdown recovery threshold voltage (typical is $130^{\circ} \mathrm{C}$).

Temperature Warning (T_Warning).

In any mode of the converter or any test condition, once T_warning is detected (typical is $120^{\circ} \mathrm{C}$), the status of T_warning will set Bit 0 of register 07 h to " 1 ". Bit 1 will reset after reading in real time that T_Warning is low.

Fault Flags:

The following faults will set the FFLAG to "Low", and be reset either by after reading via SMBus. The fault output is intended to stay low for an extended period after internal faults are cleared. The timer is 8 mS typical with $100 \mathrm{k} \Omega$ on FS pin.

Fault Condition	Register /Bit	Reset By	Notes
String over voltage	Register 06 h, bit 2 $\& 5$	Toggle EN or VCC	When VD String Open
Register $05 \mathrm{~h} \&$ 06 h, bit 1 $\& ~ 4$	Toggle EN or VCC	VD T-WARNING	Register 07 h bit 0
OTP	After real time T WARNING is Low		
OC	Register 07 h bit 1	After real time OTP is Low	
OC	Register 07 h bit 2	After real time OC is Low	
OC SHDN	Register 07 h bit 3	After chip resumes start up	

5V Regulator

The 5 V regulator generates 5 V from VCC to the internal low voltage circuit and also provides power for an external light sensor (such as LX1973). Maximum output current is limited to 2 mA for the external devices. The 5 V output requires at least $0.1 \mu \mathrm{~F}$ connected across VL pin and GND for phase compensation. A $1 \mu \mathrm{~F}$ capacitor is recommended and should be placed near the VL and tied to the GND plane. The 5 V is shut off while the chip is in sleep mode ($\mathrm{EN}=$ low).

VCC-5.25V Regulator

VCC-5.25V (VH) is a floating VSS for the low voltage circuits residing across VCC and VH. During start up, VH is turned on after VL gets ready.

POR

POR is cleared $100 \mu \mathrm{~S}$ (typ.) after VH exceeds internal VH UVLO threshold.

LED Current Profiler

The OT input is a comparator with a threshold of 2 V . It interfaces to an external NTC thermistor incorporated mechanically into the light bar or in close proximity to it. If the LED ambient temperature gets hot, the thermistor will sense it and decrease in resistance. This will in turn increase the OT pin voltage, and then the current sink will decrease the LED current in proportional with voltage at OT pin. The minimum of LED current when VOT reaches 4 V is of 5% of LED current setting. If this feature is not used, then this pin should tie to GND.
If Minimum V_{DS} is more than 2 V , then both PFET and NFET will be active to regulate LED current to minimum level.

SOA of 180 mA white LED from Nichia \# NFSW036BT

Production Datasheet

THEORY OF OPERATION - CONTINUTED

PWM Dimming

The LED string currents are individual controlled directly by PWM input. A high on PWM input enables the output current.

DC Dimming (for application only)

DC dimming can be achieved, but not independently. In this mode, all the PWM inputs must be tied to VL, while the DC control signal goes to OT pin. The DC input range from 2 V to 4 V corresponding from 100% to 5% of LED current setting.

OVP

Two external resistors $\left(\mathrm{R}_{\text {Down }} \& \mathrm{R}_{\mathrm{UP}}\right)$ program the LX2260's OVP level. The threshold is set to 2 V (typical) at the OVP pin. When the OVP voltage threshold is reached it will stop the power converter from switching and then resume when the OVP pin voltage drops below the 2 V threshold. The OVP function is active whenever the EN signal is high regardless the LED current condition.

$$
O V P=\frac{2 V *\left(R_{D O W N}+R_{U P}\right)}{R_{D O W N}}
$$

LED Open/Short Detection

In case a LED fails open or an opened string, the VD pin drops down to 0 V . The power converter will try to raise the $\mathrm{V}_{\text {LED }}$ under this condition. The open string will then latch off when $\mathrm{V}_{\text {LED }}$ voltage reaches 100% of OVP setting. At latch off this string's VD pin voltage is excluded from the power supply regulation loop. The power converter will stop switching until the highest VD pin voltage drops below 2 V and the OVP pin voltage is less than 2V. Any change in the $\mathrm{V}_{\text {LED }}$ voltage should have minimum impact to the LED output current since they are current source outputs. LED short protection is temporarily disabled when one or more open strings are detected. This allows VD to go beyond the LED short protection threshold of 7.25 V (typ.). After successful latch off of any open string the VD voltage returns to a normal regulation level. The LX2260 reduces the LED current reference voltage to about 10% while VD $>7.25 \mathrm{~V}$ to avoid the external FET from overheating. The LED current returns to normal level when VD voltage gets below 7.25 V . Cycling power or the EN input will reset any latched off VD pin.

User must tie VG pin to GND for any unused string to distinguish between string failed open and strings unused. In this situation any string that has VD higher than the LED short threshold voltage will not be latched off and not be reported with VD is higher than 6.75 V .

The LED short fault is masked when any of VD is below open LED detection threshold until such string is latched off. Broken PWM input lines will be checked during start and reported as corresponding strings open

In case of the LED short condition, LX2260 output works normally until the VD voltage reaches the LED short threshold voltage, and the corresponding string is turned off. LED short protection works this way when there are more than two active strings and the lowest VD regulation is at normal level $(0.24 \mathrm{~V}<\mathrm{VD}<2 \mathrm{~V})$. This allows the VD voltage to go beyond the LED short threshold in case of an open string or temporary instability on VLED output. When there is only one active string in the system, the last string is latched off when VD voltage reaches to 7.25 V . VD of the latched off strings are excluded from the power converter regulation loop.

Note: The size of NFET current sink must increase to handle LED short or VD voltages in excess of the LED short threshold voltage. Otherwise, the relative PWM input duty cycle must be reduced if smaller NFET is used.

THEORY OF OPERATION-CONTINUTED

Current Source Driver

This is the current source driver for the external LED current sink NFET. The driver output VGx, and the feedback signal ISx will regulate the LED current through an internal op amp with a 300 mV band gap (current source reference), for unused string will tie VG to ground. The lowest drain voltage of any external current sink NFET is used to regulate the boost, buck, or buck-boost voltage output. All the drains will report back to host computer through the SMBus to determine the strings status (number of shorted LED, open LED) The LED current matching between strings is 1.5% when matched with an external current sense resistor whose tolerance is 0.1% at room ambient temperature. The IC specifies voltage only at ISx pin and the voltage matching is $+/-1.5 \%$.

$$
L E D_{\text {CURRENT }}[m A]=\frac{300 \mathrm{mV}}{R_{I S}[\Omega]}
$$

Where $R_{I S}$ tolerance must be 1% or less for better matching.

LED Output Current Rise/Fall Time Control

LX2260's LED output current rise/fall time can be programmed by one external resistor connected between SLOPE and GND.

Rise/Fall time can be calculated by:

$$
\mathrm{R}_{\mathrm{SLOPE}}[\mathrm{k} \Omega]=20 * \mathrm{~T}_{\mathrm{R}} \text { or } \mathrm{T}_{\mathrm{F}}[\mu \mathrm{~S}]
$$

Recommended use $20 \mathrm{k} \Omega$ and greater resistor.
Connect SLOPE pin to VL when slope control is not used. 5 V on SLOPE pin selects an internal $20 \mathrm{k} \Omega$

For long cable from $V_{\text {LED }}$ and VDS to LED assembly, the minimum T_{R} and T_{F} must be selected based on wire inductance to minimize the LED current ringing.

$$
\mathrm{T}_{\mathrm{R}} \text { or } \mathrm{T}_{\mathrm{F}}[\mathrm{sec}] \geq 10 * \mathrm{~L}_{\mathrm{WIRE}}[\mathrm{H}] * \mathrm{I}_{\mathrm{LED}}[\mathrm{~A}]
$$

Error Amplifier Compensation

$\mathrm{R}_{\text {COMPT, }} \mathrm{R}_{\text {COMPK, }}$ and $\mathrm{C}_{\text {COMPx, }}$, configure the error amplifier gain characteristics to accomplish a stable voltage loop gain. One advantage of current mode is the ability to close the loop with only two feedback components $\mathrm{R}_{\text {COMPx, }}$ and $\mathrm{C}_{\text {COMPx }}$

Additional, there is a right-half plane zero (RHPZ) associate with the modulator.

The lowest RHPZ occurs at minimum $\mathrm{V}_{\text {IN }}$ for Boost mode and is maximum $\mathrm{V}_{\text {IN }}$ for Buck/Boost mode at maximum load.

In boost mode, the components $\mathrm{R}_{\text {COMPT, }}$ and $\mathrm{C}_{\text {COMPx }}$ will be selected to set a zero about 30% of RHPZ frequency.
Where

$$
\begin{gathered}
F_{R H P Z}[H z]=\frac{V_{I N}{ }^{2}}{2 \pi * I_{O U T} * L * V_{O U T}} \\
F_{Z}=\frac{1}{2 \pi R C} \approx \frac{F_{Z R H P Z}}{3.3} \\
R_{\text {COMPT }} \approx \frac{3.3}{2 \pi * C_{C O M P X} * F_{R H P Z}}
\end{gathered}
$$

OR

While $\mathrm{R}_{\text {COMPK }}$ is for both Buck and Buck/Boost mode. Therefore, $\mathrm{R}_{\text {COMPK }}$ must be selected to satisfy for both cases. In this case, the frequency of RHPZ of Buck/Boost is much higher than the desire Buck compensation network zero. Therefore,

$$
R_{C O M P K} \approx \frac{250}{2 \pi * C * F_{S W}}
$$

Adjustment may have to be made to ensure stability in the actual circuitry.
Increasing $\mathrm{R}_{\text {COMPx }}$ while proportionally decreasing $\mathrm{C}_{\mathrm{COMPx}}$ will yield higher error amplifier gain or vice versa.
For the design optimize, select $\mathrm{C}_{\mathrm{COMPx}}=1 \mathrm{nF}$.
For Boost design example with

$$
\begin{array}{rlrl}
\mathrm{V}_{\mathrm{OUT}}=25 \mathrm{~V}, & \mathrm{~V}_{\mathrm{IN}-\mathrm{MIN}} & =6 \mathrm{~V} \\
\mathrm{I}_{\mathrm{OUT}}= & =0.6 \mathrm{~A}, & \mathrm{~L} & =15 \mu \mathrm{H}, \\
\mathrm{C}_{\mathrm{COMPx}} & =1 \mathrm{nF}, & \mathrm{~F}_{\mathrm{SW}} & =600 \mathrm{Khz} \\
& & & \\
& & & \\
R_{\text {Coost_ }} F_{\text {RHPZ }} & =25.5 \mathrm{Khz} \\
& \approx \frac{3.3}{2 \pi C F_{\text {RHPZ }}} & =20.6 \mathrm{~K} \Omega
\end{array}
$$

And

$$
R_{C O M P K} \approx \frac{250}{2 \pi C F_{S W}}=66.3 \mathrm{~K} \Omega
$$

Input Capacitors

Since the Vin pin is supply voltage for the IC. It is recommended to place a 4.7 uF or higher with low ESR bypass capacitor. If the power source is long distance, then bulk parallel capacitors are needed to reduce input voltage ripple that may affect the transition mode voltage.

THEORY OF OPERATION-CONTINUTED

Output Capacitors

The bulk parallel of capacitors are set to reduce the ripple due to charge into capacitors each cycle. The following formulae are use for Boost and Buck in steady state:

$$
\begin{aligned}
& \% \text { Ripple_Boost }=\frac{I_{\text {OUT-MAX }}\left(V_{\text {OUT }}-V_{\text {IN }}\right) 100}{C_{\text {OUT }} * V_{\text {OUT }}{ }^{2} * F} \% \\
& \% \text { Ripple_BUCK }=\frac{I_{\text {OUT-MAX }}\left(V_{\text {IN-MAX }}-V_{\text {OUT }}\right) 100}{C_{\text {OUT }} * V_{\text {IN-MAX }} * V_{\text {OUT }} * F} \%
\end{aligned}
$$

Where
$\mathrm{C}_{\text {Out }}=$ Output capacitor in Farad
$\mathrm{F}=$ Switching frequency in Hz
To handle the transient response of the converter, the output capacitors is usually larger than the calculation.

Typical Operating Characteristics

SLEEP CURRENT VS. Vin

QUIESCENT CURRENT VS. VIN

Production Datasheet

Typical Operating Characteristics - continued

VFS VS. Vin

SWITCHING FREQUENCY VS. Vin

Typical Characteristics @ $\mathbf{2 5}^{\circ} \mathrm{C}$ and 5 LED in Series SYSTEM EFFICIENCY vs. LED CURRENT

STRINGS CURRENT ACCURACY vS. LED CURRENT (ADIM BOOSTMODE)

Typical Characteristics @ $\mathbf{2 5}^{\circ} \mathrm{C}$ and 5 LED in Series - continued
 current (BOOST mode)

STRINGS CURRENT MATCHING Vs. LED CURRENT (BOOST MODE)

STRINGS CURRENTMATCHING vs. LED CURRENT (BUCK/BOOST MODE)

STRING CURRENT ACCURACY VS. LED CURRENT (BUCK)
STRING CURRENT MATCHING VS. LED CURRENT (BUCK)

TYPICAL APPLICATION CIRCUITS

The component values are for reference only

TYPICAL APPLICATION CIRCUITS

The component values are for reference only
Note: A resettable fuse at $\mathrm{V}_{\mathbf{I N}}$ is needed for protection when output short to ground occurs.

